

Journal homepage: http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

Spin determination for the superdeformed bands of some even mass Ce and Nd isotopes

Sahar Abd El-Ghany

Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

Manuscript Info	Abstract
Manuscript History: Received: 15 June 2015 Final Accepted: 19 July 2015 Published Online: August 2015	The superdeformed bands in the even mass isotopes of the A \approx 130 mass region characterized by spin alignment and significant band mixing cases. Accordingly, the theoretical and experimental determination of the spin is so difficult. Therefore, in this work a simple method for the spin proposition of rotational superdeformed (SD) bands of some even mass Ce and Nd isotopes
<i>Key words:</i> spin of superdeformed bands; A~130 mass region; Ce and Nd isotopes; moment of inertia.	has been suggested. It depends on the behavior of the variation of the kinematic (φ^{l}) and the dynamic (φ^{2}) moment of inertia with the angular frequency. Applying this method a good agreement between the calculated and the corresponding experimental values of the gamma-ray transition energies of the SD bands is obtained.
*Corresponding Author	
Sahar Abd El-Ghany	Copy Right, IJAR, 2015,. All rights reserved

INTRODUCTION

The phenomenon of superdeformation has been studied intensively since the discovery of superdeformed (SD) bands in ¹³²Ce and ¹⁵²Dy (Kirwan et al,(1987)and Twin et al, (1986)). Much effort have been spent attempting to understand the properties of the long cascades of regular spaced γ rays emitted from these highly deformed nuclei at high spin.

In this work, we have studied the SD bands in the A \approx 130 mass region. In these region, there are: a) a large shell gaps at large deformation caused a deep second minima in the nuclear potential energy, (b) variations in the dynamical moments of inertia with rotational frequency, c) long cascades of *E*2 transitions (up to \approx 20 transitions) and (d) complex decay paths from the second to the first minima (Wilson et al, (1998)). The previous properties are similar with SD nuclei in the A \approx 150 mass region.

Nevertheless, there are also some differences between SD nuclei in the A \approx 130 and A \approx 150 mass regions such as: (a) spins of the yrast SD bands are lower \approx 25 \hbar as compared to \approx 45 \hbar , (b) population occurs between collective rotational ND states with nuclear deformations of $\beta\approx$ 0.2 in A \approx 130 and not with noncollective ND states (c) quadrupole deformations are higher in A \approx 150, $\beta\approx$ 0.6 (Nisius et al, (1997)), rather than $\beta\approx$ 0.4 in A \approx 130 (Clark et al, (1996)), and (d) the total intensities bands are generally stronger at usually 5% of the reaction channel, facilitating more precise intensity measurements of mass-130 (Wilson et al, (1998)).

The decay-out of the SD bands and the determination of excitation energies, spins and parities for the SD states considered the most important concerning the superdeformation phenomenon. These quantities can be determined through the observation of discrete gamma-transitions linking the lowest levels of the SD band to the normally deformed (ND) ones. The decay-out process has been observed firstly in the odd ^{133,135,137}Nd nuclei (Bazzacco et al,(1994) and Deleplanque et al, (1995)). Recently, such transitions have been achieved in the even-even ^{132,134}Nd nuclei (Petrache et al, (1996 and 1997)).

It is observed that, most of the even-even mass isotopes in the A \approx 130 mass region characterized by spin alignment and significant band mixing cases. These cause an obscurity in calculation of the spin theoretically and experimentally. So, in the present work we tried to calculate the spin of the SD bands for some even-even mass

isotopes in the A \approx 130 mass region by a simple and logical method. Moreover, the gamma-ray transition energies of this SD bands have been calculated and compared with the corresponding experimental values.

Methodology

Since the discovery of the SD band in ¹⁵²Dy (Twin et al,(1986)), several approaches to assign the spins of SD bands have been suggested (Zeng et al, (1991), Wu et al, (1991) and Liu and Zeng (1998)). Most of the previous works are concentrated on the SD bands in the A \approx 150 and A \approx 190 mass regions. It is observed that most of the available approaches proceed from the comparison of the calculated transition energies or moment of inertia with the corresponding experimental results and generally are referred to as the best-fit method (BFM) (Liu and Zeng (1998)).

Bohr and Mottelson (1975) pointed out that, under adiabatic approximation, the rotational energy of an axially symmetric nucleus can be expanded as (for K=0 band)

$$E_{rot} = AI(I+1) + B[I(I+1)]^2 + C[I(I+1)]^3 + D[I(I+1)]^4 + \dots$$
(1)

Where $A = \hbar^2/2\varphi$ and *B*, *C*, are corresponding to the higher-order inertial parameters. The expression for the $K \neq 0$ band takes the form

$$E_{rot} = E_o + A[I(I+1) - K^2] + B[I(I+1) - K^2]^2 + C[I(I+1) - K^2]^3 + \dots$$
(2)

Where E_o is the bandhead energy. By using Eq. (2) one can obtain a formula for the transition energy E_{γ} and the orbital angular momentum *I* as follows:

$$E_{\gamma}(I+2 \to I) = A[4I+6] + B[8I^{3}+36I^{2}+I(60-8K^{2})-12K^{2}+36]...$$
(3)

Another useful expression is the Harris ω^2 expansion; in particular the two parameter expansion takes the form (Harris (1964))

$$E(\omega) = \alpha \,\omega^2 + \beta \,\omega^4 + \dots \tag{4}$$

It is well known that the most important quantities characterizing the nuclear rotational band is the kinematic moment of inertia

$$\varphi^{I} = (\hbar I_{x}/\omega) = \hbar^{2} I_{x} (dE/dI_{x})^{-I}$$
(5)

and the dynamic moment of inertia

$$\varphi^{2} = \hbar (dI_{x}/d\omega) = \hbar^{2} (d^{2}E/dI_{x}^{2})^{-1}$$
(6)

Then
$$(dE/dI_x) = \hbar\omega$$
 (7)

where I_x is the spin projection onto the rotational axis From Eqs. (5) and (6) we have

 $dE/d\omega = (dE/dI_x)(dI_x/d\omega) = \omega \varphi^2$ (8)

According to Eqs. (4) and (8), the dynamic moment of inertia is

$$\varphi^2 = 2 \alpha + 4\beta \,\omega^2 \tag{9}$$

by integrating φ^2 w.r.t. ω the spin I_x :

$$I_x = x \omega + y \omega^3 + i_o \tag{10}$$

Where $x=2\alpha/\hbar$, $y=4\beta/3\hbar$ and i_0 is the alignment, it was found that it takes the values zero or half in present calculations. Introducing the spin projection onto the rotational axis (*K*),

$$I_x = [(I+1/2)^2 - K^2]^{1/2}$$
(11)

Where *I* refers to the midpoint spin of the transition $I+I \rightarrow I-I$ (Bohr and Mottelson (1975)).

For a SD cascade the transition energies $E_{\gamma}(I)=E(I)-E(I-2)$ can be least-squares fit by the previous expression. It was found that, when a correct I_o value is assigned, the calculated energies coincide with the observed results incredibly well. However, if I_o is shifted from the correct value by ±1, the root-mean-square (rms) deviation σ will increase radically (Zeng et al, (1991) and Becker et al, (1992)):

Where:
$$\sigma = [(1/n)\sum_{i=1}] (E_{\gamma}^{calc.}(I_i) - E_{\gamma}^{expt.}(I_i)) / E_{\gamma}^{expt.}(I_i)]^2]^{1/2}$$
 (12)

It was observed that the BFM depends on the rms deviation to determine the spin of the SD bands and if a significant band crossing occurs in the transitions involved in the BFM, the σ may display some irregularities and make the assignment of the exact spin more difficult as the case in A \approx 130 mass region.

In previous works (Abd El-Ghany (2003 and 2005) and El-Khateeb (2011)) a useful method was used for the spin assignment for rotational SD bands in the A \approx 150 and 190 mass regions. In that method, one can extract the kinematic (φ^{l}) and the dynamic moments of inertia (φ^{2}) by using the experimental interband E_{γ} transition energies as follows:

$$\varphi^{1}(I-1)/\hbar^{2} = (2I-1)/E_{\gamma}$$
(13)

$$\varphi^2(I)/\hbar^2 = 4/\Delta E_{\gamma} \tag{14}$$

Where $\Delta E_{\gamma} = E_{\gamma}(I+2 \rightarrow I) - E_{\gamma}(I \rightarrow I-2)$. It is observed that, while the extracted φ^{l} depends on the spin proposition, φ^{2} does not. On the other hand, according to the available expressions for rotational bands based on the I(I+1) expansion (Bohr and Mottelson (1975)), some properties concerning the variation of φ^{l} and φ^{2} with angular frequency (or spin) can be found (Liu and Zeng (1998)). These properties can be summarised as follows:

a)
$$\lim_{\omega \to 0} \varphi^{\prime} = \lim_{\omega \to 0} \varphi^{2} = \varphi_{o}$$
.

b) $\varphi^{l}vs \ \omega$ and $\varphi^{2}vs \ \omega$ plots never cross with each other at nonzero spins.

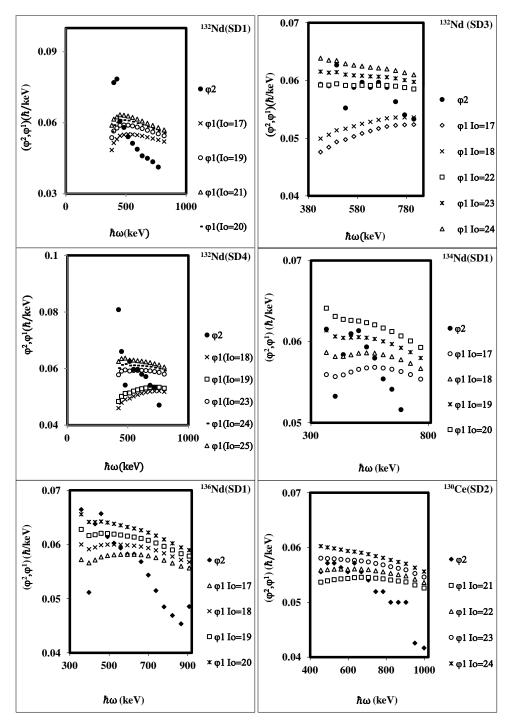
c)
$$\lim_{\omega \to 0} \frac{d\varphi^1}{d\omega} = \lim_{\omega \to 0} \frac{d\varphi^2}{d\omega} = 0$$
, i.e., as $\omega \to 0$, φ^{l_l} vs ω and φ^2 vs ω plots become

horizontal.

d) φ^{I} and φ^{2} monotonically increase with ω (for B < 0) or decrease with ω (for B > 0).

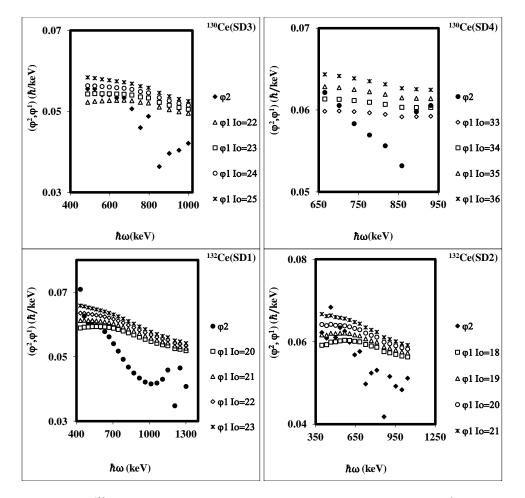
e) Both φ^l vs ω and φ^2 vs ω plots are concave upwards (for B < 0), or downwards (for B > 0). For all normal deformed (ND) rotational bands where the spins have been measured experimentally, it is found that φ^l and φ^2 do exhibit these properties except for K=1/2 bands and significant band mixing cases. Moreover, if the spin are artificially increased or decreased by one or more some of these properties will obviously disappear. So, the previous properties may be used as a very useful guideline for the spin proposition of SD rotational band. In previous works (Liu and Zeng (1998) and Abd El-Ghany (2003 and 2005)), this properties had been used for determine the spin of SD bands in A \approx 150 and A \approx 190 mass region and gave a very good results.

As we have mentioned in the previous section the $A\approx 130$ mass region, characterized by spin alignment and significant band mixing cases. So, not all the previous properties will be satisfied properly especially the properties (a) and (c).


Results and discussions

In this work, the SD bands in the even-even A≈130 mass region have been studied by using some of the previous properties depending on the normal behavior between the angular frequency ω and the extracted moment of inertia (φ' and φ^2 properties (d) and (e)). The bandhead spin for each of this SD bands has been assigned from the relation between the angular frequency ω and the extracted moment of inertia as shown in Fig. 1. From this figure, it is clear that there is a critical spin before which the normal behavior (the properties (d) and (e)) of φ' and φ^2 is reversed and the relation becomes impenetrable. So, we can conclude that this critical spin must be the bandhead spin I_0 of the SD band. This critical spin can be determined after the disturbed region that represents the strength of the band mixing or spin alignment. After the determination of I_0 we have calculated the gamma-ray transition energies of the SD band in Nd and Ce isotopes making use of Eq. (3). The obtained results are in good agreement with the experimental values of E_{γ} as shown in Table 1 and 2. The fitting parameters are given in Table 3.

The experimental determination of I_o for ¹³²Nd (SD1) band was suggested to be equal (17)(Singh et al,(2002)). In Fig. 1 we observe that if I_o takes the values from 17 to 20 most of the five properties (a-e) withdraw. Conversely, if $I_o=21$ the curves of φ^1 and φ^2 vs $\hbar\omega$ is more logical and the calculated E_{γ} 's energies are close to the experimental data as shown in Table 1.


Fig. 1, shows the φ^1 and φ^2 of the ¹³²Nd(SD3) band assigned to be plotted as function of rotational frequency for different I_0 . It is clear that there is a hump of the φ^2 curve at $\hbar\omega\approx500$ keV. This increase of the φ^2 is due to the alignment of the $i_{13/2}$ intruder orbital (Werner et al.(1994), Afanasjev and Ragnarsson (1996) and Galindo-Uribarri et al.(1996)). There is a doubted experimental determination of I_0 . It is previously suggested to be 17 or 18 (Singh et al.(2002)). From Fig. 1, one can observe that at $I_0=17$ and 18 the value of the φ^1 vs. $\hbar\omega$ increases and for $I_0=22$ it remains almost constant. On the other hand, for $I_0=23$ the extracted φ^1 and φ^2 do exhibit the properties (b, d and e)

after $\hbar\omega \approx 500$ keV. Taking into consideration that $I_o=23$, it is found that the calculated gamma-ray transition energies are in fair agreement with the experimental results as shown in Table 1.

Fig.1 The relation between (ϕ^1, ϕ^2) and $(\hbar\omega)$ with different I_0 for the SD bands in some Nd and Ce isotopes.

Continued

For the ¹³²Nd (SD4) band, Fig. 1 shows that there is a hump of the ϕ^2 curve at $\hbar\omega \approx 550$ keV due to the alignment of the $i_{13/2}$ intruder orbital (Werner et al,(1994), Afanasjev and Ragnarsson (1996) and Galindo-Uribarri et al,(1996)). The experimental value of I_0 was suggested to be 18 or 19 (Singh et al,(2002)). From Fig. 1, it is clear that at I_0 =18 and 19 the value of ϕ^1 increases monotonically with ω , which seems hard to understand and for I_0 =24 it has almost a constant value. In contrary, for I_0 =25 the extracted ϕ^1 and ϕ^2 do exhibit the properties (b, d and e) after $\hbar\omega \approx 550$ keV. Therefore, I_0 =25 seems to be the best choice for bandhead spin value. The calculated gamma-ray transition energies based on I_0 =25 are very close to the corresponding experimental data as shown in Table 1.

As shown in Fig. 1, the dynamical moment of inertia φ^2 of the SD(1) in ¹³⁴Nd exhibits a broad hump centered at $\hbar\omega \approx 500$ keV that has been attributed to the rotational alignment of a pair of $h_{11/2}$ protons (Wyss et al.(1988)). The bandhead spin I_0 of this band is expected experimentally to be 17 (Singh et al.(2002) and Sonzogni(2004)). It is clearly seen that for $I_0=18$, the extracted φ^1 and φ^2 in ($\varphi^1, \varphi^2 - \hbar\omega$) plots do have the properties (b, d and e) beyond the region of the hump. Also, from Table 1, it is clear that at $I_0=18$ the calculated gamma-ray transition energies are more close to the experimental data, so the suggestion that $I_0=18$ is more logical.

Table 1. A sample of experimental (Sonzogni)	(2004)) and calculated E_{γ}	E_{y} 's energies (in keV) of some SI	D bands for
¹³² Nd, ¹³⁴ Nd and ¹³⁶ Nd isotopes.			

¹³² Nd(SD1)			¹³² Nd(SD3)			¹³² Nd(SD4)		
Eyexp.)	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \\ I_o = 17 \end{array}$	$E_{\gamma \text{ (cal.)}}$ For $I_o=21$	E _{y(exp.)}	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \\ I_o = 18 \end{array}$	$\begin{array}{c} E_{\gamma (cal.)} \\ For \\ I_o = 23 \end{array}$	$E_{\gamma(exp.)}$	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \\ I_o = 18 \end{array}$	$\begin{array}{c} E_{\gamma \ (cal.)} \\ For \\ I_o = 25 \end{array}$
764	676.1	714.1	793.7	789	797.4	848	814.1	839.5
797	746.4	778.7	861.1	861	861.1	897.5	887.31	902.5
849	818.1	844.8	929.2	932	925.5	958.1	959.7	966.4
900	891.0	912.4	992.2	1003	990.7	1032	1031.4	1031.2

966	965.4	981.8	1065	1074	1056.8	1096	1102.3	1097.0
1035	1041.3	1053.0	1133	1143	1123.8	1163	1172.2	1163.7
1109	1119.0	1126.1	1200	1212	1191.8	1230	1241.3	1231.6
1187	1198.4	1201.3	1268	1281	1260.8	1299	1309.4	1300.5
1269	1279.7	1278.6	1335	1349	1330.8	1369	1376.4	1370.6
1356	1362.9	1358.1	1403	1416	1402	1443	1442.3	1442.0
1445	1448.3	1440.1	1474	1482	1474.4	1518	1507.1	1514.6
1537	1535.9	1524.5	1548	1548	1548	1603	1570.6	1571.1
1634	1625.9	1611.5	1623	1613	1622.9			
	σ=	σ=		σ=	σ=		σ=	σ=
	0.038	0.021		0.0078	0.0044		0.014	0.0071

Continued

	¹³⁴ Nd(SD1)		¹³⁶ Nd(SD1)			
Ey(exp.)	$E_{\gamma \text{ (cal.)}}$ For $I_o=17$	$E_{\gamma (cal.)}$ For I _o =18	Ey(exp.)	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \; I_o = 17 \end{array}$	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \; I_o = 19 \end{array}$	
668	674	668	656.6	651.3	666	
733	741	733	716.8	717	728.2	
808.1	809	800	795	783.3	791.2	
876.6	877	867	857.9	850.2	855	
942.2	945	935	918.4	917.8	919.7	
1007.4	1014	1005	983.7	986.2	985.4	
1074.8	1083	1075	1050.1	1055.3	1052.1	
1143.8	1154	1147	1117.5	1125.4	1119.9	
1216	1224	1220	1186.2	1196.3	1188.8	
1289.9	1295	1295	1254.9	1268.2	1258.9	
1367.4	1367	1370	1325.3	1341.1	1330.3	
1448	1440	1448	1398.9	1415.1	1403.1	
1535	1513	1527	1476.6	1490.2	1477.2	
			1559.1	1566.5	1552.9	
			1644.4	1644	1630	
			1732.6	1722.8	1708.7	
			1815	1802.9	1789.1	
	σ=	σ=		σ=	σ=	
	0.0072	0.0052		0.0080	0.0077	

The φ^1 and φ^2 plots for SD(1) band of ¹³⁶Nd shows that there is a hump of the φ^2 at $\hbar\omega\approx$ 460 keV as shown in Fig. 1. This behavior of the φ^2 is due to the crossing associated with the alignment of a pair of $i_{13/2}$ neutrons (Sonzogni (2002)). The bandhead spin I_0 of this band is suggested experimentally to be 17 (Singh et al, (2002), Khazov et al, (2005)). It is found that at $I_o=19$, the variation of φ^1 and φ^2 plots do have the properties (b, d and e) after $\hbar\omega\approx$ 460 keV. From Table 1, it is clear that at $I_o=19$ the calculated gamma-ray transition energies are more close to the experimental data. So the most plausible choice of the bandhead spin for this SD band is 19.

Table 2. A sample of experimental (Kirwan et al,(1987), Afanasjev and Ragnarsson(1996)) and calculated E_{γ} 's energies (in keV) of some SD bands for ¹³²Ce and ¹³⁰Ce isotopes.

gies (in kev)	Sies (in kev) of some SD builds for the und the isotopes.								
¹³² Ce (SD1)			¹³² Ce (SD2)		¹³⁰ Ce (SD2)				
E _{y(exp.)}	$\begin{array}{c} E_{\gamma (cal.)} \\ For I_o = 20 \end{array}$	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \; I_o = 22 \end{array}$	$E_{\gamma \; (exp.)}$	$\begin{array}{c} E_{\gamma (cal.)} \\ For \ I_o = 19 \end{array}$	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \; I_o \!\!=\!\! 20 \end{array}$	$E_{\gamma(exp.)}$	$\begin{array}{c} E_{\gamma (cal.)} \\ For \ I_o = 23 \end{array}$		
770.8	733	736.1	724.4	724.4	724.4	841	843		
809.3	798	798.8	794.3	793	791.2	914	911		
865.71	865	862.7	865.89	862.7	859.2	983	980		
929.6	932	927.8	929.01	933.5	928.6	1052	1050		
995.9	1000	994.2	1000.7	1005.6	999.5	1124	1120		
1061.71	1069	1062	1068.5	1079.1	1071.9	1196	1192		

1128.78	1139	1131.3	1138.4	1154	1145.9	1266	1265
1196.4	1210	1202.1	1211.3	1230.4	1221.7	1338	1340
1265.6	1283	1274.5	1288.5	1308.3	1299.4	1412	1415
1336.8	1356	1341.7	1364.5	1388	1379	1489	1492
1410.8	1431	1417.3	1453.9	1469.5	1460.6	1566	1570
1488.1	1507	1494.8	1538.3	1552.8	1544.4	1646	1650
1569.4	1585	1574.3	1621.5	1638.1	1630.4	1726	1730
1654.9	1664	1655.8	1730.2	1725.5	1718.8	1806	1813
1743.9	1744	1748	1816.1	1814.9	1809.6	1900	1899
1836.1	1827	1834.1	1906.6	1906.6	1902.9	1996	1989
1931	1910	1923	1998.9	2000.6	1998.9		
2027.2	1996	2013.4	2085.6	2097	2097.6		
2122.8	2083	2106.7					
2215.8	2172	2202.5					
2303	2263	2301					
2418	2356	2402					
2504	2451	2506					
	σ=	σ=		σ=	σ=		σ=
	0.0188	0.0116		0.009	0.0055		0.0027

130	Ce (SD3)	130	Ce (SD4)				
E _{y(exp.)}	$\begin{array}{c} E_{\gamma (cal.)} \\ For \ I_o = 24 \end{array}$	$E_{\gamma(exp.)}$	$\begin{array}{c} E_{\gamma \; (cal.)} \\ For \; I_o \!\!=\!\! 35 \end{array}$				
904	900	1261	1261				
976	972	1331	1333				
1048	1046	1403	1407				
1122	1122	1478	1481				
1196	1199	1555	1556				
1271	1278	1634	1633				
1346	1359	1717	1711				
1425	1442	1790	1790				
1512	1527	1862	1870				
1594	1614						
1704	1704						
1805	1796						
1904	1890						
1999	1987						
	σ=0.0070		σ=0.0023				

Continued

For the yrast SD(1) band of ¹³²Ce, the bandhead spin I_o has been measured experimentally to be equal 20 (Liu Yu-xin et al,(2001)) or 22 (Kirwan et al, (1987)). In Fig. 1, there is a sharp rise of φ^2 at $\hbar\omega\approx430$ keV due to the alignment of two $i_{13/2}$ neutrons (Godfrey et al,(1990), Hauschild et al,(1995) and Bengtsson et al, (1988)). For the spin suggestion $I_o=22$, the extracted φ^1 and φ^2 do exhibit the properties (b, d and e). Making use of this assignment the gamma-ray transition energies for this SD bands can be reproduced nicely by the I(I+1) expression (Eq. (3)) as shown in Table 2. So the most reliable choice is $I_o=22$ rather than $I_o=20$, which is in agreement with the spin assignment by Liu et al, (2001).

		. 1	4
Nucleus	Io	$A(keV^{-1})$	$B \times 10^{-4} (\text{keV}^{-3})$
¹³² Nd(SD1)	17(Sonzogni (2004))	8.1712	2.85
Nu(SD1)	21*	7.1011	3.32
	17(Sonzogni (2004))	9.5515	-1.9361
¹³² Nd(SD3)	18(Sonzogni (2004))	9.2058	-0.9853
	23*	7.4749	1.3827
¹³² Nd(SD4)	18(Sonzogni (2004))	9.5110	-1.5412
Nu(SD4)	25*	7.3112	1.4408
¹³⁴ Nd(SD1)	17(Sonzogni (2004))	8.2135	0.6805
Nu(SD1)	18*	7.7136	1.9385
¹³⁶ Nd(SD1)	17(Sonzogni (2004))	7.9067	1.3748
Nu(SD1)	19*	7.3519	1.6378
¹³² Ce(SD1)	20 (Kirwan et al, (1987))	7.7462	1.6016
Ce(SDI)	22* (Godfrey et al,(1990))	7.1446	2.1509
¹³² Ce(SD2)	19(Kirwan et al, (1987))	7.9820	2.2892
	20*	7.6279	2.5666
130 Ce(SD2)	23*	7.8990	1.6660
130 Ce(SD3)	24*	8.0859	2.6247
130 Ce(SD4)	35*	8.1204	1.3167

Table 3 The fitting parameters of the present model (Eq.(3)).

*The values of the bandhead spins adopted in the present work.

Fig. 1 shows the φ^1 and φ^2 plots for the SD(2) band of ¹³²Ce. In this band there is a hump of the φ^2 curve at $\hbar\omega \approx 450$ keV due to the effect of $i_{13/2}$ neutron intruders (Wyss et al,(1988)). It is clearly seen that when the measured bandhead spin ($I_0=19$) (Liu et al,(2001)) is used, the five properties (a-e) no longer exist. On the contrary, if the bandhead spin is increased by 1, the extracted φ^1 and φ^2 do exhibit the properties (b, d and e) after the region of the hump. From Table 2 at $I_0=20$ the transition energies are more close to the experimental results. So, the suggestion that $I_0=20$ for this band is more reasonable.

To our knowledge there is no previous experimental work concerning the detection of the bandhead spins of ¹³⁰Ce (SD2), ¹³⁰Ce (SD3) and ¹³⁰Ce (SD4). The extracted φ^1 and φ^2 vs. $\hbar\omega$ plot shown in figure 1 leads us to expect the bandhead spins for the aforementioned SD bands to be 23 and 24 and 35 respectively. The theoretical predictions of the gamma-ray transition energies based on these expected bandhead spins for these SD bands are in good agreement with the experimental values of the gamma-ray transition energies as shown in Table 2. This result gives a further support for the right detection of the aforementioned bandhead spins.

Another simple approach to test the validity of the quantitative method applied in the present work is the Harris ω^2 expansion (Bohr and Mottelson (1975)), whose convergence is believed (Liu and Zeng (1998)) to be superior to the I(I+1) expansion (Eq. (2)) and particularly the Harris two parameter expansion (Eq. (4)) that was widely used in the high-spin nuclear physics (Scharff-Goldhaker et al,(1996)). Therefore, the bandhead spins of the previous bands have been calculated via least square fit procedure to the experimental data in the spirit of Harris two parameter expansion for φ^2 (Eq. (9)). Accordingly, the bandhead spin I_o could be calculated making use of Eq. (10). The fitting parameters along with both experimental and calculated I_o are given in Table 4.

 ne name parameters of marine two parameter expansion (Eq. (10)).							
Nucleus	I_o	I_o by φ^l and	I_o from least	$x \times 10^{-2}$	$y \times 10^{-8}$		
	Experimentally	φ^2 vs $\hbar\omega$	square fit	(keV)	(keV^3)		
132 Nd(SD1)	17(Sonzogni(2004))	21	21	6.62	-1.33		
132 Nd(SD3)	17 or	23	24	9.20	-13.33		
	18(Sonzogni(2004))						
132 Nd(SD4)	18 or	25	25	6.66	-0.86		
	19(Sonzogni(2004))						
134 Nd(SD1)	17(Sonzogni(2004))	18	20	6.90	-1.33		
¹³⁶ Nd(SD1)	17(Sonzogni(2004))	19	18	7.4	-2.00		
132 Ce(SD1)	20(Kirwan et	22	22	6.55	-1.01		

Table 4 The fitting parameters of Harris two parameter expansion (Eq. (10)).

	al,(1987)) or 22(Godfrey et al,(1990))				
¹³² Ce(SD2)	19 (Kirwan et al,(1987))	20	22	6.8	-1.66
¹³⁰ Ce(SD2)		23	22	5.6	0.266
130 Ce(SD3)		24	21	4.6	3.00
130 Ce(SD4)		35	41	7.5	-1.66

Conclusion

In this work, the base line spins I_o of SD bands in some even-even Ce and Nd isotopes have been determined by an accurate method. In this method and under certain circumstances mentioned in details in the text the relation between the moments of inertia ($\varphi^l \& \varphi^2$) and the angular frequency ($\hbar\omega$) could be used as a very useful guideline for the bandhead spins I_o prediction of the SD bands.

Making use of the determined I_o , the gamma-ray transition energies of the SD bands for some even-mass Ce and Nd isotopes have been calculated by the available expression for rotational bands (Bohr-Mottelson's I(I+1) expansion). The obtained results are compared with the corresponding experimental data and a good agreement has been obtained which supports the present proposed method.

To give another support to the quantitative method of this work, a least square fit procedure has been applied to the experimental data of four SD bands making use of Harris two parameter formulas. The predicted I_o of the fit is in fair agreement with those obtained by the present applied method.

Acknowledgments

I'm gratefully acknowledge professor S. U. El-kameesy, Physics department, Faculty of Science, Ain Shams university for useful discussion, encouragement and final revision of this work.

References

Abd El-Ghany S., Egypt Journal of Phys. 2003;34:347-361.

Abd El-Ghany S., Egypt Journal of Phys. 2005;36:35-52.

Afanasjev A.V.and Ragnarsson I., Nuclear Physics A,1996;608:176-201.

Bazzacco D., Brandolini F., Burch R., Lunardi S., Maglione E., Medina, N. H.et al., Phys. Rev. C1994; 49: R2281-R2284.

Becker J. A., Henry E. A., Kuhnert A., Wang T. F., Yates S. W., Diamond R. M., Phys. Rev.C1992;46:889-903.

Bengtsson Tord, Ragnarsson Ingemar, Bengtsson T., Ragnarsson I. and Aberg S., Phys. Lett. B 1988;208:39-44.Bohr A. and Mottelson R.: Nuclear Structure vol.2. New

York:Benjamin; 1975.

Harris S. M., Phys. Rev. Lett. 1964;13: 663-665.

Clark R. M., Lee I. Y., Fallon P., Joss D. T., Asztalos S. J., Becker J. A., et al., Phys. Rev. Lett. 1996;76: 3510–3513.

Deleplanque M. A., Frauendorf S., Clark R. M., Diamond R. M., F. S. Stephens, Becker J. A., et al., Phys. Rev. C1995;52:R2302-R2305.

El-Khateeb S., M. Sc., Properties of the superdeformed bands in the mass region A~130., Physics Department, Faculty of Science, Ain Shams University, 2011.

Galindo-Uribarri, Mullins S. M., Ward D., Cromaz M., DeGraaf J., Drake T. E., et al., Phys. Rev. C1996;54:R454-R458.

GodfreyM. J., Jenkins I., Kirwan A. J., Nolan P. J., Mullins S. M., Wadsworth R.et al., J. Phys. G.1990;16:657-664.

Hauschild K., Wadsworth R., Lee I.-Y., Clark R. M., Fallon P., Fossan D. B., et al., Phys. Rev. C1995;52: R2281-R2283.

Khazov Yu., Rodionov A. and Singh B., Nucl. Data Sheets for A=132. 2005;104:497-790.

Kirwan A. J., Ball G. C., Bishop P. J., Godfrey M. J., Nolan P. J., Thornley A D. J., et al, Phys. Rev. Lett. 1987;58:467-470.

Kirwan A. J., Ball G. C., Bishop P. J., Godfrey M. J., Nolan P. J., Thornley D. J., et al., Phys. Rev. Lett. 1987;58: 467-470.

Liu S. X. and Zeng J. Y., Phys. Rev.C1998;58:3266-3279.

Liu Yu-xin, Wang Jia-jun, and Han Qi-zhi., Phys. Rev. C 2001;64:064320 .

Nisius D., Janssens R.V.F., Moore E.F., Fallon P., Crowell B., Lauritsen T., et al., Phys. Lett. B1997;392(1–2):18-23.

Petrache C.M., Bazzacco D., Bednarczyk P., De Angelis G., De Poli M., Fahlander C., et al., Phys. Lett. B1997; 415:223-230.

Petrache C. M., Bazzacco D., Lunardi S., Rossi Alvarez C., Venturelli R., Pavan P., et al., Rev. Lett. 1996;77:239–242.

Scharff-Goldhaker G., Dove C. and Goodman A. L., Annu. Rev. Nucl. Sci. 1996;26:239-317.

Singh B., Zywina R. and Firestone B., Table of SD nuclear bands and fission isomers.3rd ed. Mc. Master University, Hamilton, Ontario L8S 4M1, Canada; 2002.

Sonzogni A. A., Nucl. Data Sheets for A=134. 2004;103:1-182.

Sonzogni A. A., Nucl. Data Sheets for A=136. 2002;95:837-994.

Twin P. J., Nyakó B. M., Nelson A. H., Simpson J., Bentley M. A., Cranmer-Gordon H. W., et al, Phys. Rev. Lett. 1986; 57: 811–814.

Wilson J. N., E. Austin R. A., Ball G. C., De Graaf J., Cromaz M., Flibotte S., et al., Phys. Rev. C 1998;57: R2090-R2094.

Werner T.R., Dobaczewski J., Guidry M.W., Nazarewicz W., Sheikh J.A., Nuclear Physics A,1994;578:1-30. Wu C. S., Cheng L., Lia Z. and Zeng J. Y., Phys. Rev. C1992;45:2507-2510.

Wyss R., Nyberg J., Johnson A., Bengtsson R.and Nazarewicz W., Phys. Lette. B1988;215: 211-217.

Zeng J. Y., Meng J., Wu C. S., Zhao E. G., Xing Z., and Chen X. Q., Phys. Rev.C1991;44:R1745-R1748.