ISSN: 2320-5407 Int. J. Adv. Res. 7(4), 273-282

-

INTERNATIONAL JOURNAL OF
ADVANCED RESEARCH (IJAR)

Journal Homepage: - Www.journalijar.com

INTERNATIONAL JOURNAL OF
ADVANCED RESEARCH (IJAR)

Article DOI: 10.21474/1JAR01/8814
DOI URL.: http://dx.doi.org/10.21474/I1JAR01/8814

ISSN NO. 2320-5407

RESEARCH ARTICLE

A NOTE ON EFFECT OF OFF-DIAGONAL ENTRIES IN A VARIANCE-COVARIANCE MATRIX ON
EIGEN ANALYSIS.

Bushra Shamshad.
Department of Statistics, University of Karachi.

Manuscript History
Received: 05 February 2019

A positive definite symmetric variance covariance matrix with non-
zero diagonal entries- plays an important role in multivariate analysis.

Final Accepted: 07 March 2019

! : In this paper we will try to explain the basic algorithm needed to
Published: April 2019

calculate the Eigen values and Eigen vector using such variance
covariance matrix (or standardized variance covariance matrix). It is to
be noted that coefficients of Principal Components are simply Eigen
vectors and Eigen values are there variances (See, Anderson (1984),
Johnson & Wichern (1988) & Hotelling (1936)). These eigen values are
calculated from variance covariance matrix (or standardized variance
covariance matrix). In this paper we will be discussing the effect on
eigen analysis when entries in variance covariance matrix are changed.

This eigen value problem will be studied on 2x 2 and 3x 3 variance
covariance matrix, which then be carried out in higher order matrices
(i.e. on 4x4) in order to generalize the coefficients of characteristic
polynomial. With some proportion, eigen values vary, when off
diagonal entries in variance covariance matrix are changed. This direct
or indirect relationship between covariance terms of a variance
covariance matrix and its respective eigen values then be deeply
studied by regression analysis.
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Introduction:-
1.1. Eigenvalues And Eigenvectors

The eigenvalues, also called characteristic or latent roots of a square P x | matrix A, the p solutions for A of the

characteristic equation, given as

|A— AI|=0 @
The roots can be complex-valued and some roots can have the same value, since A is the root of polynomial of the
degree p. Associated with each eigen value is a (right) eigenvector, which is a non-zero vector x with the property
AX = A x, and a left eigenvector, which is a non-zero vector y with the property Y'’X = A Y’ . If x is a (left or right)
eigenvector a x is also an eigen vector for any non-zero scalar a, so eigen vectors are usually normalized to length 1,
i.e. XX =1, (see, Hadely (1961), Anton (1994)) the two main properties of eigen values are
=  The product of the eigenvalues of A is equal to |A|.
=  The sum of the eigenvalues of A is equal to the trace of A.
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Behavior of off diagonal entries in 2x2 matrix:
Consider a variance covariance matrix of order 2x2,

A= |:a11 a12:| (2)
a21 a22
In order to obtain the eigenvalues and eigenvector we have to use the characteristic equation, that is,
(A-2D)x=0 (3)

Where A are the unknown constants or Eigen values which has to be determined and I is the identity matrix of order
2x2. After taking the determinant, we get

M2-(rA) L+ |Al =0, 4)

This is a second degree polynomial or the Second order characteristic polynomial of variance covariance matrix A.
The behavior is obvious from the equation (4), when the off diagonal entries in a variance covariance matrix are
changed, there will be no effect on the second part of equation (4), because it is the sum of the diagonal entries.
Only the last term of polynomial equation of variance covariance matrix is effected by the change, in the off
diagonal entries. For example, consider a symmetric variance covariance matrix of order 2x2,

_[10 0 o
0 15

The corresponding characteristic polynomial of matrix A is

A2-250+150=0 (6)
The eigen roots of the variance covariance matrix are A = {15, 10}. These eigen values are exactly equal to the
diagonal entries of the variance covariance matrix. The reason is that, in calculating the determinant (that is, the
third term in equation (6)), we subtract the product of diagonal entries with the off diagonal entries. Here the off
diagonal entries of the variance covariance matrix are zero. So, the negative part of the determinant is eliminated.
That is,

[(A0-A) (15-21)-0]=0
In other words, we are not subtracting any value form (10 — A) (15 — A). Consider the same variance covariance
matrix of order 2x2, with a change in off diagonal entries. That is, in place of zero covariance term we use
covariance term equal to 1, the characteristic polynomial becomes

A2-250+149=0 @)
with the corresponding eigenvalues.

) ={15.1925,9.8074}

As there is a unit increase in the covariance term, the largest eigen values also increases with proportion 0.1925.
This indicates that as the covariance term increases it accumulates with the maximum variation present in the data
and this mount up of maximum variation is represented by highest eigen values. The non-zero off diagonal entries
plays an important role. Whereas, both the properties (given in section (1)) are also verified. Consider variance
covariance matrix A, given below. Where, 'z' indicates the covariance term.

_10 Z
|1z 15 ®

The behavior of eigen values are studied and presented in Table (1), for z = -11 to 11.
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Table no: 1. Behavior of eigen values

Off diagonal
Entry 'z’ determinant M Ao increment eigen vector
[-0.6238 .7815}
11 29 23.78 1.219 | 7815 6238
[~0.615 0.788}
-10 50 22.8 2192 -0.98 | 0.788  0.615
[-0.605 0.7961}
9 69 21.84 3.159 -0.96 | 0.7961  0.605
[—-0.592 0.805}
8 96 20.88 41118 -0.96 | 0.805 0.592
[~ 0.576 0.817}
7 101 19.93 5.06 -0.95 | 0817 0.576
[—~0.554 0.832]
6 114 19 6 -0.93 | 0.832  0.554
[~0.525 0.850 |
5 125 18.09 6.9 -0.91 | 0.850  0.525
[-0.4847 0.874 |
4 134 17.217 7.783 -0.873 | 0874 0.4847]
[-0.4241 0.9055]
3 141 16.4051 8.591 -0.8119 | 0.9055 0.4241]
[-0.3310 0.943 |
2 146 15.7016 9.2098 | -0.7035 | 0943 03310}
[—-0.189 0.9819]
1 149 15.1926 9.8074 | -0.509 10,9819  0.189 |
2 5]
0 150 15 10 -0.1926 1 O
[0.189 0.9819]
1 149 15.1926 9.8074 | 0.1926 10.9819 -0.189
[0.3310  0.943 |
2 146 15.7016 92998 | 0.509 | 0943 -.3310]
[0.4241  0.9055 |
3 141 16.405 8.591 0.7034 10.9055 -0.4241
[0.4847 0.874 |
4 134 17.217 7.783 0.812 | 0.874  -0.4847 |
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[0.525 0.850}
5 125 18.0902 6.909 0.8732 10.850 -0.525
[0.554 0.832}
6 114 19 6 0.9098 10832 -0.554
[0.576 0.817}
7 101 19.9336 5.067 0.9336 10.817 -0.576
[0.592 0.805 |
8 96 20.88 41185 | 0.9464 10.805 —-0.592]
[0.605 0.7961 |
9 69 21.84 3.159 0.96 10.7961 —0.605 |
[0.615 0.788 |
10 50 22.8 2192 0.96 10.788 —0.615]
[0.6238 0.7815
11 29 23.78 1.219 0.98 10.7815 -0.623

In table (1), the first column shows the z values, i.e. at the positions 12 and 21 of a variance covariance matrix (2.7),
the eigenvalues are only affected by the determinant of matrix A. So, when the covariance term changes in matrix A,
the determinant cause the change in the eigen values. It is clear that, when the off diagonal entries increase,
determinant of a variance covariance matrix decreases, which further causes an increase in the magnitude of the
largest eigen value, with some proportion.

Figure (l) Behavior of highest eigen value with an increase in off diagonal entries
25 4
24 4
23
22 4
21 4
20

19 4

Highest eigenvalue

18 +

17 +

16 +

15

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 [¢] 1 2 3 4 5 6 7 8 9 10 11

covariance term of variance covariance matrix

Figure: 1. Behavior of highest eigen value with an increase in off diagonal entries.

Another important point, that the eigen values are not affected by the sign of covariance term, can be seen in table
(1), which is also presented in Figure (1). That is, the eigen values corresponds to covariance term equals to +1 is
exactly the same as the eigen values corresponds to covariance term equal to -1. This is due to the fact that in a
variance covariance matrix of order 2x2, the determinant is the value obtained by subtracting the product of two
covariance terms from the product of two variances. At that point when two covariances are multiplied with each
other the negative sign is eliminated and we get the same value of determinant as of the positive signed covariance
term. The behavior of the negative and positive covariance's can be further explained by the Figure (1), i.e., the
curve is symmetric about zero.
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Increment in highest eigenvalue with an increase in covariance term

Increment in highest eigenvalue
o

Covariance term

Figure: 2. Investment in highest eigenvalue with an increase in covariance term.

We may conclude that eigen values are not effected by the sign of the covariance term in matrix of order 2x2. But
have a slight change in the eigenvector. The negative sign with the first entry of the first eigenvector corresponds to
the largest eigen value, will now transferred to the second entry of the other eigenvector. Figure (2), shows the
increment in the first eigenvalues, with an increase in covariance term, shown in second last column of the table (1).
Plotting these increment against off diagonal entries of matrix A, we observe an ‘S’ shaped graph. For both negative
and positive signed covariance term, the increment is similar but the direction is different. If we neglect the sign, we
get a symmetric plot. We know that solution of equation (4), mainly depends on the third term. That is, the
determinant of matrix A, which is directly depending on the covariance term in the variance covariance matrix. In
spite of varying the covariance term in matrix A and observe the change in the eigen values, we constructed a table
(2) in which we considered (unit) change in the determinant of a variance covariance matrix to observe the change in
eigen values. The purpose is to take into account with what increment, change in eigen values occurs with a change
in covariance term.

Table no: 2
Determinant | Highest eigen value (4,) | incrementin A, | Covariance(X;, X,) Incre)ment in Cov(
X1, X2
149 15.19258 0 1 -
148 15.37228 0.1797 1.4142135 0.414214
147 15.5413 0.16902 1.732 0.317787
146 15.7015 0.1637 2 0.268
145 15.854 0.153 2.236 0.236
144 16 0.146 2.44 0.204
143 16.14005 0.14005 2.645 0.205
142 16.2749 0.13405 2.82 0.175
141 16.40512 0.13022 3 0.18
140 16.53112 0.126 3.1622 0.1622
139 16.6533 0.12218 3.3166 0.1544
138 16.772 0.1187 3.464 0.1474
137 16.887 0.115 3.605 0.141
136 17 0.113 3.741 0.136
135 17.109 0.109 3.872 0.131
134 17.216 0.107 4 0.128
133 17.3218 0.1058 4.123 0.123
132 17.424 0.1022 4.242 0.119
131 17.524 0.1 4.35 0.108
130 17.632 0.108 4.472 0.122
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Considering increment in the highest eigen value as response variable (YY) and increment in covariance term as
predictor variable (X), linear regression was applied on the data. That resulted in 79.5% of the coefficient of
determination. Whereas, when quadratic regression is applied on the same variables, the coefficient of determination
is 98.9%. The output of the second degree fit is given below.

Y = 7.19E-03 + 0.941852X - 1.30122X**2
R-Sq = 0.989

Analysis of Variance

SOURCE DF SS MS F P
Regression2 2.58E-02 1.29E-02 792.863 0.00
Error 17 2.77E-04 1.63E-05

Total 19 2.61E-02

SOURCE DF SeqSS F P
Linear 1 210E-02 74.6677 8.04E-08
Quadratic 1 4.80E-03 294.317 3.61E-12

The F-ratio for the quadratic regression is also very high as compare to the F value for linear model. Where as, the
fitted plot shows almost all points are on the curve. Therefore, it may be concluded that there is a quadratic
relationship between the increment in covariance term and the increment in the magnitude of highest eigen value.

Regression Plot

Y = 7.19E-03 + 0.941852X - 1.30122X**2
R-Sg = 0.989

o
[N

increment in first eigenvalue
I

0.0 — *
I I I I I
0.0 0.1 0.2 0.3 0.4

increment in covariance term

Figure: 3. Fitted regression line on the original covariance terms

Behavior Of Eigen Value In Variance Covariance Matrix Of Order 3x3

In the previous section we studied the behavior of variance covariance matrix of order 2x2, and observe the effects
on the eigen roots, for different values of covariance term. In variance covariance matrix of order 3x3, it is quite
complicated to observe the change in the eigen values, as the covariance terms of a variance covariance matrix are
changed. Consider a variance covariance matrix of order 3x3, in its general form;
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a; 8
A=|8y Qy 8y 9
dz; Q3 Agg
This variance covariance matrix can be written in the form of characteristic equation given in equation (3), given as

a;; — A a;, a3
ayy ay, — A ay3 = 0 (10)
as; as, Ay A

{(311 - ﬂ)[(azz —A)(agz—4) - azsasz] - a12[321(5‘33 —-A)- 331323]+ alS[a21a32 —ag1(ax — /1)]} =0
3 2
A =(trA)A” +(ay;8p;, +ay1833 + 89833 — 812851 — 13831 —Apgdgp)A —(det A) =0 (11)
From equation (11), the coefficient of A ®is unity, where as the coefficient of A is the trace of variance covariance
matrix (9). The coefficient of A can be partitioned into two parts, one containing the three combination of pairs of
diagonal entries and the other part containing the negative effect of the cross product term of the off diagonal entries

(‘that is, product of entries at position 12 and 21, at position 13 and 31 and so on). Hence, in general we can say that
we are subtracting the effect of product of covariances form the possible pairs of product of diagonal element.

Here the point should be noted that the negative sign in the covariance term does not affect the coefficient of A . So,

whether the value of covariance terms are negative or positive, the coefficient of A remains the same. But this
negative sign of covariance terms affect the constant term in the equation (11). It is also applicable when
standardized variance covariance matrix (i.e. correlation matrix) is used for eigen analysis. Consider the following
correlation matrix, (Everitt and Dunn, 1991), of order 3x3.

1 083 078
A- |083 1 067 )
0.78 067 1

Characteristic equation for a standardized variance covariance matrix is same as that of a variance covariance
matrix. From equation (11), we can easily write the characteristic polynomial of order 3x3.

A2 =32 +[(1-(0.83)*) + (L— (0.78)*) + (1— (0.67)*)]41 — (0.121316) =0  (13)
with the following roots. A ; = 2.521912, A, = 0.334108 and A 3 = 0.143979

Characteristic polynomial for a correlation matrix can be more easily explained as compare to variance covariance
matrix. From equation (13), it is clear that coefficients of A* and A2, of any standardized variance covariance matrix
of order 3x3, will always be the same as in (13), i.e., 1 and 3 respectively. Whereas, the coefficient of A is the sum of
coefficients of non-determination and the last term (i.e. the constant term) will always be the determinant of the
standardized variance covariance matrix.

The behavior of eigen values for higher order of matrix A is similar to that of variance covariance matrix of order
2x2. That is, the largest eigenvalue is formed by accumulating some proportion of covariance into the variance of
the variable containing the maximum variation. Thus the largest eigenvalue explain the maximum variation of the
data set. In case of variance covariance matrix (or standardized variance covariance matrix) of order 3x3 the
behavior is similar but quite complicated. If we carry out eigen analysis of correlation matrix (12), by changing the
correlation at different positions one by one, we can observe the behavior of eigenvalues, as given in Table (3).

First column in Table (3), shows the change (by 0.1) in the value of correlation, starting from -1. Whereas, rest of
the columns represent the highest eigen values, when correlation at different position are being swaped. For
example, the second column entitled “at position 13”, “at position 12” and “at position 23”, represent the largest
eigen value (i.e. 2.02711, 2.01235 and 2.00351 respectively), when the entity at position 13 in a correlation matrix
has been replaced by -1 and so on.

279



ISSN: 2320-5407

Int. J. Adv. Res. 7(4), 273-282

Table no: 3 “Eigen Values of Matrix A in equation (12)”

Correlation at position 13 at position 12 at position 23
-1 2.02711 2.01235 2.00351
-0.9 1.9391 1.91782 1.90661
-0.8 1.86674 1.83217 1.83245
-0.7 1.83169 1.78247 1.84655
-0.6 1.83694 1.78891 1.88011
-0.5 1.86162 1.81718 1.91739
-0.4 1.89476 1.85261 1.95719
-0.3 1.93279 1.89208 1.99929
-0.2 1.97444 1.9347 2.04363
-0.1 2.01915 1.98013 2.0902
0 2.06668 2.02825 2.13899
0.1 2.11686 2.07897 2.19

0.2 2.16961 2.13222 2.24322
0.3 2.22483 2.18796 2.29862
0.4 2.28246 2.24612 2.35617
0.5 2.34241 2.30662 2.41582
0.6 2.4046 2.3694 2.47753
0.7 2.46895 2.43436 2.54123
0.8 2.53535 2.50141 2.60684
0.9 2.60373 2.57044 2.67431
1 2.67398 2.64137 2.74354

Figure (4) indicates the similar pattern for any position (say, 12, 13 or 23) in a correlation matrix. It is also clear that,
when a positive correlation (say, at position 13) is replaced by a strong negative (say -1 to -0.7), there will be a
decline in the magnitude of largest eigen value. As, it move towards moderate to week negative correlation, the
other two positive correlations (i.e., at 12 and 23) pulls the magnitude of largest eigen value, and thus increase its
magnitude. If we take the correlation matrix similar to an identity matrix and then we change the correlation at
different position one by one, the behavior of eigen values at either position will exactly the same, making a V-
shaped graph that is symmetric at correlation equals to zero.

Figure: 4. Behavior of highest eigen values with a change in correlation at position 12, 13 and 23.
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Behavior of eigen value in higher order variance-covariance matrix.

In previous sections we have deeply observe the behavior of eigen values with variance covariance matrix (or
standardized variance covariance matrix) of order 2x2 and 3x3. The characteristic polynomial, given in equation
(15), of a variance covariance matrix, given in (14), of order 4x4 can be generalized for higher order matrices.

a; 8, Q3 Ay
Ay 8y 8y Ay
d3; @83 Az Ay
Ay 84 Q3 Ay

(14)

4 3

/1 _(trA)/1 + (a11a22 + a11a33 + a11a44 + a22a33 + a22a44 + a33a44
2

~8y8y) ~ 838 8,8y ~8y83 ~ 8y 8y, ~ 83,8y )’1 "’( ~ 8338855 ~ 83388, ~ 838558, — 858358y,
+ a11a23a32 + a'1la'24a42 + a1la34a43 + a22a13a3l + a22a14a41 + a223'346‘43 + a33a12a21 + a33a14a41 + a33a24a42
8,858 84,8138 +8,,838)3 ~8;)85,8y; ~ 81383484y ~ 8881, ~885,8y ~ a14a43a3i ; 8484383
~ 88383 ~ 813858, ).—(detA) =0
The pattern is clear from equation (15), that the coefficient of the highest power of A (i.e. 1*) will always be unity.
With the second highest power of A, (i.e. &%), the coefficient will be the trace of the corresponding matrix. The
coefficient of third highest power of A will contain possible pairs of variances and a negative effect of their squared
covariances. The coefficients of the next higher power of A will be having possible pairs of entities, of size three, of

a variance covariance matrix. Where as, the last term will always be the determinant of the corresponding matrix
(having pairs of entries of size 4). In general we can write the characteristic polynomial as,

4

At —Z:aii/13 +(Zi¢jzaiiajj _Z:i;tjZ:aijaji)/12 —(Z Zzaiiajjakk
i=1 i j=k

—Z Z:Z:a“ajkakj +Z ZZaijajkaki )A—(detA)=0

i j=k i j=k

Conclusion:-

From the above analysis we can conclude that, there is a direct relationship between covariance term of a variance
covariance matrix and its respective eigen values. Now, one can understand the phenomenon of eigen value
problem, which is the base of principal component analysis (See, Anderson (1984), Johnson & Wichern (1988) &
Hotelling (1936)). The characteristic polynomial of order n can be given as,

4
:in _Zaiiin_l +(Zi¢jzaiiajj _Zi¢jzaijaji)in_2 _(Z zza“ajjakk _Z Zzaiiajkakj
S i j=k i =k
+Z Zzaijajkaki A3 4L = (detA)2° =0
i j=k

(16)

Using (16) the behavior of eigen values and eigen vectors can be studied for any value of n.
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