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Type 2 Diabetes, a disease state recognized by impaired insulin sensitivity 

and hyperglycemia, is presently one of the world’s leading causes of 

mortality and morbidity. The concrete knowledge of these appropriate 

experimental models are very much required for understanding the 

pathogenesis, complications, and genetic, environmental or behavioral 

factors that increase the risks of this disorder along with the testing of 

various therapeutic agents. The animal models of type 2 diabetes can be 

obtained either genetically or induced by chemicals or dietary or surgical 

manipulations and/or by various combinations thereof. Till date, enormous 

number of new genetically modified animal models in addition to the 

traditional models like transgenic, generalized knock-out and tissue specific 

knockout mice have also been developed for the study of Type 2 Diabetes. 

This review basically provides an insight into the various experimental 

animal models of type 2 diabetes with reference to their origin/source, 

characteristic features, underlying causes/mechanism(s), advantages and 

disadvantages of those models in this regard. Moreover, it also gives an idea 

of dosages of various chemical diabetogens in different models. Hence, this 

review will comparatively evaluate all the experimental models, thus guiding 

the diabetes researchers to more accurately select the most appropriate model 

according to their specific requirements. 
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Introduction  

 
Out of the different types of diabetes, Type 2 diabetes (T2D) has greatest impact on health worldwide. Type 2 

Diabetes, a disease state recognized by impaired insulin sensitivity and hyperglycemia, is one of the world’s leading 

causes of mortality and morbidity (Pendse et al.,2013). Worldwide, the number of diagnosed diabetes cases reached 

366 million in 2011, and is predicted to reach 552 million by 2030 (Murea et al.,2012). Furthermore, it has been found 

that around 312 million people are affected by Type 2 Diabetes (till October 2013) and its incidence is still increasing 

year by year at constant rate worldwide, resulting in serious short term and long term implications 

(http://www.who.int/mediacentre/factsheets/fs312/en/). Now a days, therapeutic strategies for Type 2 Diabetes are 

limited to insulin and four main classes of oral antidiabetic agents that stimulate pancreatic insulin secretion 

(sulphonylureas and rapid-acting secretagogues/insulinotropics e.g., glibenclamide, glipizide, rapaglinide), reduce 

hepatic glucose production (biguanides e.g., metformin), delay digestion and absorption of intestinal carbohydrate (a-

glucosidase inhibitors e.g., acarbose) or improve insulin action [thiazolidinediones (TZDs) e.g., pioglitazone, 

rosiglitazone]. Each of the above agents has its own limitations and serious adverse effects, which results in the origin 

of  enormous variety of newer therapeutic agents or strategies for T2D treatment, most of all presently under 

development (Ramarao and Kaul,1999; Bailey,2005). 

http://www.journalijar.com/
http://www.who.int/mediacentre/factsheets/fs312/en/
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Genetic analysis of T2D is difficult and poorly understood in humans as this metabolic disorder is influenced by 

complex interactions among multiple susceptibility genes and environmental factors. In addition to this, research in 

this field on humans is encumbered by various ethical issues or considerations. Animal models of T2D are thus 

greatly useful and advantageous in biomedical studies as they may offer promise of new insights into human diabetes. 

It has been observed that most of the available models are based on rodents because of their small size, short 

generation interval, easy availability, easy to handle, omnivorous in nature, non-wild tranquil behavior and economic 

considerations; however, nonrodent models of diabetes seems to be required as a valued supplement to rodents for 

both practical and physiological reasons with respect to humans. Different models has been developed for different 

traits in large number and insufficient characterization of some models make it a tedious task to choose the right 

model for a given study (including pharmacological screening) and at times can also lead to data misinterpretation or 

even to the wrong conclusions. Though there are so many literatures available on the animal models of T2D, the main 

aim of the review is to give an overview of the currently available animal models of T2D with respect to their 

origin/source, characteristic features, aetiopathogenesis, their advantages, and disadvantages in T2D study and 

comparatively evaluates most of the experimentally induced rodent models of T2D with their limitations, advantages 

and criticality of development in order to help the diabetes research groups to more appropriately select the animal 

models for their specific research work. Further, it mainly deals with the apposite selection and efficacy of different 

animal models in testing various classes of new chemical entities and other therapeutic modalities for the treatment of 

T2D. 

 

Animal Models of Type 2 Diabetes- 

 

Animals showing a syndrome of T2D, with characteristics similar to humans, include a wide range of species with 

genetic, experimental (chemically/surgically induced) and nutritional causation (diet induced). As we all know that 

T2D is mainly described by insulin resistance and inefficient beta cells to sufficiently compensate the same. 

Therefore, animal models of T2D mainly include models of insulin resistance and/or models of beta cell failure. 

Subsequently, a number of diabetic animal models have been developed and improved over the years, out of which 

rodent models are the most famous and thoroughly described. Normally, these rodent models can be categorized into 

two broad classes: 1) genetically induced spontaneous diabetes models; and 2) non-genetically or experimentally 

induced nonspontaneous diabetes models, which further includes diabetic models induced by treating with chemicals, 

or dietary or surgical manipulations and combinations, recently  by genetic engineering/molecular biological 

techniques including transgenic and knock-out rodent models. Non-genetic models are more popular compared to 

genetic models due to lower cost, wider availability, easier to induce diabetes, and of course easier to maintain 

compared to genetic models. Apart from this classification, the animals are further sub categorized into models with 

or without obesity. Entire list of animal models of T2D along with their advantages and disadvantages, as described 

by Srinivasan and Ramarao, are enlisted in Table 1 and Table 2 respectively. 
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Table 1: List of Animal Models of T2D. 

Animal Model Class T2D Models  References 

Genetically induced spontaneous 

Diabetic Model  

Obese Models- 

TSOD mice 

M16 mice 

Zucker fatty rat 

SHR/N-cp rat 

JCR/LA-cp rat 

Obese rhesus monkey 

 

Monogenic- 

ob/ob mice (Lep
ob/ob

 mice) 

db/db mice (Lepr
db/db 

mice)
    

KK/A
γ
 mice 

   
 

ZDF rat 

 

Polygenic- 

KK mice  

 

NZO mice 

 

NONcNZO10 mice 

 

NoncNZO10/LtJ mice 

TallyHo/Jng mice 

OLETF rat 

 

Non Obese Models- 

Cohen diabetic rat 

GK rat 

Torri rat  

 

C57BL/6 (Akita) mutant mice 

ALS/Lt mice 

 

Suzuki et al.,1999 

Allan et al.,2004 

Durham and Truett,2006 

Velasque et al.,2001 

Clark and Pierce,2000 

Kemnitz et al.,1994 

 

 

Drel et al.,2006 

Kobayashi et al.,2000 

McIntosh and Pederson,1999 

McNeil,1999 

Peterson et al.,1990 

 

 

Reddi and Camerini-Davalos,1988 

Thorburn et al.,1995 

Andrikopoulos et al.,1993 

Haskell et al.,2002 

Pan et al.,2005 

Cho et al.,2007 

Kim and Saxton,2012 

Zhu et al.,1996 

 

 

 

Weksler-Zangen et al.,2001 

Goto and Kakizaki,1981 

Shinohara et al.,2000 

Masuyama et al.,2003 

Yoshioka et al.,1997 

Mathews et al.,2002 

Mathews et al.,2004 

Transgenic/Genetically induced beta cell 

dysfunction Model 

 

hIAPP mice 

AKITA mice 

Matveyenko and Butler, 2006 

Chen et al., 2011 

Diet/nutrition induced Diabetic Model  Obese Models- 

Sand rat or Desert gerbil 

C57/BL 6J mice 

Tuco-Tuco mice 

Spiny mice 

Nile grass rat 

 

 

Kaiser et al.,2012 

Surwit et al.,1988 

 

Shafrir et al., 2006 

Noda et al., 2010 

Chemically induced Diabetic Model Obese Models- 

GTG treated obese mice 

 

Non Obese Models- 

Adult ALX or STZ rats, mice 

Neonatal ALX or STZ rat, mice 

HF diet-fed  STZ rat, mice 

NCT/STZ rat, mice 

 

Le Marchand Brustel Y et al.,1978 

Le Marchand Brustel Y,1999 

 

Srinivasan and Ramarao,2007 

Islam and Loots,2009 

 

Wang et al.,2007 
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Surgical Diabetic Model Obese Models- 

VMH lesioned dietary obese 

diabetic rat 

Non Obese Models- 

Partial pancreatectomized 

animals 

e.g. dog, primate, pig, rabbit & 

rats 

 

Axen et al.,1994 

 

 

 

 

Sasaki et al.,2000 

Transgenic/knock-out Diabetic Model Obese Models- 

β3 receptor knockout mice 

Uncoupling protein (UCP1) 

knock-out  mice 

 

Non Obese Models- 

Transgenic or knock out mice 

involving genes of insulin and 

insulin receptor and its 

components of downstream 

insulin signaling  

e.g. IRS-1, IRS-2,GLUT-4, PTP-

1B and others 

PPAR-γ tissue specific knockout 

mice  

 

Glucokinase or GLUT2 gene 

knockout mice 

 

Grujic et al.,1997 

Vidal-Puig et al.,2000 

 

 

 

 

Srinivasan and Ramarao,2007 

 

 

 

 

 

 

 

 

 

Zhang et al.,2004 

 

Other Models  IUGR Models 

 

MSG Models 

Simmons et al.,2001 

Vuguin et al.,2004 

Nagata et al.,2006 

 

KK: Kuo Kondo; KK/A
y
: Yellow KK obese; VMH: Ventromedial hypothalamus; ZDF: Zucker diabetic fatty; NZO: 

New Zealand obese; TSOD: Tsumara Suzuki obese diabetes; SHR/N-cp: Spontaneously hypertensive rat/NIH-

corpulent; JCR: James C Russel; OLETF: Otuska Long Evans Tokushima fatty; GTG: Gold thioglucose; ALX: 

Alloxan; STZ: Streptozotocin; GLUT: Glucose transporter; IRS: Insulin receptor substrate; GK: Goto-Kakizaki; 

PPAR: Peroxisome proliferator activated receptor, PTP: Phosphotyrosine phosphotase; ALS: Alloxan sensitive; 

Lep
ob/ob

 mice: Leptin deficient obese; Lepr
db/db 

mice: Leptin receptor deficient diabetic; hIAPP: Human islet amyloid 

polypeptide; HF: High fat; NCT: Nicotinamide; IUGR: Intrauterine growth retardation; MSG: Monosodium 

glutamate. 

 

 

Genetically induced spontaneous Diabetic Model- 

 

This T2D model may be obtained from the animals with one or many genetic mutations transmitted from generation 

to generation (e.g., ob/ob, db/db mice) or it may get selected from non-diabetic outbred animals by repetitive breeding 

over several generations (e.g., GK rat, TSOD mice). Generally, they inherit diabetes due to single (Monogenic) or 

multiple gene defects (Polygenic). The metabolic particularities resulting from monogenic diabetes may arise due to 

dominant gene (e.g., KK/A
γ
 mice) or recessive gene (db/db mice, ZDF rat) or it can be of polygenic origin (e.g., KK 

mice, NZO mice) (Ktorza et al.,1997) .The interaction between environmental and multiple gene defects has been 

found in majority of T2D case in human beings, though certain diabetes subtype also exist with well defined cause 

[i.e., maturity onset diabetes of youth (MODY) due to defect in glucokinase gene] and this monogenic defect may 

cause T2D only in few cases. Thus, it has been found that polygenic models represent the human condition more 

closely as compared to monogenic models (McIntosh and Pederson, 1999). 

Monogenic Models- 

Though monogenic mutation are rarely responsible for obesity in humans, these monogenic models of obesity are 

usually used in T2D research. Mice defective in leptin signaling are most widely used monogenic models of obesity. 
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Leptin is responsible for inducing satiety, and thus, a dearth of functional leptin in these animals causes hyperphagia 

and subsequently obesity. These models include the Lep ob/ob mice, which is deficient in leptin and the Lepr db/db 

mouse and Zucker Diabetic Fatty (ZDF) rat, which are deficient in the leptin receptor. These models are most often 

tested for new therapies of T2D (Yoshida et al., 2010; Gault et al., 2011; Park et al., 2011). 

Some already established monogenic models of obesity are ob/ob mice (Lep
ob/ob

 mice), db/db mice (Lepr
db/db 

mice), 

KK/A
γ
 mice, ZDF rat. 

 

Polygenic Models- 

Polygenic models of obesity might provide a more precise T2D model in case of humans. Different polygenic mice 

models of obesity, glucose intolerance and diabetes exist, allowing the study of different genotypes and 

susceptibilities. Apart from this, the male sex bias is more extreme in these polygenic models (Leiter, 2009). It has 

been found that these polygenic models have been already useful in a wide variety of studies that have targeted to 

reverse the symptoms of T2D (Chen et al., 2009; Fukaya et al., 2009; Guo et al., 2010; Mochizuki et al., 2011; 

Yoshinari and Igarashi, 2011), to understand more about the interplay of obesity and glucose homeostasis (Kluth et 

al., 2011) (Jurgens et al., 2007) or to study diabetic complications (Cheng et al., 2007; Fang et al., 2010; Buck et al., 

2011; Lee et al., 2011a). Some already established polygenic models of obesity are KK mice, NZO mice, 

NONcNZO10 mice, NoncNZO10/LtJ mice, TallyHo/Jng mice, OLETF rat. 

 

Genetically induced beta cell dysfunction Models- 

The beta cell plays a vital role in the development of T2D as well as plays a crucial role in less common classifications 

of diabetes such as maturity onset diabetes of the young (MODY), gestational diabetes, neonatal diabetes and other 

beta cell syndromes such as hyperinsulinism. Therefore, these beta cell models are highly appropriate in 

understanding pathways that can lead to the inefficient beta cells to secrete appropriate amounts of insulin. Such 

models are used by introducing genetic manipulations such as Kir6.2 mutations to study K channel function (Girard et 

al., 2009) or glucose kinase mutations to understand the glucose sensor function in beta cells (Fenner et al., 2011). 

Such studies can increase our knowledge of beta cell function. However, it was found in the study that the same 

mutation in humans and mice resulted in different symptoms in the same as recently shown by Hugill et al., where a 

mutation in Kcnj11 (encoding a subunit of the K ATP channel) caused insulin hypersecretion and hypoglycaemia in 

the patient, but glucose intolerance and reduced insulin secretion in mice (Hugill et al., 2010).  

 

Diet/nutrition induced Diabetic Models- 

Some animal models exist in which T2D is induced neither by chemicals nor by genetic defect, instead by changes in 

their diet composition. Few important models of the same are Sand rat, Tuco-Tuco and Spiny mouse (Shafrir, 2003). 

 

Chemically induced Diabetic Models- 

These diabetic models are common in explicating the probable role of environmental factors involved in the endocrine 

pancreatic destructive processes, resulting in subsequent T2D development. Few important models of the same are 

GTG treated obese mice, Adult alloxan/streptozotocin-induced models and Neonatal alloxan/streptozotocin-induced 

models. 

 

Surgical Diabetic Models- 

This model is made by complete or partial pancreatectomy in animals used for the induction of T2D. Earlier, the 

diabetic dog model discovered by Oskar Minkowski through surgical complete pancreatectomy has been considered 

to be the first diabetic animal model and is hardly now used for the research (Ozturk et al., 1996). Now, presently 

different combination methods of partial pancreatectomy on non rodents are at times utilized in T2D research. 

 

Transgenic/knock-out Diabetic Models- 

Now a days, transgenic technique is attaining thrust as it offers excellent opportunity for investigation of role of 

specific gene products and its mechanisms maybe involved in disease conditions under its own physiological  

(comparitively to in vitro) environmental conditions. These transgenic animals are usually helpful in getting insights 

to gene regulation and development, pathogenesis, treatment of disease and finding new targets for that. Generally, 

transgenic animals (particularly mice) are made by transferring and altering the site or expression level of of 

functional gene (transgene) or by deleting specific endogenous genes (knockout) or by placing them under the control 

of alternate promoter regions (Livingston,1999). 

Some good reviews are already available in the literatures describing about the various models of the same 

(Kadowaki,2000;Gray et al.,2005;Butler et al.,2004;Nandi et al.,2004;Plum et al.,2005). These models are developed 
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for getting into the role of associated genes and their effects on peripheral insulin action such as insulin receptor, IRS-

1, IRS-2, GLUT 4, PPAR-g and TNF-a as well as in insulin secretion such as GLUT-2, GK, IAPP and GLP-1 and also 

in hepatic glucose production (PEPCK expression) associated with T2D development. In addition to this, combination 

or double knockout mouse models including defect in insulin action and insulin secretion (e.g., IRS1 
+/-

 /GK 
+/-

 double 

knockout) have been produced which clearly demonstrate the mechanisms associated with insulin resistance 

development and beta cell dysfunction resulting in overt hyperglycemic state in human T2D. In recent times, scientists 

are succeeded in developing tissue specific knockout mouse models, thus allowing future insight into the insulin 

action with respect to particular target tissues (muscle, adipose tissue and liver) related with insulin resistance and 

T2D(Kadowaki,2000;Gray et al.,2005;Butler et al.,2004;Nandi et al.,2004;Plum et al.,2005). In future, it is expected 

that more knock-out models of interest for the study of diabetes will be made due to the efforts of the International 

Knockout Mouse Consortium (IKMC), which aims to mutate all protein-coding genes in the mouse 

(http://www.knockoutmouse.org/). 

 

Obese and Non Obese Models- 

As both T2D and obesity are closely linked, most of the existing T2D animal models are obese. Obesity may arise as a 

result of naturally occurring mutations or genetic manipulation. So, these comprise of models that have obesity either 

due to rare monogenic mutation or polygenic mutation. On the other hand, obesity can also be induced by high fat 

feeding.  

At the same time, it’s not that all T2D patients are obese, and thus, it is important to study lean animal models of T2D 

also. These comprise of models that have beta cell inadequacy, which can ultimately leads to overt T2D in humans 

(Weir et al., 2009). Entire list of different obese and non-obese models studied till now have been summarized in 

Table 1. 

 

Non Rodent Models- 

T2D research is not limited to smaller animals, instead some larger animals have also been utilized. For instance, T2D 

in cats bear a resemblance to the human condition in several aspects like T2D in cats progresses in middle age, is 

related to obesity and insulin resistance, and subsequent beta cell loss also occurs similar to the human (O’Brien, 

2002). Moreover, cats are also among one of the few species other than humans and macaques that form amyloid in 

islets, just allowing them to become a good model for studying islet amyloidosis (Henson and O’Brien, 2006). Old-

world non-human primates can also develop T2D, which is almost similar to the human condition, thus allowing it to 

be used as a model (Wagner et al., 2006). Furthermore, several pig strains have a phenotype resembling T2D 

(Bellinger et al., 2006). Recently, a novel model of obesity and mild T2D has been developed in the dog (Ionut et al., 

2010) by involving a high-fat diet with STZ. 

 

Table 2: Pros and Cons of different classes of T2D animal models. 

Model Class Benefits Drawbacks 

Genetically induced 

spontaneous Diabetic Model  

Shows resemblance to human T2D and 

is developed spontaneously involving 

genetic factors. 

 

 

Mostly of inbred lines, in which the 

genetic background is homogeneous and 

environmental 

factors can be regulated, provides easy 

genetic dissection. 

 

Require small sample size and result 

variability is minimum. 

Highly linear animal, monogenic 

inheritance, homogenous and the diabetes 

developed is highly genetically 

determined unlike heterogeneity evident 

in humans. 

 

Expensive and limited supply. 

 

Requires insulin treatment in later stage 

for survival as mortality is noticed due to 

ketosis in animals with brittle 

pancreas(eg.db/db, ZDF rats, P.obesus, 

etc.) 

 

Require proper maintenance. 

 

Diet/Nutrition induced  

Diabetic Model 

Obesity associated diabetes can be 

developed via overnutrition as observed 

in diabesity syndrome of human 

population 

Generally requires long duration of 

dietary treatment. 

 

Not suitable for screening antidiabetic 
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Other vital organs can be avoided from 

the toxicity of chemicals. 

agents on circulating glucose parameter 

as no frank hyperglycemia develops upon 

simple dietary treatment in genetically 

normal animals. 

Chemically induced Diabetic 

Model  

(Adult ALX or STZ Model  

 

Neonatal ALX or STZ 

Model  

 

HF diet-fed  STZ Model 

 

 

NCT/STZ Model) 

Selective loss of pancreatic β cells 

(alloxan/STZ) leaving other pancreatic 

cells(alpha and delta) intact  

 

Animals survives longer due to residual 

insulin even without insulin treatment. 

 

Mortality due to ketosis is less, 

relatively.  

 

Easier to develop, maintain and 

comparatively cheaper. 

Development of hyperglycemia majorly 

by direct cytotoxic action on the β cells 

and insulin deficiency rather than 

consequence of insulin resistance. 

 

Chemical induced diabetes are mostly 

less stable, sometimes reversible because 

of the spontaneous regeneration of β cells. 

Hence, requires careful assessment of 

pancreatic β cells function during long-

term experiments. 

 

Reduction of body weight in some cases. 

 

Other vital organs get affected due to 

toxic chemicals. 

 

High variability of results on 

development of hyperglycaemia. 

 

Surgical Diabetic Model Cytotoxic effects of diabetogens on other 

vital organs can be avoided. 

 

Resemblance to human T2D due to 

reduced islet β cell mass.  

Inconvenient technical and post operative 

procedures 

 

Digestive problems noticed(due to 

excision of exocrine portion and 

deficiency of amylase enzyme) 

 

Loss of alpha islets along with β cells, 

becomes problematic in  regulating 

hypoglycemia. 

 

Higher mortality comparatively.  

 

Transgenic/knock  

out Diabetic Model 

Single gene or mutation on  

diabetes can be studied in vivo 

  

 

Easier dissection of complex genetics of 

T2D. 

Production and maintenance is highly 

expensive and sophisticated.  

 

Regular screening experiments are 

expensive. 

 

IUGR Model Reliable approach to develop T2D rodent 

model by this method. 

Cannot be validated by using anti-T2D 

drugs. 

Lipid profiles and liver enzymes are not 

reported. 

MSG Model Easy to develop. 

 

Comparitively good model for human 

T2D because obesity is characteristic 

trait of this model. 

Takes long time to develop. 

 

Pancreatic hypertrophy; Hepatocellular 

alterations and carcinoma; Centrilobular 

vacuolar degeneration in the liver. 

 

Cannot be validated by using anti-T2D 

drugs. 
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Table 3: Dosage of various chemical diabetogens in different T2D models. 

Chemicals Species Dose(s) 

(mg/kg) 

Mode of 

injection 

References 

Alloxan Rat 40-200  Intravenous/ 

Intraperitoneal 

Rerup,1970 

Kasiviswanath et al.,2005 

 Mice 50-200  Intravenous/ 

Intraperitoneal 

Rerup,1970 

Sheng et al.,2005 

 Rabbit 100-150  Intravenous Rerup,1970 

Battell et al.,1999 

 Dog 50-75  Intravenous Vogel and Vogel,1997 

Rerup,1970 

Streptozotocin Rat  35-65  Intravenous/ 

Intraperitoneal 

McNeil,1999 

Rerup,1970 

Junod et al.,1967 

 Mice 100-200  Intravenous/ 

Intraperitoneal 

McNeil,1999 

Rerup,1970 

Junod et al.,1967 

 Hamster 50  Intraperitoneal Miller,1990 

 Dog  20-30  Intravenous Rerup,1970 

Battell et al.,1999 

 Pig 100-150  Intravenous Grussner et al.,1993 

Dufrane et al.,2006 

 Primates 50-150  Intravenous Dufrane et al.,2006 

Theriault et al.,1999 

 

 

End-points to be observed in model organism for T2D research – 

 

The most common end-point of measurement while testing therapies in model organism for T2D is blood glucose 

concentrations. It has already been known that different species tend to have different blood glucose concentrations 

than humans, and thus, measurements for diabetes in humans cannot be applied in case of animals. For instance, mice 

tend to have higher blood glucose concentrations than humans, and it has been suggested that a non-fasting blood 

glucose concentration above 250 mg·dL
-1

 (13.8 mM) or preferably a chronic elevation above 300 mg·dL
-1

  (16.7 mM) 

is apt to consider a mouse diabetic (Leiter, 2009). But, during fasting, normal mice fasted for 16 h during the entire 

dark period usually have blood glucose level between 50 and 100 mg·dL
-1

 (2.8–5.6 mM), whereas mice with T2D will 

have fasting blood glucose levels of about near to 150–300 mg·dL
-1

 (8.3–16.7 mM). Glucose detection in the urine 

can also be measured as a sign of diabetes. However, other end-points can also depend on the putative mechanism of 

the drug and the model being used because it has been studied that in models of T2D, the drug used for lowering 

blood glucose levels may result in weight loss (Knudsen, 2010).  

Sometimes, glucose tolerance tests are also used to investigate beta cell function, which helps in the identification of 

impaired glucose tolerance. This test is usually done after an overnight fast, keeping in mind that such a long fast 

might induce a metabolic stress and enhances insulin action, thus making this test inappropriate in mice (McGuinness 

et al., 2009), so, a 6 h fast possibly will be preferable. In addition to this, an insulin tolerance test can also be carried 

out as an approximate measure of insulin resistance, or a more elegant hyperinsulinaemic–euglycemic clamp can be 

carried out (Declercq et al., 2010). Apart from this, insulin sensitivity measures such as homeostasis model index of 

insulin resistance (HOMA-IR) in rodents (Mather, 2009), pancreas histology (Tian et al., 2010), whole pancreas 

insulin content (Montanya and Tellez, 2009), ex vivo islet isolation and insulin secretion (Szollosi et al., 2010) are few 

other end-points that can be studied. The time course of the disease and stage of the disease should also be carefully 

considered while considering end-points of a study as sometimes, the stage of disease may affect the parameters under 

measurement. For example, some T2D models had been found to show beta cell expansion and hyperinsulinemia prior 

to subsequent beta cell failure.  

 

Selecting a suitable model organism for T2D research- 

 

A list of variety of model organisms of T2D are enlisted above, each group having their own advantages and 

disadvantages. These T2D models can be used for several different purposes including pharmacological testing, 
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genetics study and understanding disease mechanisms. The model selection should depend on the purpose of the 

study. It is always very important to consider the mechanisms underlying the hyperglycemia in T2D that might 

include insulin resistance and/or beta cell failure. Usually to determine whether intervention of any drug can improve 

symptoms in any given model or not may depend on whether beta cells have failed or not.  

The majority of obese T2D models arises either due to genetic or dietary means, coming up with a range of associated 

pathologies such as dyslipidaemia and artherosclerosis. Instead of these common comorbidities in some humans with 

T2D, it only represents a part of the diabetic population. At the same time, it should be kept in mind that not all animal 

models of T2D and strains develop diabetic complications (e.g. the mice strain C57BL/6 is relatively resistant to 

nephropathy) (Brosius III et al., 2009), so intense care should be taken for the same. Some other parameters to be 

considered while choosing model as different species are strain and species differences, having different 

susceptibilities to diabetes and treatments. 

 Preferably, more than one species or strain and gender of the same (Franconi et al., 2008) should also be taken into 

account, as gender bias in different models (e.g. NOD, NZO and TallyHo mice; OLETF, Zucker Diabet ic rats) has 

been described, which is not in the case of humans. Furthermore, gender bias has already been studied in many knock-

out and transgenic models of diabetes (Franconi et al., 2008), suggesting the most probable mechanism involving 

effects of sex hormones (Inada et al., 2007), although the exact mechanism behind the same has not been clarified yet. 

On the other hand, effects of sex hormone can be conflicting in different mouse models, for example, male 

gonadectomy provides protection against diabetes in some models but at the same time, it is unsuccessful or 

increasing incidence in other models (Franconi et al., 2008). Indeed, gender bias has also been found to involve 

mitochondria and stress responses (Franconi et al., 2008).  

Models also differ in their physiological relevance, with some models more closely resembling disease development 

than others. Some extreme models like those of pancreas regeneration are rather extreme, which remains to be 

elucidated that whether the beta cell expansion mechanism in these models can play a role in humans or not. 

Certainly, while choosing a model for T2D, it is highly recommended that a range of different models are used to 

exemplify the human T2D patient’s diversity. 

 

Conclusions- 

 

Most animal models described above apparently share similar characteristic features of T2D. None of them represents 

exactly equal to human diabetes, but each of them acts as vital tool to understand the mechanisms underneath the 

evolution of T2D in humans.  Hence, precaution should be taken into account for the interpretation of the results 

obtained from these animal models to humans. It is particularly important to note that some animal models are better 

suited to screen particular class of anti-diabetic compounds. The use of smaller animal models such as mice, rat will 

reduce the expense for testing of many compounds in the industrial research environment while some advanced 

studies requiring large blood and tissue samples, may be fulfilled by using animals with large body size such as rat or 

other non-rodents. Furthermore, animal model is particularly selected depending on the investigator’s choice like 

particular strain availability, aim of the research work, type of drug to be used, institutional financial and facility 

resources in the T2D research. But, there are some limitations like cost, practical complications, extreme care and 

ethical considerations associated with the use of large/non rodent animal species (viz., pigs, dogs and non-human 

primates).  

Experimentally induced rodent models of T2D has been developed by making use of several approaches by different 

research groups. Out of them, the earliest T2D rodent models were developed by using intraperitoneal injection of 

either alloxan or STZ, which rapidly induces diabetic state, thus making it effective method for developing 

hyperglycemia and abnormal lipid profiles. Moreover, it is also used for screening antidiabetic agents due to its low 

cost, availability and short time taken by it to develop. But, this model does not always represent human T2D 

effectively due to a lack of insulin resistance property. Out of the various T2D models discussed in this review, the HF 

diet-fed STZ/alloxan, HF diet-fed NCT/STZ, neonatal STZ and IUGR models are, in our opinion, the best suited for 

studying T2D, as they develops a diabetic state in a relatively short time span; they best represent the T2D state 

associated pathogenesis in humans; and they develop a stable T2D state that can be maintained for relatively longer 

time span. Thus, these models are useful for the study of long-term/chronic complications associated with T2D. On 

the other hand, other models may also be considered for research depending on the specific applications. For instance, 

the partial pancreatectomy models for studying β-cell dysfunction; the long-term HF diet-fed model for studying 

impaired glucose tolerance and obesity induced T2D; the HF diet-fed STZ, NCT/STZ and neonatal STZ models for 

pharmacological drug, food and phytochemical trials, and the neonatal STZ model for studying long-term diabetic 

complications. Even though not clear as yet, future insight into it can prove the utility of remaining studied T2D 

models for other diabetic complications. At the same time, detailed studies for the same are also instantly required for 
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better understanding of the disease mechanisms in human conditions along with discovery of new targets and drugs 

for T2D treatment. 
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