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Oxygen and nutrients are delivered to the cells with the help of the 

vascular networking system, which makes availability of oxygen as 

primary regulator for many processes. Low oxygen availability 

condition activates the Hypoxia Inducible Factors (HIF), which are 

transcription regulators helping in the expression of genes related to 

cell cycle regulation and angiogenesis. HIF is hence regarded as the 

master regulator of angiogenesis. The oxygen deprival is due to the 

increased consumption of oxygen in the tumor microenvironment and 

in turn leads to hypoxia. A thorough understanding of how hypoxia 

influences angiogenesis mediated by several pathways has become 

essential for identifying novel strategies targeting HIF thereby blocking 

angiogenesis. In this review we would discuss about the HIF signaling 

pathways and altered functions of immune cells due to hypoxia by 

considering that reducing or targeting hypoxia may in turn prevent the 

suppression of anti-tumor immune response. 
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Introduction:- 
Tumour contains certain regions which are deficient of oxygen supply, necrosis areas. Cells have well exposure to 

oxygen if they are nearer to blood vessels. An important mechanism as adaptive response to reduced oxygen 

availability is regulated by HIF pathways [1]. HIF can show their effects on hypoxia responsive genes thereby 

promoting cancer cell progression. Most recently many potential drugs were identified that inhibit HIF and were 

also validated as anti-cancer drugs [2]. HIF-1 is the key regulator that helps the tumor cells to adapt in hypoxic 

microenvironment. Later HIF mediated pathways were discovered which helped in tracing potential anti-cancer 

drugs [3]. In addition, the noteworthiness of focused HIF treatment is as not completely known in a clinical setting, 

and huge numbers of the preclinical examinations have discovered undesirable outcomes, demonstrating that the 

HIF and its pathways are yet not totally understood. It is appropriate that future examination is required around the 

impacts of focusing on hypoxia when combined with various types of immunotherapy [4]. While there is potential 

for diminishing hypoxia-interceded protection from immunotherapy, a few treatments might be hampered in 

oxygenated tumors, bringing about decreased helpful adequacy [5]. 
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HIF signaling pathways in tumor microenvironment: 

HIF’S are the key mediators of the hypoxic signalling pathway belong to the transcription factors family and PAS 

superfamily. These are heterodimeric factors which have two subunits α which is cytoplasmic, oxygen dependent 

and β which is constitutively nuclear [6]. The HIFα is known to take part in gene regulatory responses and iron 

chelation while HIF-β in known to take part in transcriptional responses to xenobiotic agents [7]. These two are the 

master regulators of the signalling pathway which form a complex. HIF-α Is stabilized by a group of Fe and oxygen 

dependent enzymes known as HIF- prolyl hydroxylase domain (PHD 1-3) enzymes [8]. As these enzymes are 

oxygen dependent, PHDs hydroxylate two proline residues of HIFα by factor inhibiting HIF (FIH) at an asparagine 

residueand allows binding of the Von Hippel–Lindau tumor-suppressor protein under normoxic conditions. This 

leads to subsequent ubiquitation and proteasomal degradation of the α subunit [9]. In contradiction to this, under 

hypoxic conditions, the PHD’S are very less active, PHD substrate O2 and cofactor 2-oxoglutarate become limiting, 

attenuating HIF-α hydroxylation and resulting in HIF-α accumulation, binds to Arnt and forms a transcriptional 

complex with p300 and CBP through interactions with the HIF-α N- and C-terminal transactivation domain (N-, C-

TAD) in the nucleus [10]. Then this complex binds to the hypoxia recessive elements and triggers the transcription 

of a selection of genes in nucleus which are involved in different processes like angiogenesis and erythropoiesis. 

HIF-α has three subunits HIFα1, HIFα2, HIFα3 among which HIF-1α is ubiquitously expressed whereas HIF-2α is 

expressed in a more limited fashion primarily in adult lungs [11]. These two subunits are non-redundant and share 

48% of their amino acid sequence and similar protein structure. HIF3α, on the other hand, seems to act as a 

dominant negative regulator of HIF1 induced gene expression [12]. 

 

Metabolic Changes in TME due to Hypoxia induced pathways: 

Hypoxic tumor microenvironment is well characterized by the elevated levels of lactic acid. It can be well explained 

by Warburg effect which is a metabolic move happening in profoundly multiplying cells that can convert glucose to 

lactate indeed the presence of oxygen [13]. In this process mainly cancer cells obtain their requirement by depending 

upon glycolysis rather than TCA cycle [14]. It is well known fact that in glycolysis phenomenon 2ATP of energy is 

produced per glucose molecule but in TCA cycle for the same molecule 36 ATP are generated. Anyhow studies state 

that glycolysis has faster kinetics compared to TCA cycle which significantly makes cancerous cell choose 

glycolysis over TCA cycle [15].  This is a potential hallmark of tumor cells. Many evidences showed that cMyc and 

Ras and p53 are also involved in regulation of the Warburg effect. To meet the demands of the tumor, HIF-1 

regulates aerobic glycolysis and HIF-1α activate glucose transporter gene expressions (Glut1 and 3) under hypoxia 

environment which helps in glucose uptake by cancer cells [16]. The influx of glucose to meet the requirement of 

glycolysis is ensured by the activated expression of hexokinases and phosphoglycerate kinase-1. These mechanisms 

are also regulated by HIF-1α. In few experiments it was demonstrated that PKM2 pyruvate kinase M2 is one of the 

target gene for HIF-1α and thus its expression helps in uptake of glucose in cancer cells [17]. The lactate production 

finally leads to acidosis of tumourmicroenvironment which in turn increases the cancer cell invasion [18]. MtoR is 

mammalian target of rapamycin (protein kinase) has role in regulating cellular processes, but hypoxia mediated 

mechanisms do not allow expression of this protein kinase resulting in activity of tumor environment [19]. Hence, 

hypoxia mediated mTOR signaling mechanism may regulate cell behavior and gene expression [20]. 

 
Figure 1:- Uptake of glucose by Glut 1 and Glu3 receptors, pathway of HIF- 1α in activating hexokinases and 

phosphoglycerate kinase-1. 
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Immune cell functions in hypoxic tumourmicroenvironment: 

Hypoxia is known to have great impact on immune cell functions. Function and differentiation of dendritic cells is 

altered under hypoxic conditions. Dendritic cell which are known for their antigen presenting function loose the 

capacity to present antigens in oxygen deprived conditions [21]. Hypoxic mature dendritic cells have profound 

change in their chemokine expression. Hypoxia plays a major role in regulation of tumour-associated macrophages 

(TAMS’s). TAM’s are attracted to hypoxic regions in TME [22]. 

 

Myeloid cells comprise granulocytes and monocytes collectively. They arise due to differentiation of progenitors of 

hematopoietic stem cells in the bone marrow [23]. Hypoxia-inducible factor 1α, induced by hypoxia in the tumour 

microenvironment is shown to regulate the function and differentiation of Myeloid-derived suppressor cells (MDSC) 

in the tumour microenvironment [24]. MDSC are characterized by common myeloid origin. Immature myeloid cells 

comprising the same phenotype as that of the MDSC are frequently generated in the bone marrow of healthy 

individuals whereas, in cancer cells, a regular myeloid cell instead of differentiating into a macrophage, a Dendritic 

cell or polymorphonuclear neutrophils (PMN), differentiates to a pathological MDSC, an immunosuppressive 

Tumour-associated macrophage (TAM) [25]. For this reason, MDSC is critical in regulating the immune responses 

in cancer. Hypoxia-Inducible Factors HIF is known to inhibit functions of tumours-infiltrating lymphocytes. 

Research has shown that in vitro cultures of hypoxic T cells lead to a suppressed proliferation, essentially because of 

an increase in iNOS and CD69, which impacts T-cell responses detrimentally [26]. The activation of HIF 1α down-

regulates T cell reception signal transduction, whereas the absence of HIF 1α leads to an increase in pro-

inflammatory cytokines, due to an increase in NF-κB activation [27]. 

 

Inhibition of HIF- A promising target for Cancer therapy: 

Exploring HIF pathways and selecting it as an inhibitory target for cancer was well established [28]. As of now there 

are few inhibitors against HIF molecular components at phase 1 and 2 clinical trials. Studies have demonstrated that 

hypoxia environment showed resistance to the immunotherapy and helps in the activation of few 

immunosuppressive cells like MDSCs (Myeloid derived suppressor cells) [29]. There by targeting hypoxia and its 

pathways can prevent the suppression of immune responses against tumor. Most of the therapies related to the HIF 

pathways help in inhibiting angiogenesis and affecting cancer cell metabolism. The potential outcome may be 

observed when combination of immunotherapy and HIF inhibition therapies are used [30]. 

 

One such study has been explored in murine prostate cancer where TH-302 reduces the hypoxia. In another study, 

ENTPD2 ectonucleoside triphosphate diphosphohydrolase 2 inhibitors and immune checkpoint inhibitors which 

increased the infiltrating capability of T-cells into cancer environment [31]. Increased anti-tumor function of T-cell 

and tumor clearance was observed in B16 and MC38 murine tumor models when Metformin, a type-2 diabetes drug 

was used along with PD-1 blockade [32]. By targeting Mtor or AKT pathways inhibition of HIF can be achieved. 

Tuberous sclerosis complex 2 (TSC2) is regulator of mTOR and TSC2 knockouts have shown accumulation of HIF-

1α and further activation of genes related to expression of VEGF [33]. Another potential drug named Rapamycin, 

has significantly reduced the levels of HIF-1α in TSC2 knockouts. PD-L1 is an important regulator for immune 

escape of cancer cells. The blockade of such regulator can enhance the immune activity [34]. It has been explored 

that AKT and mTOR pathways regulate PD-L1 in lung cancer, colorectal cancer and pancreatic cancer. Targeting 

hypoxia related pathway with immunotherapy together is a considerable approach. But sometimes immunotherapies 

within the tumor microenvironment become beneficial on exposure to hypoxic environment. Oncolytic HSV-1 are 

already used for melanomas as first line treatment [35]. Recent studies also showed that these viruses replicate more 

efficiently in hypoxic conditions finally which resulted in lower progression rates of tumor. But it depends on the 

virus because Oncolytic adeno virus replication gets hampered under hypoxic conditions. 

 

To date, several HIF inhibitors have been synthesized and identified, to inhibit the expression and function of HIF 

subunits through direct or indirect mechanisms [36]. Although the classification of HIF inhibitors may not be 

accurate, they are tentatively classified based on the reputed mechanisms of action. These are protein synthesis, 

agents modulating the expression, protein accumulation and degradation, dimerization, DNA binding, and 

transcriptional activity of HIFs [37]. While no potential agents have been developed to selectively inhibit HIFα 

protein synthesis, few natural compounds such as Chrysin inhibits synthesis of HIF-1α protein by AKT signaling 

[38]. Whereas glyceollin, isolated from soybeans, by restricting the PI3K / AKT / mTOR pathway, significantly 

reduced HIF-1α synthesis. In addition, 2-methoxyestradiol (2ME2) which is naturally produced by catechol-O-

methyltransferase-mediated O-methylation of 2-hydroxyestradiol has been found to inhibit the synthesis of HIF-1α 
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and HIF-2α proteins, and suppress their nuclear translocation and transcriptional activity. KC7F2, which inhibits 

HIF-1α protein synthesis, is also a lead compound [39].  

 

A compound Indenopyrazole 21 was found to strongly inhibit HIF-1 alpha transcriptional activity without affecting 

the accumulation of HIF-1α protein and HIF-1 heterodimerization [40]. While, YC-1, an anti-platelet aggregation 

agent, oppresses HIF transcriptional activity and may also affect HIF-1α protein accumulation. Chetomin, a 

metabolite, was found to inhibit HIF-1 alpha association with p300 by disrupting the p300 protein's tertiary structure 

of the CH1 domain [41]. FM19G11, a novel chemical entity, effectively represses p300, a histone acetyltransferase 

necessary by inhibiting histone acetylation which is a co-factor for HIF-transcription activation [42]. 

 

Conclusion:- 
Studies have proven that hypoxia/HIF mechanisms are master regulators in promoting angiogenesis in TME. This 

review represents that HIF related mechanisms are potential targets incapability to regulate the process of 

angiogenesis by manipulation of HIF pathways for treating cancers. Cancer cells can evade single anti-angiogenic 

procedures by promoting other pro-angiogenic pathways. As HIF regulate pro-angiogenic pathways there may be 

increased therapeutic outcome on targeting HIF mechanisms. 
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