
ISSN: 2320-5407 Int. J. Adv. Res. 8(09), 811-816

811

Journal Homepage: - www.journalijar.com

Article DOI: 10.21474/IJAR01/11726

DOI URL: http://dx.doi.org/10.21474/IJAR01/11726

RESEARCH ARTICLE

CORRELATIONS AND QUERY PROCESSING

Bhanu Shanker Prasad

P.G Deptt of Statistics and Computer Application,TMBU,Bhagalpur,Bihar,India Job Status:- M.D.N H/S

School,Dumrama, Amarpur, Banka.

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 15 July 2020

Final Accepted: 18 August 2020

Published: September 2020

Key words:-
Optimization, Selectivities, Relation,

Partition, Statistical , Correlation

It is known that optimization of join queries based on average

selectivities is sub-optimal in highly correlated databases. Relations are

naturally divided into partitions , each partition having substantially

different statistical characteristics in such databases. It is very

compelling to discover such data partitions during query optimization

and create multiple plans for a given query , one plan being optimal for

a particular combination of data partitions. This scenario calls for the

sharing of state among plans, so that common intermediate results are

not recomputed. We study this problem in a setting with a routing-

based query execution engine based on eddies. Eddies naturally

encapsulate horizontal partitioning and maximal state sharing across

multiple plan. The purpose of this paper is to present faster execution

time over traditional optimization for high correlations, while

maintaining the same performance for low correlations.

Copy Right, IJAR, 2020,. All rights reserved.

…………………………………………………………………………………………………

Introduction:-
Traditional query optimizers pick one execution plan per query, based on first-order statistics about the

underlying data. In particular, a join order is determined based on join selectivities that are computed over a

relation as a whole. However, real-world databases often contain skewed data with complex correlations, and

first-order statistics are not sufficiently powerful to capture the underlying statistical properties of the data.

Indeed, one can get better join selectivity estimates by modeling data correlations [6,13]. However, the presence

of data correlations does not only make selectivity estimation harder-it also offers opportunities for more ef-

fective query optimization.

When data correlations are present, the input relations are naturally divided into partitions, each partition having

completely different statistical characteristics. It is then very attractive to create multiple plans per query, each

plan being optimized for a different combination of data partitions. Consider for example the join query

. Assume that S is naturally partitioned into two partitions, S = S1 U S2, where Si

(similarly, S2) has a low selectivity when it joins with R (T), and a high selectivity when it joins with T (R). A

possible optimization process may decide to partition S into Si and S2, and pick the plans

 and . The combined cost of the two resulting

plans can be smaller than the cost of any possible monolithic plan.

Corresponding Author:- Bhanu Shanker Prasad

Address:- Bulaki Sah Lane, Baltikarkhana Chowk, Mirjanhat, Bhagalpur , Bihar,812005.

http://www.journalijar.com/

ISSN: 2320-5407 Int. J. Adv. Res. 8(09), 811-816

812

With the introduction of partitioning, query optimization consists of two tasks: Determining the partitions of the

input relations, and creating a plan for each combination of partitions. Unfortunately, the two problems are

inter-dependent. A partitioning of the relations is optimal only with respect to already chosen join plans. A

partitioning is query-plan specific, because it is evaluated against the selectivities of the joins in the join plans;

it is not merely a set of clusters based on the statistical properties of the data. Conversely, a collection of join

plans is optimal only with respect to a certain partitioning. This inter-dependence yields a much larger

optimization space than the one considered by traditional query optimizers.

Further, an optimization process that results in multiple plans per query naturally raises the issue of sharing

state among the constituent plans at execution time. Identical intermediate tuples should not be constructed

multiple times from different plans during query execution. In the example above, the intermediate relation T

 U is required in both plans. This relation should not be constructed twice; rather, it should be shared

between the two plans.

This work presents the first study of horizontal partitioning during query processing with maximal sharing of

intermediate results. In particular, the contributions of this paper are the following: First, we offer a more

formal study of the general problem than hitherto. We introduce the notion of conditional join plans (CJPs), a

representation of the search space resulting from horizontal partitioning that captures both the partitioning and

join order aspects. We define recursive cost formulas for CJPs, and are thus able to define query optimization as

a search problem in a suitable space. In addition, we show how to estimate correlated join selectivities using

low-overhead summaries based on graphical models. Then, we focus on the case of query execution with eddies

[1] and symmetric hash joins. This case is particularly interesting, because sharing is maximal; an intermediate

tuple that is used by different join plans is computed only once. We show how query execution with eddies

restricts the search space, and we provide a low-overhead greedy algorithm for this space. Our algorithm can

achieve an order of magnitude better execution time than the best monolithic plans in databases with high

correlations, while being on par with traditional query optimization for uniform data.

The rest of this paper is organized as follows. reviews related work and eddies.

Figure 1:- A 3-join query R S T U used as a running example throughout the paper.

ISSN: 2320-5407 Int. J. Adv. Res. 8(09), 811-816

813

Partitioning with eddies

Eddies with symmetric hash joins [1,8] provide a framework that naturally encapsulates horizontal partitioning

and state sharing, making it an ideal framework for exploiting data correlations through horizontal partitioning.

With eddies, fixed query plans are no longer constructed. Instead, the operators that are involved in the query

are connected with a central router (the eddy), and query execution proceeds by routing the tuples through the

operators. The eddy makes a routing decision for each individual tuple. This enables multiple plans to be

executed simultaneously for the same query, each plan operating on a different subset of (base or intermediate)

tuples. These multiple plans are not created explicitly; rather, they are implied by the eddy routing policy. Note

that although eddies were introduced as a way to achieve adaptivity in a streaming environment, we do not use

them as such. We assume a more traditional setting, where the data is static. This eliminates the adaptivity

overhead of eddies.

Consider the join query R S T U and the execution of the query using an eddy, as shown in

Figure 2. Tuples from relations R and U each have only one possible destination: R S and T U,

respectively. However, S tuples can be routed to either R S or S T, and T tuples can be routed to either

T U or S T. The eddy can use a predicate on one of the relation attributes to distinguish the routing

destinations. In Figure 2, the eddy uses the predicate S (e.g., s = (S.Y > 5)) to route S tuples. Tuples from S

that satisfy S are routed to R S, yielding partition S1. Tuples from S that do not satisfy S are routed to S

 T, yielding partition S2.

In Figure 2 the intermediate results, as stored in the hash tables of the symmetric hash joins, are shown. While

all R (U) tuples are stored in the join R S (T U), the relations S and T are partitioned. The S1(T1)

partition is stored in R S (T U), and the S2 and T2 are stored in S T. Thus, the intermediate results

created are RS1, S2 T2, and T1U. The RS1 and T1U tuples are stored in S T (their only routing destination).

The state of S T is then as shown in Figure 2. The subsequent routing of intermediate results in the

combined execution of the four plans shown in Figure 1(a). The state captured in the joins at the end of query

execution is shown in Figure 2. Note that the relations RS1 and T1U that are common in multiple plans are

computed only once. Eddies provide maximal sharing of intermediate results at execution time, with no extra

optimization time overhead.

Eddy restrictions

The routing nature of query execution with eddies imposes constraints on the possible partitions as well as on

the join plans that can be executed. This in turn imposes restrictions on the CJPs that can be considered during

query optimization. Consider for example the valid CJP for our example query in Figure 6.

Figure 6:- A CJP that is not eddy-compliant.

This CJP is equivalent to the join plans ((R S1) T) U, ((T U) S2) R. If we were

to execute this query with an eddy, we need to make a routing decision for T tuples using a predicate, 0S, on

relation S. If S = T, T needs to be joined with R N S1, while if S = F, T needs to be joined with U. There is

no possible routing that can achieve this. The routing decisions for T tuples can only be made using a

predicate on T, 0T. The restrictions on the possible CJPs is the price paid for state sharing provided by eddies.

The constraints imposed by eddies affect the CJP search space as follows. Given a query Q, we can construct a

unique CJP structure Pe(Q, Fe), called the eddy CJP structure. Any CJP valid for Q that can be executed using

an eddy (called an eddy-compliant CJP) can be derived from the eddy CJP structure by assigning values to the

predicates in Fe. Hence, the eddy CJP structure determines the eddy CJP space for this query. Appendix A

ISSN: 2320-5407 Int. J. Adv. Res. 8(09), 811-816

814

details an algorithm that, given a query, constructs the unique eddy CJP structure. Figure 7 shows the eddy CJP

structure for our example.

Figure 7:- The eddy CJP structure for our running example. Note that the predicate 0T must have a unique

value.

For example, assume that we are given a partitioning budget of c =1 and we decide to use the predicate 0S =

(S.Y > 5). Then, all the eddy-compliant CJPs can be derived from the eddy CJP structure of Figure 7 by

assigning values to 0T and 0ST from the set {0true, 0false}, as defined in Section 3.1. These values must be

honored across sub-plans. For example, assume that we choose 0T = 0true. Then we must use the join order (R

 S1) (T U) for partition S1 and the join order ((T U) S2) R for partition S2. Note that

0ST is not defined in the 0T = 0<™e sub-plans because the intermediate result ST is never formed in these sub-

plans.

Since eddies provide maximal sharing, the recursive cost function COSTNS from Section 3.4 does not estimate the

cost of an eddy- compliant CJP correctly. Fortunately, we can define a recursive cost function COSTEddy that

estimates the cost of an eddy-compliant CJP with sharing accounted for. Only one change is needed to COSTNS:

Instead of including the decision predicates of the set , where X is the set of relations relevant to the join node

under consideration, in Equations 3- 5, we simply include all the decision predicates in $. The following holds.

Lemma 2. If P is eddy-compliant, COSTEddy (P) = ||P||s

PROOF. See Appendix B.

Denote the eddy CJP structure for a query Q by Pe(Q, Fe). We can now formally state the problem we are

solving.

Horizontal paritioning with eddies. Given a query Q and a partitioning budget c, find the plan

 that is valid for Q and is eddy-compliant.

Put differently, query optimization has to partition the predicate variables Fe of the eddy CJP structure into two

disjoint sets: The first set of size at most c contains predicates that are assigned normal predicate values (e.g.,

S.Y > 5), and the second set, of size at least |Fe| — c contains predicates that are assigned values from the set

{0 true, 0false}. The choice of the two sets and the choice of values should yield the minimum cost. Once the

predicates in Fe have been assigned values, it is trivial to construct an eddy routing policy that executes the

resulting concrete CJP.

ISSN: 2320-5407 Int. J. Adv. Res. 8(09), 811-816

815

Figure 5:- The effect of varying the correlation parameter r in a 3-join query when all the joins have the same

selectivity.

Greedy search

While possible, it is computationally infeasible to exhaustively search the eddy space. We propose an algorithm that

starts from the best monolithic plan for a query and gradually builds an eddy- compliant CJP. At each step, the

algorithm cycles over all the decision predicates on attributes that have not been used yet, and picks the one that

yields the best cost when used to split the plan into two sub-plans. This is done greedily: when the algorithm

introduces a split, it assumes that no future splits will occur, but rather that the best monolithic plans (under the eddy

constraints) will be used for the sub-plans. The algorithm stops if it has introduced the maximum number c of

decision predicates allowed, or if no further cost improvement can be achieved.The gradual construction of the CJP

has three advantages. First, the complete eddy CJP structure does not need to be stored. Second, the sizes of the

CJPs whose costs will be evaluated are controllable; a CJP with more than c decision predicates is never generated.

Finally, the cost of the final CJP is guaranteed to be less or equal to the cost of the best monolithic plan. However,

since there is no backtracking, the algorithm can obviously get stuck in local minima; an initial choice for a locally

optimal decision predicate can lead the algorithm to assume that no cost improvement can be made by further

splitting. Appendix C provides the details and pseudo code for the greedy search algorithm, as well a discussion of

its cost as compared to the cost of exhaustive search.

Conclusions and Future Work

Data correlations provide opportunities for more effective query optimization by partitioning relations. We first

present a principled way to approach the problem of horizontal partitioning as search in the space of conditional join

plans. CJPs provide an intuitive way to think about the problem, and recursive cost formulas for CJPs can be

defined. Further, we show how to efficiently estimate correlated selectivities using a statistical model with low

storage overhead. Then, we show how the sharing of intermediate results that is inherent in eddies restricts the space

of possible CJPs. A

Figure 9:- Varying the number of relations and GHP iterations.

ISSN: 2320-5407 Int. J. Adv. Res. 8(09), 811-816

816

greedy search with controlled iterations in this space is proposed that can achieve an one order of magnitude better

execution time for highly correlated databases, while performing on par with the best monolithic plan at low

correlations.

This work opens several lines of research that we plan to pursue. First, a problem that remains open is whether

shared computation is always beneficial. Second, it would be interesting to explore multi- query optimization in this

environment, where multiple queries are optimized together to produce many join plans that share computation.

Finally, we would like to explore the parallel query processing case where the optimization metric is throughput.

References:-
1. Avnurand J. M. Hellerstein. Eddies: Continuously adaptive query processing. In SIGMOD, pp. 261-272, 2000.

2. Bizarro, S. Babu, D. J. DeWitt, and J. Widom. Content-based routing: Different plans for different data. In

VLDB, 2005.

3. Chandrasekaran, et al. TelegraphCQ: Continuous dataflow processing for an uncertain world. In CIDR, 2003.

4. Cluet, and G. Moerkotte. On the complexity of generating optimal left-deep processing trees with cross

products In ICDT, 1995.

5. Deshpande. An initial study of overheads of eddies. SIGMOD Record, 33(1):44-49, 2004.

6. Deshpande, M. N. Garofalakis, and R. Rastogi. Independence is good: Dependency-based histogram synopses

for high-dimensional data. In SIGMOD, pp. 199-210, 2001.

7. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting correlated attributes in acquisitional query

processing. In ICDE, pp. 143-154, 2005.

8. Deshpande and J. M. Hellerstein. Lifting the burden of history from adaptive query processing. In VLDB, pp.

948-959, 2004.

9. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foundations and Trends in Databases, 1(1):

1-140, 2007.

10. D. J. DeWitt and J. Gray. Parallel database systems: The future of high performance database systems. CACM,

35(6):85-98, 1992.

11. P. L. Fackler. Generating correlated multidimensional variates.

12. L. Getoor. Learning Statistical Models from Relational Data. PhD thesis, Stanford University, 2001.

13. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In SIGMOD, pp. 461-472,

2001. D. Koller, and N. Friedman. Probabilistic graphical models. MIT Press, 2009.

14. R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries. In VLDB, pp. 128-137,

1986.

15. R. V. Nehme, E. A. Rundensteiner, and E. Bertino. Self-tuning query mesh for adaptive multi-route query

processing. In EDBT, 2009.

16. R. V. Nehme, K. Works, E. A. Rundensteiner, and E. Bertino. Query mesh: Multi-route query processing

technology. PVLDB, 2(2), 2009.

17. N. Polyzotis. Selectivity-based partitioning: a divide-and-union paradigm for effective query optimization. In

CIKM, 2005.

18. V. Raman, A. Deshpande, and J. M. Hellerstein. Using state modules for adaptive query processing. In ICDE,

pp. 353-, 2003.

