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The occurrences of the disturbed geomagnetic activities (RA, SA and 

FA) according to both classifications (AC and NC) have been studied at 

Dakar ionosonde station (Lat: 14.8°N; Long: 342.6°E). RA occurs more 

during equinoctial months than during solstices; thus there is a semi-

annual asymmetry during RA (which is more marked during the AC). 

The maximum negative ∆occ, observed during summer, is −16.1% and 

the maximum positive one, observed during spring, is +14.73%. SA of 

the AC occurs more during equinoctial times than during solstice 

periods. Therefore, there is a semi-annual asymmetry; and a winter 

anomaly is also observed; but, for the NC the SA’s occurrence don’t 

differ considerably with the seasons. The maximum negative ∆occ, 

observed during summer, is −6.08% and the maximum positive one, 

observed during spring time is +2.34%. During spring and summer, the 

AC’s FA occurrences are greater than those of the NC and we observe 

the opposite during autumn and winter. The winter and equinoctial 

anomalies are obviously observed with the FA of the AC; but for those 

of the NC, we observe an absence of equinoctial anomaly and a slight 

winter asymmetry. The maximum negative ∆occ, observed during 

autumn, is −2.75% and the maximum positive one, observed during 

summer, is +1.16%. The ionosphere F2 layer critical frequency foF2 

diurnal profiles throughout seasons concerning both classifications have 

been compared. The FA diurnal profiles don’t show difference over 

seasons but the RA’s and the SA’s profiles show an obviousness 

difference between both classifications during summer time and a non-

considerable difference at spring time. 
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Introduction:- 
The irradiation of the Earth space environment by the magnetized plasma propagating from the Sun induced a 

continuous global magnetic disturbance namely geomagnetic storms (Legrand and Simon, 1989) In fact, the Sun’s 

magnetic field interacts with the Interplanetary Magnetic Field (IMF) by means of its two components: (1) the poloidal 

magnetic field which is closed and responsible of the Coronal Mass Ejections (CMEs), the magnetic clouds and high 

stream solar wind, (2) the toroidal magnetic field named sunspot activities which is the source of slow solar wind 

(Legrand and Simon, 1989; Richardson et al., 2000, 2001, 2002; Simon and Legrand, 1989). 

 

This Sun-Earth interaction is characterized by four geomagnetic events identified by Legrand and Simon (Legrand 

and Simon, 1989) by using: (1) the geomagnetic aa index carried out by Mayaud (1971, 1972, 1973, 1980); (2) the 

date of Sudden Storm Commencement (SSC) and (3) the correlation existing between the geomagnetic aa index and 

the solar wind speed established by Svalgaard (1977). The same number of geomagnetic activities have been found 

by Richardson et al. (Richardson et al., 2000, 2001, 2002), but they named the fluctuating activity as the unclear 

activity which characterized the cases where the solar mechanisms cannot be clearly identified.  

 

This classification gives only 60% of the geomagnetic activities solar sources clarification. Zerbo et al. (2012) 

established a new classification criteria which clarifies about 80% of the geomagnetic activities solar sources by 

lowering the limit of the aa index for the shock and recurrent events and adding other causes from solar activity. Then 

the two schemes are different only for the disturbed geomagnetic activities. This paper deals with the comparison of 

both classifications critical frequency of the ionosphere F2 layer (foF2) diurnal profiles over seasons as measured at 

Dakar ionosonde station (Lat: 14.8°N; Long: 342.6°E).  

 

Some papers have been carried out in African Equatorial Ionization Anomaly (EIA) sector about the morphological 

studies of the foF2 profiles by using Legrand and Simon’s classification (Ali et al., 2015; Diabaté et al., 2018, 2019; 

Gnabahou and Ouattara, 2012; Gnabahou et al., 2013; Guibula et al., 2019; Gyébré et al., 2018; Nanéma and Ouattara, 

2013; Nanéma et al., 2019; Nanema et al., 2018; Ouattara, 2013; Ouattara and Amory-Mazaudier, 2012; Ouattara and 

Nanéma, 2014; Ouattara et al., 2009; Sawadogo et al., 2019a, 2019b; Thiam et al., 2012). Here, we focus our attention 

to a comparison of both classifications profiles over solar cycle phases on the F2 layer critical frequency (foF2) time 

variation at Dakar station. The novelty of this study appears as it is a first paper where such comparison is made for 

both geomagnetic activity classifications methods. This paper aims, in short term, to highlight how the signature of 

the storm effect is shown by the geomagnetic events of both classifications methods and in mean and long term to 

contribute to improve the understanding of the sources of geomagnetic activities. 

 

The outline of the paper is as follows: section 2 concerns materials and methods, section 3 is devoted to results and 

discussions, and the conclusion and research perspectives end the paper as its fourth section. 

 

Data and Method:- 
Data: 

For the present paper, data involved are: (1) foF2 values carried out at Dakar station. This station operated from 1950 

to December 1996. The involved data interval for our study is 1976 – 1995 and concerned Solar Cycle 21 (SC 21) and 

Solar Cycle 22 (SC 22); (2) Zurich sunspot number (Rz), from OMNI data set 

http://omniweb.gsfc.nasa.gov/form/dx1.html for the influence of solar cycle phase and (3) Mayaud (1971, 1972, 1973, 

1980) geomagnetic index aa for geomagnetic activity impacts. For this study, foF2 diurnal variation are analyzed by 

considering seasonal impacts. The seasons considered here are: (1) spring (March, April and May); (2) summer (June, 

July and August); (3) autumn (September, October and November) and (4) winter (December, January and February). 

 

Methods:- 
Seasons determination: 

The seasons are considered here as: (1) spring (March, April and May); (2) summer (June, July and August); (3) 

autumn (September, October and November) and (4) winter (December, January and February). 

 

Description of the two geomagnetic activity classification methods: 

Based on the strong correlation between geomagnetic index Aa (obtained from the following website: 

http://isgi.unistra.fr/data_download.php) and solar wind velocity established by Svalgaard (1977), Legrand and Simon 

http://omniweb.gsfc.nasa.gov/form/dx1.html
http://isgi.unistra.fr/data_download.php
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(1989) described criteria for geomagnetic activity classification like this: (1) quiet activity (QA) is characterized by 

Aa < 20 𝑛𝑇, very quiet activity (VQA) by Aa < 10 𝑛𝑇 and (2) disturbed activities by Aa ≥ 20 nT arranged in three 

groups such as: (i) recurrent activity (RA) due to solar high wind stream coming from coronal holes with Aa ≥ 40 nT; 

(2) shock activity (SA) due to Coronal Mass Ejections (CMEs) with Aa ≥ 40 nT and (3) fluctuating activity (FA), 

consequences of the fluctuation of solar heliosheet. 

 

It’s important to note that, this Legrand and Simon’s classification or ancient classification (AC) clearly classify only 

60% of the geomagnetic activity (Legrand and Simon, 1989; Ouattara and Amory-Mazaudier, 2008, 2009; Ouattara 

and Zerbo, 2011; Ouattara et al., 2009; Zerbo et al., 2012) whereas the scheme proposed by Zerbo et al. (2012) allows 

to clearly classify 80% of the geomagnetic activity. The new classification is characterized by: (1) the same limit with 

the first classification for the quiet activity (Aa < 20 𝑛𝑇) and (2) The lowering of the limit (Aa ≥ 20 nT) for the shock 

and recurrent events for whom the causes from solar activity are more highlighted (Zerbo et al., 2012). Therefore: (1) 

recurrent activities (RA), characterised by Aa ≥ 20 nT, are now the recurrent activity of Legrand and Simon plus the 

Corotative Moderate Activity (CMA) and they are due to solar high wind stream and Corotating interaction Region 

(CIRs); (2) shock activities (SA) are now the shock activity of Legrand and Simon plus the Cloud Shock Activity 

(CSA) and they are caused by Coronal Mass Ejections (CMEs) and magnetic clouds, respectively, with Aa ≥ 20 nT 

and (3) fluctuating activities (FA) or unclear events represent the fluctuating activity of Legrand and Simon plus the 

Corotating Moderate Activity (CMA); they are consequences of the fluctuation of solar heliosheet. This paper thus 

concerns the comparison between the profiles of foF2 daily variation during disturbed activities of both schemes of 

geomagnetic activity classification as described. 

 

The pixel diagram presents the variation of the geomagnetic activity by solar rotation, also called Bartels rotation 

(Diabaté et al., 2018, 2019; Guibula et al., 2018, 2019; Gyébré et al., 2018; Kaboré et al., 2019; Ouattara et al., 2015, 

2017; Ouattara, 2009, 2013; Ouattara and Nanéma, 2014; Ouattara and Zerbo, 2011; Zerbo et al., 2011, 2013). It 

shows per year an overview of the whole solar geoeffectiveness activity (each type of the solar wind activity [slow, 

recurrent, CIRs and fluctuating winds activity] and that of CMEs and magnetic clouds (Ouattara and Amory-

Mazaudier, 2009). This colour board is used to determine the geomagnetic data as a function of solar activity as 

described by solar rotation duration (27 days) which consists of: (1) plotting the aa daily values in Bartels diagrams, 

(2) exhibiting the different types of geomagnetic activities as described above according to both criteria. Figure 2 

showed the pixel diagram highlighting the process to determine the different geomagnetic activities following the 

criteria of the two methods of classification. 

 

Data analysis method: 

This paper aims to study the difference of foF2 time variation, throughout the seasons for a given disturbed activity 

for both geomagnetic activity classifications. The data analysis will be done through two ways: (1) The analysis of the 

recurrence of the different geomagnetic activities according to both methods of classification over seasons; (2) The 

profiles obtained are analysed in comparison with the five standard profiles established by Faynot and Vila (1979) for 

African Equatorial Ionization Anomaly (EIA) region and (3) the quantitative analysis based on comparison between 

foF2 profiles from both classifications methods. 

 

Firstly, the analysis of the occurrence of the geomagnetic activities is done by: (1) comparing the occurrence of the 

different geomagnetic activities in relation with both classification by using the equation 1; 

∆occ=  GAocc / AC −  GAocc / NC       (1) 

Where ∆occ is the gap of the occurrence of the concerning geomagnetic activity classes. 

GAocc / AC is the occurrence of the concerning geomagnetic activity class in relation with the ancient classification. 

GAocc / NC is the occurrence of the concerning geomagnetic activity class in relation with the new classification. 

and (2) putting error bars in data graphs. We can note that error bar is obtained by using the equation 2. 

σ = √V        (2) 

Where V is the variance defined by V =
1

N
∑ (xi − x̅)2N

i=1  with x̅ mean value and N the total number of observations 

for a particular dataset. 

 

Secondly, the foF2 profiles (see Figure 1), linked to the nature, the strength or the absence of electric currents in E 

layer of ionosphere (Acharya et al., 2010, 2011; Dunford, 1967; Vassal, 1982a, 1982b), are: Noon bite out or “B” 

profile characterized by a double peak (morning and evening) parted by a trough around midday; Reversed or “R” 

profile characterized by a single peak at afternoon; Morning pic or “M” profile characterized by a single maximum at 
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morning; Plateau or “P” profile characterized by an ionization plateau during daytime and Dome profile or “D” profile 

characterized by a single maximum around noon. 

 

This morphological analysis of the profiles will reveal the difference between the equatorial ionosphere characteristics 

highlighted by the profiles obtained by both classification methods. In fact those profiles express respectively a 

signature of a high electrojet, an important afternoon conter-electrojet, a moderate electrojet, a weak electrojet and an 

absence of electrojet. In addition Fejer, (1981); Fejer et al., (1979, 1981), Abdu et al., (1981, 1992) and Farley et al., 

(1986) reviewed on mechanism responsible of equatorial trough at noon induced by electrodynamics E × B process. 

 
Figure 1:- Faynot and Vila foF2 profile types for African equatorial region. Panel “a” concerns “B” profile that 

expresses the signature of strong electrojet; panel “b” is “M” profile and exhibits the signature of mean electrojet; 

panel “c” is “D” and that of panel “d” is “P” profile. These two profiles characterized the absence of electrojet. 

Panel “e” is “R” profile and expresses the signature of strong counter electrojet. 

 

In a third time, the quantitative analysis based on the appreciation of the difference between foF2 values of the ancient 

classification and those from the new one will be made through the relative deviation of foF2 defined by: 

σfoF2 =  
foF2AC−foF2NC

foF2NC
× 100      (3) 

Where foF2AC and foF2NC are the foF2 from the ancient classification and the new one respectively and σfoF2 is the 

relative deviation with the following appreciation: 

1. σfoF2  > 10% the ancient classification overestimates the new standard classification value; 

2. σfoF2  < −10% the ancient classification underestimates the new standard classification value; 

3. 10 % < σfoF2  < 10% both classifications graphs are in agreement. 

 

Results and Discussion:- 
Occurrences of the geomagnetic activities over seasons 

Figure 3 highlights the occurrence of the different geomagnetic activities throughout seasons. Panels “a” and “b” 

concern the classes according to the ancient classification (AC) and the new classification (NC) respectively.  

For each season of both classifications, the diagram columns represent respectively the fluctuant, the recurrent, the 

shock and the very quiet activities. For the occurrence of the fluctuant activity (FAocc) over seasons, we have for the 

AC, 25.12%; 23.76%; 25.95% and 25.18% and for the NC, 25%; 22.6%; 28.7% and 26.8% respectively for spring, 

summer, autumn and winter seasons. Therefore, for both classifications, the fluctuant occurs more during the autumn 

season and less during summer. The maximum negative gap between both classifications occurrences is observed at 

autumn time with a value ∆occ=  −2.75% and the maximum positive occurrence is observed in summer season with 
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a value ∆occ=  +1.16%. Besides, for spring and summer seasons, the FA occurrence of the AC is greater than that of 

the NC; and we observe the opposite for the autumn and the winter seasons. Consequently, during spring and summer 

times, the AC’s FA occurrences are greater than those of the NC and the opposite is observed during autumn and 

winter. Winter and equinoctial anomalies are obviously highlighted by the FA of the AC while for those of the NC 

we observe a less marked winter anomaly and an absence of equinoctial anomaly 

For the RA, we have for the AC, 47.43%; 4%; 28.57% and 20% and for the NC, 32.7%; 20.1%, 28.7% and 18.5% 

respectively for spring, summer, autumn and winter seasons. The recurrent events occur more during the spring season 

for both classifications; and less during summer for AC and during winter for the NC. The maximum negative gap 

between both classifications occurrences is observed at summer time with a value of ∆occ=  −16.1% and the 

maximum positive occurrence is observed in spring season with a value of ∆occ=  +14.73%. Besides, for spring and 

winter seasons, the RA’s occurrence of the AC is greater than that of the NC; and we observe the opposite for the 

summer and autumn seasons. Therefore, the RA of the AC occurs more during equinoxes than solstices than the NC’s 

RA; that testify the semi-annual anomaly during RA events which is more marked for the AC. 

 

For the SA, we have for the AC, 27.74%; 19.52%; 26.37% and 26.37% and for the NC, 25.4%; 25.6%; 25.5% and 

24.6% respectively for spring, summer, autumn and winter seasons. For the AC, the shock events occur more during 

the spring, the autumn and the winter seasons with an occurrence included between [26%; 28%]; and less during the 

summer with an occurrence of 19.52%. And for the NC, we have a value of occurrence close to 25% for all the seasons. 

The maximum negative gap between both classification occurrences is observed at summer time with ∆occ=  −6.08% 

and the maximum positive one is observed in spring season with ∆occ=  +2.34%. Besides, for summer season, the 

SA’s occurrence of the AC are lower than that of the NC; and we observe the opposite for the other seasons. Therefore, 

we observe that the AC’s SA more occur during equinoxes than solstices; but for those of the NC, there is not an 

obvious difference between both seasons. In consequence, there is semi-annual anomaly, winter anomaly (due to the 

asymmetry between winter and summer) and the absence of equinoctial anomaly (due to the fact that the occurrences 

of spring and autumn season of the AC’s SA don’t show remarkable difference); that is not the case of the NC because 

the occurrences of the NC’s SA don’t differ considerably over seasons.. 

 

 
Figure 2:- Pixel diagram used to determine geomagnetic activity classes by the criteria of the ancient classification 

or AC (panel “b”) and the new classification or NC (panel “a”). The blue and white color cases correspond to the 

quiet activity. The recurrent and the shock activities are those of the AC recurrent and shock events respectively. 
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The NC recurrent events are those of the AC plus the corotating moderate activity (CMA) and its shock events 

correspond to those of the AC plus the cloud shock activity. 

  

Figure 3:- Comparison of the occurrence of the geomagnetic activity throughout seasons between the Ancient 

classification (panel “a”) and the new classification (panel “b”). 

 

Profiles comparison for both classifications throughout seasons: 

Figure 4 to Figure 6 show the foF2 profiles during fluctuant activity (FA), recurrent activity (RA) and shock activity 

(SA) respectively. The panels “a”, “b”, “c” and “d” present the graph of the spring, summer, autumn and winter 

seasons respectively. For all geomagnetic activities, the absence of equinoctial asymmetry is clearly highlighted and 

the figures show this results as those founded by Ouattara et al., (2017) at Niamey station and Guibula et al., (2018) 

at Korogho station. 

 

Figure 4 shows that, during FA, both graphs show an “R” profile during all seasons but it shows a “M” profile for 

winter season. Therefore, the FA is characterised by a moderate electrojet during winter season, while it shows an 

important afternoon conter-electrojet in E layer of ionosphere during the other seasons. The two classification’s curves 

show the same shape and the same amplitude for all seasons with respect to error bars shown in NC graph; thus, for 

FA the foF2 profiles of the AC and NC don’t show difference during all seasons; it is so not important to estimate the 

relative deviation of foF2 during FA. This absence of difference between the two classifications can be explain by the 

fact that the FA is characterised by the unclear solar activity; perhaps the highlighting of the twenty percent (20%) of 

the geomagnetic activity which are mixed in the unclear activities (remember that the NC explain about 80% of the 

solar activity in relation of the geomagnetic activity) will enable to make difference with the AC. 
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Figure 4:- foF2 profiles during fluctuant geomagnetic activity (FA) during spring, summer, autumn and winter 

seasons. The dashed curve is for the New classification (NC) and the solid one for the Ancient Classification (AC). 

 

Figure 5 shows the foF2 values’ diurnal variation for the RA according to the two classification and the relative 

deviation percentage of both classifications foF2 values. For equinox seasons (see panels “a” and “c”), the two 

classification’s curves show an “R” profile, with the same shape and the same amplitude with respect to error bars 

shown in NC graph. Therefore, the RA is characterised by a moderate electrojet during equinox seasons. Otherwise 

we observe a difference between both classifications curves in the meantime surrounding 0200 LT during spring 

months and in the meantime surrounding 0700 LT, 2100 LT and 0000 LT concerning autumn season. The right column 

of the panels “a” and “c” highlight this observation. In fact, for the spring season (panel “a”), the σfoF2 shows value 

within ±10% between all the time excepted in the meantime surrounding 0200 LT with a maximum negative value 

of −6.9% observed at 0800 LT and a maximum positive value of 21.55% observed at 0200 LT. And the graph of 

right column of the panel “c” present a σfoF2 value within ±10% between all the times excepted in the meantime 

surrounding 0700 LT, 2100 LT and 0000 LT; with a maximum positive value equal to +13,96, observed at 0000 LT 

and a maximum negative value equal to −10,28, observed at 0700 LT. 

 

For the summer month (panel “b”) we observe an obviousness difference between both curves; in fact, while we have 

an “R” profile for the NC, the AC curve show a “B” profile characterised by a late morning peak at about 1400 LT 

(~10.82 MHz), an afternoon peak at 1800 LT (~11.80 MHz), and a trough at 1500 LT (~9.87 MHz). The obviousness 

difference between the AC and the NC curves during summer season can also be explain by the large gap (∆occ=
 −16.1%) between the occurrences of the RA for both classifications as shown at the paragraph 3.1. Besides, the right 

column of this panel highlights a σfoF2 value within ±10% just between after 0600 LT to after 0800 LT and between 

1400 LT to 1600 LT; but for the remaining time, σfoF2 values are greater than +10% or small than −10%. Therefore 

both classification’s RA present an almost different profile during summer season, except between after 0600 LT to 

after 0800 LT and between 1400 LT to 1600 LT with respect to the σfoF2 value. Panel d shows an “M” profile for 

both classifications curves during the winter month; therefore the RA profile highlights a moderate electrojet during 

winter time. Otherwise, we observe a difference between the two graphs after 1700 LT to before 0600 LT with respect 

to error bars shown in NC graph. Besides, the right column of this panel highlights a σfoF2 value greater than +10% 

between 2000 LT to 0600 LT and a value within ±10% the time remaining. The maximum positive value, equal to 

+15,62, is observed at 0500 LT and the maximum negative value, equal to −1,59, is observed at 0800 LT. 
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a 

 

 

b 

 

 

c 

  

d 

  

Figure 5:- foF2 diurnal variation during recurrent activity (RA) throughout spring (panel a), summer (panel “b”), 

autumn (panel “c”) and winter (panel “d”) seasons. The dashed curve is for the New classification (NC) and the 

solid one for the Ancient Classification (AC). The left column is devoted to the foF2 diurnal variation profiles and 

the right one presents the relative deviation percentage of foF2 between the RA foF2 values of the AC and that of 

the NC. 
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Figure 6 shows the foF2 values diurnal variation for the SA of the two classifications and the relative deviation 

percentage of foF2 diurnal values of both classifications. Panel “a” presents a “P” profile for the two curves during 

spring time. Therefore, the SA is characterised by a weak electrojet during spring season. Besides, we observe that 

the two curves present the same shape and the same amplitude with respect to error bars shown in NC graph. In fact, 

the right column of this panel highlight that the σfoF2 value is within ±10% between all the daily times; thus, the 

shock events foF2 daily profiles variation of both classifications are in good agreement during spring time. The 

maximum negative value of σfoF2, equals to -6.22%, is observed at 0400 LT and the maximum positive value is 

observed at 0200 LT and it is equal to +4.3%. 

 

In panel “b” we observe that both graphs present a “D” profile which highlights the signature of an absence of electrojet 

during summer time for 2 classification’s SA. Otherwise, the AC graph is always above that of the NC; the two 

classification’s graphs are different between 1300 LT to 1700 LT and 2100 LT to 0400 LT with respect to error bars 

shown in NC graph. Besides, the right column of this panel highlights a σfoF2 value greater than +10% between 2100 

LT to 0400 LT and a value within ±10% the time remaining. The maximum positive value is observed at 0000 LT 

and it is equal to +68.53%. 

 

Panel “c” shows a “B” profile with a lower trough at 1200 LT for both curves. Therefore, the 2 classification’s SA are 

characterised by a short living high electrojet located at 1200 LT during autumn time. Otherwise, the AC graph is 

always down that of the NC; the two classifications are different during a meantime surrounding 0100 LT and 0300 

LT with respect to error bars shown in NC graph. Besides, the right column of this panel highlights a σfoF2 value 

negative all the daily time with values small than -10% at 0100 LT and at 0300 LT and values within ±10% the time 

remaining. The maximum negative value is observed at 0300 LT and it is equal to −12.67% and the maximum 

positive value, equal to +0,35% is observed at 2100 LT. 

 

Panel “d” shows an “M” profile for both classifications curves. Therefore, the 2 classification’s SA are characterised 

by a moderate electrojet during winter time. Otherwise, we observe that the AC graph is almost always above that of 

the NC, except between 0900 LT to 1100 LT. The two classifications are different between 0400 LT to after 0600 LT 

with respect to error bars shown in NC graph. Besides, the right column of this panel highlights negative value of 

σfoF2 between 0900 LT to 1100 LT and positive the time remaining. The maximum negative value of σfoF2, observed 

at 1000 LT, is equal to −1.08% and its maximum positive value, observed at 0600 LT, is equal to +13.59%. 
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Figure 6:- The same as figure 5 but for shock activity. 

 

Conclusion:- 
This paper shows that both classification’s geomagnetic classes, at Dakar station, are different in terms of occurrences 

throughout seasons. It emerges that the more the occurrences between two classes for a given season are different, the 

more the profiles show difference. Therefore, it’s observed an obvious difference of the electrodynamics in the 

ionosphere layer during the disturbed geomagnetic activities according to both classifications method. In general the 

AC and NC curves show different profiles during the summer season for the RA and the SA. The FA profiles don’t 

depend on the classification method at all. 
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