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It is known that optimization of  join queries based on average 

selectivities is sub-optimal in highly correlated databases. Relations are 

naturally divided into partitions , each partition having substantially 

different statistical characteristics in such databases. It is very 

compelling to discover such data partitions during query optimization 

and create multiple plans for a given query , one plan being optimal for 

a particular combination of data partitions. This scenario calls for the 

sharing of state among plans, so that common intermediate results are 

not recomputed. We study this problem in a setting with a routing-

based query execution engine based on eddies. Eddies naturally 

encapsulate horizontal partitioning and maximal state sharing across 

multiple plan. The purpose of this paper is to present faster execution 

time over traditional optimization for high correlations, while 

maintaining the same performance for low correlations. 
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Introduction:- 
Traditional query optimizers pick one execution plan per query, based on first-order statistics about the 

underlying data. In particular, a join order is determined based on join selectivities that are computed over a 

relation as a whole. However, real-world databases often contain skewed data with complex correlations, and 

first-order statistics are not sufficiently powerful to capture the underlying statistical properties of the data. 

Indeed, one can get better join selectivity estimates by modeling data correlations [6,13]. However, the presence 

of data correlations does not only make selectivity estimation harder-it also offers opportunities for more ef-

fective query optimization. 

 

When data correlations are present, the input relations are naturally divided into partitions, each partition having 

completely different statistical characteristics. It is then very attractive to create multiple plans per query, each 

plan being optimized for a different combination of data partitions. Consider for example the join query 

. Assume that S is naturally partitioned into two partitions, S = S1 U S2, where Si 

(similarly, S2) has a low selectivity when it joins with R (T), and a high selectivity when it joins with T (R). A 

possible optimization process may decide to partition S into Si and S2, and pick the plans 

 and . The combined cost of the two resulting 

plans can be smaller than the cost of any possible monolithic plan. 
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With the introduction of partitioning, query optimization consists of two tasks: Determining the partitions of the 

input relations, and creating a plan for each combination of partitions. Unfortunately, the two problems are 

inter-dependent. A partitioning of the relations is optimal only with respect to already chosen join plans. A 

partitioning is query-plan specific, because it is evaluated against the selectivities of the joins in the join plans; 

it is not merely a set of clusters based on the statistical properties of the data. Conversely, a collection of join 

plans is optimal only with respect to a certain partitioning. This inter-dependence yields a much larger 

optimization space than the one considered by traditional query optimizers. 

 

Further, an optimization process that results in multiple plans per query naturally raises the issue of sharing 

state among the constituent plans at execution time. Identical intermediate tuples should not be constructed 

multiple times from different plans during query execution. In the example above, the intermediate relation T 

 U is required in both plans. This relation should not be constructed twice; rather, it should be shared 

between the two plans. 

 

This work presents the first study of horizontal partitioning during query processing with maximal sharing of 

intermediate results. In particular, the contributions of this paper are the following: First, we offer a more 

formal study of the general problem than hitherto. We introduce the notion of conditional join plans (CJPs), a 

representation of the search space resulting from horizontal partitioning that captures both the partitioning and 

join order aspects. We define recursive cost formulas for CJPs, and are thus able to define query optimization as 

a search problem in a suitable space. In addition, we show how to estimate correlated join selectivities using 

low-overhead summaries based on graphical models. Then, we focus on the case of query execution with eddies 

[1] and symmetric hash joins. This case is particularly interesting, because sharing is maximal; an intermediate 

tuple that is used by different join plans is computed only once. We show how query execution with eddies 

restricts the search space, and we provide a low-overhead greedy algorithm for this space. Our algorithm can 

achieve an order of magnitude better execution time than the best monolithic plans in databases with high 

correlations, while being on par with traditional query optimization for uniform data. 

 

The rest of this paper is organized as follows.  reviews related work and eddies.  

 
Figure 1:- A 3-join query R  S  T  U used as a running example throughout the paper. 
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Partitioning with eddies 

Eddies with symmetric hash joins [1,8] provide a framework that naturally encapsulates horizontal partitioning 

and state sharing, making it an ideal framework for exploiting data correlations through horizontal partitioning. 

With eddies, fixed query plans are no longer constructed. Instead, the operators that are involved in the query 

are connected with a central router (the eddy), and query execution proceeds by routing the tuples through the 

operators. The eddy makes a routing decision for each individual tuple. This enables multiple plans to be 

executed simultaneously for the same query, each plan operating on a different subset of (base or intermediate) 

tuples. These multiple plans are not created explicitly; rather, they are implied by the eddy routing policy. Note 

that although eddies were introduced as a way to achieve adaptivity in a streaming environment, we do not use 

them as such. We assume a more traditional setting, where the data is static. This eliminates the adaptivity 

overhead of eddies. 

 

Consider the join query R  S  T  U and the execution of the query using an eddy, as shown in 

Figure 2. Tuples from relations R and U each have only one possible destination: R   S and T  U, 

respectively. However, S tuples can be routed to either R  S or S  T, and T tuples can be routed to either 

T  U or S  T. The eddy can use a predicate on one of the relation attributes to distinguish the routing 

destinations. In Figure 2, the eddy uses the predicate S (e.g., s = (S.Y > 5)) to route S tuples. Tuples from S 

that satisfy S are routed to R  S, yielding partition S1. Tuples from S that do not satisfy S are routed to     S 

 T, yielding partition S2.   

 

In Figure 2 the intermediate results, as stored in the hash tables of the symmetric hash joins, are shown. While 

all R (U) tuples are stored in the join R  S (T  U), the relations S and T are partitioned. The S1(T1) 

partition is stored in R  S (T  U), and the S2 and T2 are stored in      S  T. Thus, the intermediate results 

created are RS1, S2 T2, and T1U. The RS1 and T1U tuples are stored in S  T (their only routing destination). 

The state of S  T is then as shown in Figure 2. The subsequent routing of intermediate results in the 

combined execution of the four plans shown in Figure 1(a). The state captured in the joins at the end of query 

execution is shown in Figure 2. Note that the relations RS1 and T1U that are common in multiple plans are 

computed only once. Eddies provide maximal sharing of intermediate results at execution time, with no extra 

optimization time overhead. 

 

Eddy restrictions 

The routing nature of query execution with eddies imposes constraints on the possible partitions as well as on 

the join plans that can be executed. This in turn imposes restrictions on the CJPs that can be considered during 

query optimization. Consider for example the valid CJP for our example query in Figure 6. 

 
Figure 6:- A CJP that is not eddy-compliant. 

 

This CJP is equivalent to the join plans ((R  S1)   T)  U, ((T  U)  S2)  R. If we were 

to execute this query with an eddy, we need to make a routing decision for T tuples using a predicate, 0S, on 

relation S. If S = T, T needs to be joined with R N S1, while if S = F, T needs to be joined with U. There is 

no possible routing that can achieve this. The routing decisions for T tuples can only be made using a 

predicate on T, 0T. The restrictions on the possible CJPs is the price paid for state sharing provided by eddies. 

 

The constraints imposed by eddies affect the CJP search space as follows. Given a query Q, we can construct a 

unique CJP structure Pe(Q, Fe), called the eddy CJP structure. Any CJP valid for Q that can be executed using 

an eddy (called an eddy-compliant CJP) can be derived from the eddy CJP structure by assigning values to the 

predicates in Fe. Hence, the eddy CJP structure determines the eddy CJP space for this query. Appendix A 
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details an algorithm that, given a query, constructs the unique eddy CJP structure. Figure 7 shows the eddy CJP 

structure for our example. 

 
Figure 7:- The eddy CJP structure for our running example. Note that the predicate 0T must have a unique 

value. 

 

For example, assume that we are given a partitioning budget of c =1 and we decide to use the predicate 0S = 

(S.Y > 5). Then, all the eddy-compliant CJPs can be derived from the eddy CJP structure of Figure 7 by 

assigning values to 0T and 0ST from the set {0true, 0false}, as defined in Section 3.1. These values must be 

honored across sub-plans. For example, assume that we choose 0T = 0true. Then we must use the join order (R 

 S1)  (T  U) for partition S1 and the join order ((T  U)  S2)  R for partition S2. Note that 

0ST is not defined in the 0T = 0<™e sub-plans because the intermediate result ST is never formed in these sub- 

plans. 

 

Since eddies provide maximal sharing, the recursive cost function COSTNS from Section 3.4 does not estimate the 

cost of an eddy- compliant CJP correctly. Fortunately, we can define a recursive cost function COSTEddy that 

estimates the cost of an eddy-compliant CJP with sharing accounted for. Only one change is needed to  COSTNS: 

Instead of including the decision predicates of the set , where X is the set of relations relevant to the join node 

under consideration, in Equations 3- 5, we simply include all the decision predicates in $. The following holds. 

 

Lemma 2. If P is eddy-compliant, COSTEddy (P) = ||P||s 

PROOF. See Appendix B. 

 

Denote the eddy CJP structure for a query Q by Pe(Q, Fe). We can now formally state the problem we are 

solving. 

 

Horizontal paritioning with eddies. Given a query Q and a partitioning budget c, find the plan 

 
 that is valid for Q and is eddy-compliant. 

 

Put differently, query optimization has to partition the predicate variables Fe of the eddy CJP structure into two 

disjoint sets: The first set of size at most c contains predicates that are assigned normal predicate values (e.g., 

S.Y > 5), and the second set, of size at least |Fe| — c contains predicates that are assigned values from the set 

{0 true, 0false}. The choice of the two sets and the choice of values should yield the minimum cost. Once the 

predicates in Fe have been assigned values, it is trivial to construct an eddy routing policy that executes the 

resulting concrete CJP.  
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Figure 5:- The effect of varying the correlation parameter r in a 3-join query when all the joins have the same 

selectivity. 

 

Greedy search 

While possible, it is computationally infeasible to exhaustively search the eddy space. We propose an algorithm that 

starts from the best monolithic plan for a query and gradually builds an eddy- compliant CJP. At each step, the 

algorithm cycles over all the decision predicates on attributes that have not been used yet, and picks the one that 

yields the best cost when used to split the plan into two sub-plans. This is done greedily: when the algorithm 

introduces a split, it assumes that no future splits will occur, but rather that the best monolithic plans (under the eddy 

constraints) will be used for the sub-plans. The algorithm stops if it has introduced the maximum number c of 

decision predicates allowed, or if no further cost improvement can be achieved.The gradual construction of the CJP 

has three advantages. First, the complete eddy CJP structure does not need to be stored. Second, the sizes of the 

CJPs whose costs will be evaluated are controllable; a CJP with more than c decision predicates is never generated. 

Finally, the cost of the final CJP is guaranteed to be less or equal to the cost of the best monolithic plan. However, 

since there is no backtracking, the algorithm can obviously get stuck in local minima; an initial choice for a locally 

optimal decision predicate can lead the algorithm to assume that no cost improvement can be made by further 

splitting. Appendix C provides the details and pseudo code for the greedy search algorithm, as well a discussion of 

its cost as compared to the cost of exhaustive search. 

 

Conclusions and Future Work 

Data correlations provide opportunities for more effective query optimization by partitioning relations. We first 

present a principled way to approach the problem of horizontal partitioning as search in the space of conditional join 

plans. CJPs provide an intuitive way to think about the problem, and recursive cost formulas for CJPs can be 

defined. Further, we show how to efficiently estimate correlated selectivities using a statistical model with low 

storage overhead. Then, we show how the sharing of intermediate results that is inherent in eddies restricts the space 

of possible CJPs. A 

 
Figure 9:- Varying the number of relations and GHP iterations. 
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greedy search with controlled iterations in this space is proposed that can achieve an one order of magnitude better 

execution time for highly correlated databases, while performing on par with the best monolithic plan at low 

correlations. 

 

This work opens several lines of research that we plan to pursue. First, a problem that remains open is whether 

shared computation is always beneficial. Second, it would be interesting to explore multi- query optimization in this 

environment, where multiple queries are optimized together to produce many join plans that share computation. 

Finally, we would like to explore the parallel query processing case where the optimization metric is throughput. 
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