
ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

835

Journal Homepage: -www.journalijar.com

Article DOI:10.21474/IJAR01/12362

DOI URL: http://dx.doi.org/10.21474/IJAR01/12362

RESEARCH ARTICLE

ENHANCED ALGORITHM OF ARTIFICIAL BEE COLONY (ABC) TO OPTIMIZE MODELS OF

SYSTEM RELIABILITY

Samuel Acquah
1
, Li Zhen

2
 and Anastasia Krampah-Nkoom

3

1. Mechatronics & Automation Engineering Department, Shanghai University, China.

2. Electronics & Information Engineering Department, Jiangsu University of Science and Technology, China.

3. School of Management and Business Administration, Jiangsu University, China.

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 25 November 2020

Final Accepted: 28 December 2020

Published: January 2021

Key words:-
Software Reliability, Software Quality,

Metrics, Reliability, ABC, C4.5

In recent times, computer software applications are increasingly

becoming an essential basis in several multipurpose domains including

medicine, engineering, transportation etc. Consequently, with such

wide implementation of software, the imperative need of ensuring

certain software quality physiognomies such as efficiency, reliability

and stability has ascended. To measure such software quality features,

we have to wait until the software is executed, tested and put to use for

a certain period of time. Numerous software metrics are presented in

this study to circumvent this long and expensive process, and they

proved to be awesome method of estimating software reliability

models. For this purpose, software reliability prediction models are

built. These are used to establish a relationship between internal sub-

characteristics such asinheritance, coupling, size, etc. and external

software quality attributes such as maintainability, stability, etc.

Usingsuchrelationships, one

canbuildamodelinordertoestimatethereliabilityofnewsoftware

system.Suchmodelsaremainlyconstructedbyeitherstatisticaltechniquessu

chasregression,or machine

learningtechniquessuchasC4.5andneuralnetworks.The prototype

presented isinvigoratedemployingprocedures of machine

learninginparticularrule-basedmodels.Thesehaveawhite-

boxnaturewhich accordsthecataloguingandmakingthemgood-

looktoexpertsinthedomain. In this paper, wesuggest a

powerfulinnovative heuristic based on Artificial Bee Colony (ABC) to

enhance rule-based software reliability prediction models. The

presented approach is authenticated on data describing reliability of

classes in an Object-Oriented system. We compare our models to others

constructed using other well-established techniques such as C4.5,

Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search

(TS), multi-layer perceptron with back-propagation,multi-lay

perceptron hybridized with ABC and the majority classifier. Results

show that, in most cases, the propose technique out- performs the

others in different aspects.

Corresponding Author:- Samuel Acquah

Address:- Mechatronics & Automation Engineering Department, Shanghai University, China.

http://www.journalijar.com/

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

836

 Copy Right, IJAR, 2021,. All rights reserved.

……………………………………………………………………………………………………....

Introduction:-
It is known that, evaluating the quality, functionality and reliability of a software system has been a major concern in

software quality setting. To predict software reliability is quite difficult.The main problem is apprehensive primarily

with design faults, which is a very dissimilar situation from that handled by conventional hardware theory. A fault

can be defined as manifestation in the code of an error made by the designer with respect to the requirements of the

software system. Activation of a fault of an input value leads to an incorrect output [1]. However, detection of such

an event corresponds to an incidence of a software system failure. The input values to the software modules either

internally or externally may be considered as arriving to the software randomly. In view of this, the software failure

may not be generated stochastically, it may be detected in such a manner. Thus, it justifies the use of stochastic

models of the underlying random process that administers the software failures [2]. Reliability of a software system

can be explained as the probability of failure- free operation of a computer program for specific period of time in a

specified environment. Statistical calculations and parameter estimations of software reliability is crucial tool for

developing reliable software systems.

Moreover, other researchers proposed numerous computer programs which are attested to be correct by this method

but the program contained faults. Program testing is more practical approach and is empirical in nature. Program

testing basically involves symbolic or physical execution of a set of test cases with the objective of exposing

embedded faults in the program [3]. However, copious reliability software algorithms and metrics have been

engineered and implemented by computer programmers to estimate the

parametersofsoftwarereliabilitymodels.AnimprovedArtificialBeeColony(ABC)algorithm was projected to estimate

the parameters of software reliability model [4]. This Algorithm has the capacity of dualistic search which makes the

algorithm has more powerful worldwideexploration and better performance. Similarly, Particle Swarm Optimization

(PSO) Algorithm to optimizethe problem of software reliability growth model and predict the number of software

failures [5]. The performanceandaccuracyofABCalgorithmwillbeexaminedonthenumericproblemswithmulti-

dimensionalandcomparewiththePSOalgorithm.However, thisresearchfocusesonhybridABC,

GAandPSOalgorithmsandhowtheyareusedtooptimizevarioussoftwarereliabilitymodels.Go- model parameter is

chosen as representative event function with respect to ABC and PSO hybrid algorithms.

Research Background:-
It is obvious that, computer engineering and technology largely play significant role in our contemporary times

across the ages of human endeavors today. An extensive range of highly multifaceted software systems are

progressively all-pervading in the areas of, Agriculture, Aerospace, Industrial control operations, Military

operations, Processing industries, Transport operations, Finance, Health, and other related fields, playing an

increasingly role. It is for this motive that, the quality performance of these complex software must be assured at all

cost. However, the quality of a software product decides its acceptance or fate in the software development

algorithm[6].

Through theoretical research and engineering practice, many scientist and computer engineers by their grace wisdom

and effort, numerous software reliability models have been proposed to predict and assess the reliability of software

system as well as detecting its functional status. These models help the designer to do quantitative analysis and

predict the credibility and behavior of the software before the release of the software to the world market. Some of

these models include: Goel-Okumoto Model, Yamada S-Shaped Model, the Go model, a Weibull model, MO

model, JM model, White-box and Black –box model. These models ensure the quality and reliability of the software.

However, most of these models are in non-linear function which implies that, it is very difficult to determine their

optimal parameters[7]. Usually, Maximum Likelihood Estimation (MLE) and Least Square Estimation (LSE)

methods are two traditional techniques commonly used to estimate parameters. This approach is experimented by

observations and inspirations of special behavior and collective movement of colonies of honey bees, swarm of ants,

shoal of fish, and flock of birds[8]. However, the most common intelligent optimization algorithms include: Particle

Swarm Optimization (PSO), Artificial Bee Colony (ABC), ant Colony Optimization (ACO), artificial fish-swarm

algorithm (AFSA). These methods

arestochasticoptimizationtechniquesthathavebeenusedbyengineersinwiderangeofnumerical application functions to

solve real world optimizationproblems.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

837

Software reliabilityEstimation

Software reliability is a point to which a component, software system or process meets the

neededrequirementswithoutsystemfailure.Itismeasuredbyitscharacteristics.

Functionality:

It is the ability of a software system to provide functions which meet stated and implied needs when the software is

used under stated condition.

Reliability:

It is the capacity of a system or component to perform its required functions under stated conditions for a definite

period of time.

Maintainability:

The ease with which a software system or component can be modified to correct faults, improve performance or

other attributes, or adapt to a changed environment.

Portability:

“It is defined as the ease with which a system or component can be transferred from one hardware or software

environment to another.

The reliability of a software compliance is defined as the ability of the software product to stick to standards,

conventions or regulations relating to reliability. Hence,softwaredefectcanberegarded as an indicator of software

reliability.[9].

Table 1:- Detailed characteristics and sub-characteristics of software reliability.

Characteristics Sub-characteristics

Functionality Suitability, portability,interoperability,security, functionality compliance

Reliability Maturity, fault tolerance, recoverability, reliability compliance

Usability Understandability learnability, operability, attractiveness, usability

compliance

Efficiency Time behavior, resource utilization, efficiency compliance

Maintainability Analyzability, changeability, stability, testability, maintainability

compliance

Portability Adaptability, install ability, co-existence, replace ability, portability

compliance

To evaluate software quality and its reliability, the software system must first be executed,

comprehensivelyassessedbeforeputtouse.Thisunbearablylongsoftwarelifecyclecanbeavery

perilousandcostly.Additionally,thetestingstageinitselfisthemostessential.Becauseerrorsare unavoidable in software

development; around “40 to 50% of user programs contain nontrivial faults[10] . It is stated that, simply testing the

software would require at least 50% of the cost of development. It might even cost more in the case of safety critical

software. Also, Dueto softwarefailure,theUSDepartmentofDefenselosesmorethanfour billiondollarsperyear[11].

Duetosuchevidence, it ismostimportanttoassesssoftwarequalityanditsreliability. This is why copious software

reliability metrics have been presented in this study, such as McCabe’s cyclomatic metric. Halstead’s software

science metric [12].

Table 2:- Proposed metrics.

CBO Coupling Between Object Classes

LCOM Lack of Cohesion in Methods

RFC Response for a class

WMC Weighted Methods per class

DIT Depth of the class in the Inheritance Tree

These metrics are utilized to assess internal software reliability physiognomies. To emphasize the essential of

measuring, we made reference to Pressman’s quote “if you don’t measure, judgment can be based only on subjective

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

838

evaluation”[11]. With measurement, trends can be spotted, better estimation can be made, and true improvement can

be accomplished over time [13]

Software Reliability Estimation Models

Due to the fact that, we unable to evaluate the reliability of software attributes, we depended on estimating them. As

a result, we utilized estimation/prediction models such as mathematical/statistical. In this study, we principally

focused on logical models since they can easily be interpreted. To predict the stability of software system, let us

cogitate the vector as data point in the form V= 𝑉 = {, …,𝑡 n,…c} where ti represents metric and c label of

classification (0=stable, 1 not stable).However,theclassinanObject–Orientedsystemisdefined by a data point. The

table below displays data set of 14 cases, four metrics; these include Number of Children ((NOC), Lines of Code

(LOC), Lines of Comments (LOC) and Number of Public Methods (NPM) and one label of classification.

Table 3:- Software stability data set of classes in an Object-Oriented system.

DATA SET NOC LOC LOC NPM FIRMNESS

1 5 801 810 2 1

2 5 490 1200 1 1

3 3 4600 4040 2 0

4 2 130 16000 2 0

5 2 701 490 2 0

6 2 202 120 5 1

7 3 49 201 0 0

8 5 124 1003 2 0

9 5 760 1202 2 1

10 2 340 490 6 0

11 4 469 2900 2 1

12 2 3481 3460 2 0

13 2 1602 50400 1 1

14 3 7501 40500 2 1

The connection between the unknown classification label and the metrics is proven by

thesoftwarepredictionmodels.However,oneofsuchmodelsisdecisiontree. Thismodeliswidely used to predict the

reliability of software models. What below is a decision tree deduced from the abovedataset.Usually,

thedecisiontreeisinversebeginningwiththerootnodedowntoaleaf. If a leaf is reached, then the classification label can

be defined. In the process, nodes encrypt tests andonentirepath isaconjunctionofsuchtests.Thetreereads,

“IfNOCismorethan3andLOCOis more than 410, then the class is notstable.

The example of decision tree below can grow and become relatively difficult to read by human experts. It can also

be converted into rule set. A rule set is a logical grouping of code analysis rules that identify targeted issues and

specific conditions. From the above decision tree, a rule set can be deduced as follows. Rule 1:

NOC>3&LOCO>410, Rule 2: NOC≤2&LOC≤200, Default class: 0. The rule set can be interpreted as, (NOC)

denotes the number of children which is greater than 3 and lines of comments (LOCO) also greater than 4100, then

it unstable class. However, if the class has NOC less than or equal to 2 and lines of code (LOC) smaller than or

equal to 200 then it not stable. Indeed, this rule is mostly used because it has the ability to serve as a guide in

building a class with particular software reliability attribute. The reliability ofsuch rule setsis evaluated by accuracy,

error rate, the balanced accuracy, Sensitivity, Specificity, and Precision. Confusion matrix for binary classification is

used to display these evaluation measurements.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

839

Figure 2:- Confusion matrix for binary classification.

Figure 1:- proposed decision tree.

 True False

 False true False True

False true

NOC ≤3

LOCO ≤ 4100

Class 1
Class 0

NOC > 2

LOC ≤ 200

Class 0
Class 1

Class 0

Confusion

matrixforbinaryclassif

ication

True positive
False negative

False positive True negative

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

840

In every entry c[y][t], we recorded the number of classesthat were identified by the model with labely whiletheir real

classification ist. We defined a positive classlabel as a stable class (label0) and a negative classlabel asunstable class

(label1). True Positive: denotes the number of classesthatare positive and were classified assuch. FalseNegative:

represents the number ofclasses that are positive butwere categorized as negative. False Positive: indicates the

number of classes that are negative but were categorized as positiveTrue Negative: signifies the number of

classesthat are negative and were categorized as such. Gaging the rule set shown above, the researcher acquired the

confusion matrix as displayed above. However, the Rule 1 applies to data set 1, 2, and 8. Rule 2 applies to data set 6

and 14, while as the default rule applies to data set 3, 4, 5,7, 9, 10, 11,12 and 13. Quite a number of measurement

techniques have been employed to evaluate the data set cases in this regard. In the assessment of Rule set using

confusion matrix, we obtained.

Figure 3:- Assessment of Rule set using confusion matrix.

Mathematically, we let N= be the estimation model. This expression denotes the accuracy of {N}. However, this

expression computes the percentage of data set which are accurately identified by N.

Accuracy{N} =
truepositive +truenegative

truepositive +falsnegative +true negative +falsepositive
 (1)

A {N} = 1 − Accuracy {N} (2)

Eq (2) denotes the error rate of {N}, whereas A {N}, implies that the data set is falsely classified by N.

From the above equations, it can be inferred that, there is inaccuracy due to data set imbalance. Below is an equation

denoting a balanced accuracy of [n]. Here, we contemplated the case of a data set containing 100 data cases. Ninety-

nine data set have a classification label 0, and 1 data case has a classification label of 1. In this vein, a model

assigning label (0) to all the cases has an extremely high accuracy (close to 100%).

The situation arises when the misclassification of the fewer frequent categorization label is more expensive, that is

when class label (1) in the previous example refers to an unhealthy individual but the model is classifying this case

as a healthy individual who will not start his or her desired treatment. In this case, accuracy is not the appropriate

measure to contemplate. Instead, the balanced accuracy computes the average accuracy of the classification model

therefore giving equal weight to both classification labels.

Eq.3: displays thebalanced accuracy

Balanced accuracy {N} =
1

2
 *

true positive

true negative +false positive

The

prediction

label

Rule label:

Positive =9

Rule label:

Negative = 0

Rule label:

Negative =0

Rule label:

Positive =5

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

841

= +
1

2
∗

true negatve

truenegative +falsepositive

Here, it can be noted vividly that, Eq.3 denotes sensitivity because of its balanced accuracy whereas the second

section denotes specificity. These two measurement measures have been signified by Eq.4 and Eq.5

Sensitivity {N} =
truepositive

truepostive +falsenegative
 (4)

Specificity {N} =
truenegative

truenegative +fal sepositive
 (5)

Another famous measurement measure is precision. This measurement technique has the ability to show the

probability of true positive cases. Many scientists and engineers prefer this technique when dealing with cases of

reliability predictions. The prediction is computationally expressed as.

Precision {N} =
truepositive

truepositive +false
 (6)

Figure 4:- To computationally display these measurements methods, we used confusion metrics as shown below.

Table 4:- Software reliability measurement calculated from figure four.

Software measurement function value

Balanced accuracy 0.5*(15/(15+30))+0.5*(200/200+40) ≈ 20.67

Error rate 1−20.67 ≈- 19.67

sensitivity 15/(15+30) ≈ 0.3333

Specificity 200/(200+40) ≈ 0.8333

precision 15/(15+40) ≈ 0.2727

correction (15+200)/285 ≈ 0.7544

The

predictionlabel

Rule label:

Positive =15

Rule label:

Negative = 30

Rule label:

Negative =40
Rule label:

Positive =200

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

842

Statistical Models
In the domain of software reliability parameter estimation, statistical model has been largely rummage-sale

worldwide by research scientists and engineers. These models are constructed by utilizing discriminant analysis,

principle component, regression techniques etc. according to[14], a discriminant analysis method for

identifyingdefective computer programs was proposed. The main goal is to decrease the preliminary set of metrics

into a subclass of non-correlated metrics. [15]Came up with multiple linear regression. They employ convolution

metrics as indicators of change prone software systems. [16]Emerged with two subsystems of multi-purpose

operating system. [16]Proposed with two subsystems of multi-purpose operating system. [17]Proposed medical

imaging system that is used as experimental statistics. [18] Proposed relative least square and minimum relative

error. They equated their models to least square and least absolute value. Minimum relative error appeared to be

more powerful than other techniques only when data is approximately normally distributed. The authors notice a

substantial enhancement in predicting software changes during the maintenance.

[19]Investigated five major object-oriented software metrics recommended by Chidamber and Kemerer (1994).

They also emerged with additional five objected oriented metrics. Their objective is to construct two least – square

regression models whose dependent variable is the maintenance exertion well – defined asthe number of lines

changed in a class. They examined with many variations of the model by considering a dissimilar subset of the

independent variable every time.

Data is collected from two profitable software systems written in an object – oriented programming language. The

two software systems include interface system and quality evaluation system. However, experimental results show

the effectiveness of the metrics used in predicting the maintenance exertion and emphasize the essential of size (1)

and size (2) as estimation metrics, where size (1) denotes the total number of semicolons in a class and signifies the

absolutenumber of attributes and local procedure in a class.

HeuristicsandMetaheuristics

This portion briefly presents related works of heuristics and metaheuristics. These include; GeneticProgramming

(GP), Genetic Algorithm(GA), Simulated Annealing(SA), Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO)and Artificial Bee Colony(ABC).

Genetic Programming (GP).

In the paradigm of software engineering, Genetic Programming is initially presented by [20]. The method of GP is

to pose the improvement of software reliability modules. The approach is based on the explanations by [21].

Operator and cyclomatic complexity are two metrics used and are related lines of codes, (McCabe, 1976). These

metrics are said to have robust relationship with reliability estimation proved by [22]. In this study, the assessment

of the GP largely depends on the law of Pareto which denotes that “20% of the modules will classically account for

approximately 80% of the errors” this method is said to be strong as opposed to random model when assessed on

two major industrial assignments. These include; Pascal – written legacy telecommunication system and Ada –

written command Control and Communications System (CCCS).[23]Emerged with GP method to mainly predict

error – proneness and change- proneness using huge Windows – based applications coded in C++ programming

language. To evaluate over – fitting, GP uses a random subclass selection of the data. GP is therefore evaluated on

the whole data set given product and process metrics. The addressed GP is unique in that, it assimilates previous

likelihood and misclassification into one ultimate fitness function. It is shown that, in comparison to logistic

regression, Genetic Programming accomplishes awesome outcome with respect to Type -I and Type – II faults. Over

improved 9% correctness is achieved by GP against logistic regression.

Genetic Algorithms

The use of Genetic Algorithm (GA) is introduced by [24] to specifically enhance the estimation of software strength.

The strength of software is evaluated with respect to the size and domain specific values of the software.

Experimental outcomes indicate that, GA has ability to enhance the precision of software estimation models. A

comprehensive method to syndicate and acclimatize existing models to software systems from a particular domain is

introduced by [25]. Their method was ably assessed on the Java classes of prediction stability. The results of the

assessment indicate that, the introduction of two methods significantly perform better than C4.5. [26]Emerged with

outstanding approach to optimize strength estimation models. In the approach, the author used Methodology

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

843

metrics and Developed Lines of Code (DLOC) together with the application of GA. The method is successfully

validated in the application of 18 NASA data sets.

[27]Posed GA method to predict the stability of software system. The method syndicates only one model built on

common domain systems to data from dissimilar domains. The method is found to be better than C4.5. Dhiman,

Goyal and Sandhu (2009), came up with GA method and assess it on jEdit data set for error –proneness estimation.

The authors used a metric from chidamber and Kemerer (1994) together with LOC and Number of Public Methods

(NPM). The method proves to have 80.14% correctness.On GA - based models for software strength estimation. The

author employs KLoC metric and yields in a valid estimation model when evaluated over related models such as

COCOMO (Boehm, 1981).

[11]Also came up with an approach to optimize COCOMO –II model and further evaluated the two models on the

TURKISH INDUSTRY data sets. The presented method has ability to deliver good estimation competencies even

though it requires further enhancement. An assessment GA method for prediction the cost estimation of software

using DLOC and the measure strength emerged from [28].

Simulated Annealing

Three[29] renowned researchers based their work on utilizing Simulated Annealing (SA) together with Bayesian

Classifiers (BC) to guess the stability of software system. The authors’ method proceeds the BC as input and

acclimatizes it by utilizing SA. The method isobserved to be much superior to the outcome of good initial adept built

using BC. [30]Emerged with effort software component estimation. Method. The method is validated against that of

Sheta (2006) and the approach is observed to be powerful estimation model.

Ant Colony Optimization

Ant Colony Optimization (ACO) usage method is recommended by [31] for software error – estimation. The

introduced model is called Ant Miner+ which utilizes graph execution of the classification rules. Every metric is a

node. The rout which the ant takes is categorized to be the classification itself. For the reasons of assessment, three

comprehensives open – sources data sets from NASA software projects were utilized. They are; KC1, PC4 and PC1.

The method has the ability to compete with other methods such as C4.5, SVM, and logistic regression, in terms of

instinctiveness and unambiguousness. [32]presented an adaptive method that takes already existing models as input

and acclimatizes them to fresh invisible data. Ant Colony Optimization procedure is constructed for this reason. The

author assessed the method on steadiness of classes in an Object – oriented system. The evaluation outcomes show

the preeminence of the presented model over C4.5 and arbitrary predicting.

Particle Swarm Optimization

[33]Introduced a comprehensive work on Particle Swarm Optimization (PSO) for estimation of software strength

using the KLoC metric. Fuzzy logic software model is also introduced. The models are evaluated on traditional

methods such as Walston- Felix, Bailey – Basiliadn Doty on NASA’s eighteen complete data sets. The outcomes

reveal the preeminence of the two models being introduced. A multi – objective PSO for the strength of software

estimation is presented by [34]. The inputs to the model are lines of cod size and the strength multiplier metrics. The

models are validated on COCOMO model on two complete data sets, it was observed that, the introduced model

gives better estimation, particularly on the initial data set with reduction error rate percentage.

Hybrid Methods

Three classic GA hybrid methods are presented by [11]. In the first phase, the authors hybridized GA with SA and in

second phase with TS. In the third hybrid method, it combines GA, SA, and Tabu Search (TS) respectively. All the

hybridized approaches are validated against C4.5 algorithm and a typical GA from Azar and that of Precup (2007)

on complete outstanding data sets explaining the reliability of classes in an Object – Oriented Programming system.

The hybridized methods outweigh other methods, hence, proving outstanding outcomes. But the hybrid methods

need lot of implementation period. Again, the outcome of the hybrids are relatively multifaceted. A fusion of GA

and Support Vector Machine (SVM) for inter – release error estimation utilizing the metrics from Chidamber and

Kemerer (1994) is introduced by [35].

The principal goal of this GA is to locate appropriate setting of parameter. The method is validated against 6 well-

known machine learning approaches. These include Naïve Bays, Logistic Regression, C4.5, Multi – Layer

Perceptron, K – Nearest Neighbor (K- NN) and Random Forest. Tenfold cross assessment is used. The results

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

844

indicate that, the measurements for evaluation are accurate, precise, recall and F – measure. When, assessed on the

jEdit PROMISE complete data set from (Promise), the fusion is observed to be very operative particularly for inter –

release error estimation.[36]Recommended a comprehensive hybrid approach. The authors not only assessed the

method on 6 machine learning methods, but also over variants of SVM. It is authenticated on numerous PROMISE

data sets from (promise). Such as Log4j versions (1.0, 1.1)

The hybrid proves to be very operative even though it needs more execution period than related models.

[37]Emerged with the application of GP together with Artificial Bee Colony (ABC). The experiments were carried

out on complete NASA data sets KC1, PC1 and mushroom data set. The hybrid method is equated to neural gas,

support vector machines as well as symbolic regression. The correctness on assessing is calculated applying 10 fold

cross evaluation. The hybridized GP –ABC achieves outstanding outcomes on the mushroom data set outweighs

other data sets by average value of 2.9%. An outstanding hybrid approach on Ant Colony Optimization (ACO) and

Genetic Algorithm (GA) is presented by [38]. The aim is to optimize software cost estimation using the KLoC

metric. Up to ten complete NASA data sets are utilized as yardsticks. The approaches is found to be much more

operative than COCOMO model from (Boehm, 1981) with respect to the Magnitude of Relative Error (MRE).

Artificial Bee Colony

A multi –layer perceptron (MLP) neural network utilizing ABC for the guessing of software error is introduced by

[11]. The authors’ method is equated to MLP with back proliferation. They ended that, if correct parameters are

establish to ABC, the neural network can be more successfully trained. Both methods are equated to: MLP trained

utilizing ABC (MLP – ABC) against MLP trained utilizing back propagation (MLP – BP). The test is carried out on

the three complete NASA data sets; CM1, KC1 and KC2. Testing the correctness and precision, it was found that,

MLP –ABC outweighs MLP- BP by average value of 1.4% and 1.8%. Software algorithm to specifically optimize

the prediction correctness of artificial neuralnetworks (ANN) is introduced by [39].

The authors trained the proposed approach (ANN) by utilizing swarm intelligence methods. These include; PSO,

ACO, ABC as well as firefly. The principal goal is to achieve the best parameter for the propose ANN, that is the

number of input neurons, number of hidden layers and hidden neuron, number of output neuron, weights etc. they

equated ANN – PSO, ANN –ACO, ANN- ABC and ANN- firefly on complete data sets from NASA namely; Arc,

Camel (1.0, 1.2, 1.4, and 1.6), Intercafe and Tomcat respectively. The authors found that, ANN –PSO is best method

which had the best outcome in seven out of eight data sets. The most second classified approach is ANN- ABC

obtaining best outcomes in three out of the eight data sets.

Parameters and C4.5 Input

C4.5 algorithm assents input as data set, an instance is given in table 3. Here, the table contains 14 complete data set

made up of 10 cases, 4 attributes which include (LOC, DIT, LOCO and NOC) and a single classification label

showing the reliability of software. However, the input data set must gratify the following conditions,

1. The data must be written the inform of vector of attribute values

2. The label must have initial definition and smartly outlined

3. The number of cases must be greater than the labels.

The data set is equally divided into two. One for testing and other for training. Here, the size of the training and

testing is decided by the user. C4.5 trains data set and outputs a classifier. The enactment is always tested on training

and testing data sets.

Table 5:- C4.5 inputs data sets.

Data case DIT LOC LOCO NOC Reliability

1 5 86 86 2 reliability

2 5 81 91 1 reliability

3 3 84 78 2 unreliability

4 2 71 96 2 unreliability

5 2 70 80 0 unreliability

6 2 69 71 5 reliability

7 2 65 73 0 reliability

8 3 68 65 2 unreliability

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

845

9 5 72 92 2 unreliability

10 2 69 71 6 reliability

11 5 75 70 0 unreliability

12 3 72 91 0 unreliability

13 3 80 76 2 reliability

14 2 71 80 0 reliability

Entropy and Gain

For decision trees to be built and decide for the best one devoid of repeating through all the decision trees, C4.5

algorithm utilizes two approaches namely; entropy and information gain criterion. Here, the event which occurs with

probability is denoted by P [M]. Now the information gain criterion is calculated from the equation below. However,

to demonstrate this, for instance, a data set where all the data points have a particular class d. by denoting M to be

the event of categorizing a data point as class d . Here, P [M] = 1. By equation below, information [M] = 0.

Therefore, the information gain criterion is considered as the sum of ambiguity in the result of the event.

Information = log2
1

P[M]
 (7)

The information gain criterion is linked to the entropy. Now let A denotes a data set of P positive classification

labels and n negative classification labels. Here, the entropy can be calculated from the equation below. The entropy

is actually dependent on the likelihood distribution of the classification labels. That is, if the entire data points in A

belong to a single class, then, the data set is imbalanced, else it is unbiased.

The entropy shows the distribution of the data set; either balanced or not balanced.

Entropy [A] = −
𝐩

𝐏+𝐧
 * 𝐥𝐨𝐠𝟐

𝐩

𝐩+𝐧
 −

𝐧

𝐩+𝐧
 * 𝐥𝐨𝐠𝟐

𝐧

𝐩+𝐧
 (8)

In the general form, the entropy can be expressed as follows where Pt denotes the probability of possessing

classification label t

= entropy [A] = Pt * information [j]

= ∑ pt * log2
1

pt

= ∑ pt * 𝐥𝐨𝐠𝟐𝐩𝐭 (9)

Now let consider an instance where a case of data set possessing 14 cases belonging to similar class. Assuming p =

14 and n = 0 then its entropy is zero per the equation expressed below. Similarly, if P = 0 and n = 10. But 𝐥𝐨𝐠𝟐 𝟎 = is

categorized as zero and 0 * 𝐥𝐨𝐠𝟐 𝟎 = 0

Entropy [A] = −
14

14+0
 * log2

14

14+0
 −

0

14+0
 * log2

0

14+0
 (10)

 = 1 log2(1) – 0 = 0

Now let also look at an instance of case of balanced data set [A] possessing 10 cases where p = 7and n =

7respectively. The nature of this entropy equals 1 per the following algorithm

Entropy [A] = −
𝟕

𝟕+𝟕
 * 𝐥𝐨𝐠𝟐

𝟕

𝟕+𝟕
 −

𝟕

𝟕+𝟕
 * 𝐥𝐨𝐠𝟐

𝟕

𝟕+𝟕

(11)

 = −
1

2
log2(0.5) – 0.5 log2(0.5)

= 2 * − (0.5) * log2(0.5)

= − (1) * − (1) = 1

Assuming in the table above, the positive classification is reliable, where p = 5 and n = 9 respectively. Here, the

Entropy can be calculated as follows

Entropy [A] = −
5

9+5
+ log2

5

9+5
−

5

9+5
∗ log2

9

9+5
 (12)

 ≈ − 0.4 log2(0.4) – 0.6 log2(0.6)

 ≈ − 0.4 * (−1.3) – (0.6) * (− 0.7)

 ≈ 0.52 +0.42 ≈ 0.94

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

846

It can vividly be seeing from here that, the entropy is very close to that of balanced data set.

Additionally, let a denotes an attributes which takes d discrete values where C4.5 splits the first data set into k

subsets S1,…,Sk. every subsets Stpossesses Pt positive labels Nt negative labels.

Therefore, the conditional entropy is calculated as follows where D│a is read as “D given a”. It actually

demonstrates quantity of bits information needed to categorize the example.

If the Entropy [D│a] = then the data is said to be flawlessly separated.

Entropy [D│a] = ∑
pt +nt

P+N
∗ Entropy (St) (13)

Prior to the testing of the attribute a, the conditional entropy is required to measure the information gain. Here, the

information gain is represented by GI where C4.5 selects best information gain when splitting a complete data.

IG (a) = Entropy [D] – Entropy [D│a]

C4.5 Algorithm

The algorithm of C4.5 constructs classification decision tree based on divide and conquer “recursive algorithm”.

IF thereareno cases inthe training setTHEN

Create a leafnode and label it using some other

knowledge source

ELSE

 IF all casesinthetrainingsetare of the

same categoryTHEN

Create a leafnode and label it with the name of this

category

ELSE

 Select one attribute

 Performa testbasedonthisattribute

Performa testbasedonthisattribute

 Divide thetrainingset into subsets, each

associated with one possible value of thetest

outcome

 Repeat thealgorithmabove with each subset

of the training set.

ENDIF

 ENDIF

The principal purpose of C4.5 algorithm is to construct a decision tree with substantial prediction power. Preferably,

the outcome decision tree is compact. An example has been given below.

Assuming, C4.5 is input a data set from the table 5 where the root of the tree can any attribute of DIT, LOC, LOCO

or NOC. Here, utilizing the entropy and the gain criterion procedures, it can be inferred by C4.5 that, the “DIT > 3”

has the outstanding procedures if it is selected as the root node. The data is then split per this assessment. Again,

C4.5 calculate these measures assigningthis root and inferred that the previous test is whether LOCO is more than

75. Therefore, this assessment is demonstrated in the subsequent level of the decision tree. This approach is

recurrent till the data can no longer be split into further subsets thereby obtaining the final decision tree

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

847

Figure 5:- DecisiontreewithDITasparentnode.

Artificial Bee Colony

Artificial Bee Colony is innovative swarm intelligence method based on collective beesfor scavenging behavior. The

basic idea is that, these animals collaboratively share information to achieve optimum goal. It was initiated by [40].

The author addressed that, Swarm intelligence depends on the intelligent behavior of swarms such as ants

scavenging behavior method, Ant Colony Optimization (ACO).

Common Bees in Nature

A group of bees can outspread over a long distance, approximately (up to 14km or 15km) in several ways to exploit

a huge number of sources of good food. The source of the food is apparently denoted by a flower patch. Source of

good food is one that gratifies the conditions outlined below:

1. The targeted food source must be near to the nest

2. The targeted food source must contain lot of energy

3. The energy of food source is easily haul out

Numerous kinds of bees do live in one colony, such as the worker bees, can also be classified as forager bees and are

the ones to find and collect good food sources. However, the worker bees can be categorized into employed or

unemployed forager bees. The employed forager bees essentially profit from a good food source and haul out good

energy from it. They actually send signals of information concerning this source when returning to the hive. This

information includes

1. The actual distance from the hive to the source of the food

2. The way to follow from the hive to the source of the food utilizing sun as location reference

3. Finally, the lucrativeness of the food source; this means, the quantity of the haul out nectar from the food source

It is pertinent to note that, the employed bee has a calculated limit of trials it goes in finding improved source of

food. If the trial limit is reached, it will automatically leave the food source and immediately becomes a common

unemployed forager bee, specifically a lookout.

DIT > 3

LOCO> 75 Not

Reliable

Not

Reliable
Reliable

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

848

30
o

The unemployed forager bees are ones that are to locate a source of good food and there are two types. They are

scouts and onlookers. The scouts tirelessly continue to reconnoiter locations arbitrarily around the nest to discover a

good food source whilst the onlookers patiently stay in the nest to wait for the employed forager bees to return and

share information about the source of thefood.

When the onlooker bees receive the information about the food source from the employed forager bees, they then

decide which food source to go depending on the lucrativeness of the food source. It can be noted here that; the

exploitation of a good food source is done by the employed forager bees whilst the exploration of food source is

done by unemployed forager bees.

Figure 6:- the diagram below vividly describes the aforementioned information.

Table 5:- Types of common bees in a bee colony.

Bee Task Quantity & sex

Scouts & onlookers Find good food sources

Queen Lay eggs One female

Drones Mate with queen bee Numerous male bees

Workers: employed & unemployed

forager bees

Profit from good food source Hundreds & thousands of female

bees

ProposedABC Algorithm

The algorithm of Artificial Bee Colony is enthused from the scavenging behavior of bees in nature. Every food

source equals the solution of the problem in the search area. Basically, the lucrativeness of a food source is

determined by the ABC algorithm. The algorithm computes the predefined objective function. Actually, ABC

begins by arbitrary initialization of the solution search area. It does perform in three stages.

1. Stage one comprises of sending the working bees:the nectar amount denotes the excellence solution; that is the

objective function

2. Stage two comprises of sendingtheobserverbees, observers’ bees are employed depending on a probability-

based selection process. Thus, a solution thatis exceedingly lucrative has a complexlikelihoodofbeing selected

by observer bees.

3. Stage three comprises of sending the lookout bees.

Lookout bees use random search to locate good solutions. According to [40] they are categorized by low search

costs and a low average in source of food excellence. The lookout bee locates new source of food fast, these sources

are not essentially lucrative. A working bee is changed into lookout bee, if it cannot locate a better solution within

the specified “limit” parameter, it will automatically leave the food source and become a lookout bee. The ABC

algorithm saves the best solution found in the memory after the completion of all the three stages. The process

continues iteratively until discontinue condition is met.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

849

METHOD: Training Data SettrainDS, Testing Data Set testDS){

 initialize() ;

Repeat

sendEmployedBees();

calculateProbabilitiesOfSendingOnlookers ();

sendOnlookerBees ();

sendScoutBee ();

memorizeBestFoodSourceFoundSoFar();

UNTIL (stoppingCriterionIsMet)

return bestFoodSourceFound;

}

The artificial bee colony comprises of numerous parameters such as swarm size, number of onlooker bees, and

number of employed bees, limit and number of scout bees. The initial size of the bee colony is the swarm size. The

bee colony has two equal parts. The first part embroils of employed scavenger bees and second scout bees. In the

real sense, the number of onlooker bees as well as number of employed bees are the first number of onlooker and

employed bees. This implies that, the greater the number of onlookers, employed and scout bees, the greater the size

of the swarm. The number of employed as well as onlooker bees are often set to have equivalent number.

The first number of scouts is number of scout bees.

This number however, depicts the number of bees that can reconnoiter the search area. The greater the number, the

greater the exploration area of fresh solution is. This parameter however, should be wisely selected, because if it is

too high, the algorithm converges to guessing search. It always advisable to set it to one. Limit denotes the actual

number of candidate solutions which the onlooker bee can explore devoid of enhancing the present solution. The

onlooker bee always tries to use trivial alterations to the present solution in an effort of enhancing its objective

function. Once the solution doesn’t seem to enhance after a given number of times, the solution is abandoned. Here,

the bee has a chance of becoming a scout so as to explore the search area again.

Table 6:- proposed parameters of ABC.

Number of the parameter explanation

Number of scouts First number of scouts

Number of employed bees First number of employed bees

Number of onlooker bees First number of onlooker bees

limit The number of candidate solutions that a bee can search

devoid of enhancing the present solution

Swarm size First size of the bee colony

Here, we took one scout bee into consideration. The number of employed bees as well as number of onlooker bees is

each equivalent to the number of rule sets that is accessible. A typical instance, if 6 rule sets are available, then 6

employed bees and 6 onlooker bees will be available as well. The summation of swarm size in this instance is 13

that is (6 employed bees + 6 onlooker bees + 1 scout bee). It must be noted that, the number of rule set is firm, so

that each cycle does not swing. We set ending criterion to a static number of cycles. Objective function is the

equation for the proposed ABC.

f (Ruleset)=wα * Accuracy + w j * Balanced accuracy (Eq14)

wherewα denotes weights of Accuracy and Balanced Accuracy. We present the general form of source code for

ABC below

Method ABC; (Training Data Set train DS, Testing Data SettestDS){

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

850

 initialize () ;

 memorize Best Rule Set Found So Far();
intcycle = 1;

Repeat

Send Employed Bees();

calculate Probability Of Sending Onlooker();

 send Onlooker Bees ();

 send Scout Bee ();

 memorize Best Rule Set Found So Far();

 cycle = cycle +1;

 UNTIL(cycle = maximum_cycles)

 return best Rule Set Found;}

The code begins by utilizing the algorithm C4.5 of machine learning to acquire numerous rule sets. For every rule

set, wecompute its accuracy (Eq. 1), balanced accuracy (Eq.3) as well as precision (Eq.6) on data set training. We

further compute every rule set’s objective function on the training set. For every metric, the set of cut point average

value is also calculated. The metric values that affect the classification label is classified as cut point. For this

reason, the data set is actually sorted by the metric.

We also present the initialization source code for employed bees below

Method; initialize ()

{

 getC4.5Generated Rule Sets();

FOR EACHRuleSetrs DO{

Calculate Performance Measures (rs ,

trainDS);

Calculate Objective Funtion (rs, trainDS);

}

Get Cut points Per Metric(trainDS);

}

At this juncture, the employed bee is sent to each rule set. The pseudo code is displayed below respectively.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

851

Iteratively, the employed bee goes over every metric in this chosen rule set and locate the available condition in

which it finds itself. A change of these conditions take place here by the bee. The changes can be in two folds. Either

the bee modifies the value of the condition or the operator of the condition. In the previous case, there is random

selection of value from the list of cut point values of the metric in question. In the last example, the bee actually,

selects an operator from the giving set of allowed operators randomly. A vivid example, if the condition is defined

as “NOC > 9” which invariably could become “NOC≤ 9”. The changed rule set’s objective function is calculated on

the training data. If the rule set is seen to be better, it is kept, else the modification is vetoed.

 The prelims of source code for onlooker stage is presented below.

Method; calculateProbabilities (Rule Setr1,… , RuleSet rk) {

FOR EACHRuleSetrsDO{

getObjectiveFunction (rs);

}

distributeOnlookersByProbabilityBasedSelection();

}

This stage commences by computing probabilities of sending the onlookers. Specifying the rule sets, the algorithm

initially calculates for every objective function. Then, the rule sets are commanded decreasingly depending on their

objective function. The rule set possessing the tiniest objective function is detached from search area. If the rule set

is more than one with equivalent smallest value of the objective function, all the underlying rule sets are

automatically detached. For instance, if a rule sets are detached, then extra n onlookers are immediately sent to the

highest objective function of the rule set.

Source Code to Send Onlooker Bees is also presented in the box below

Method; sendOnlookerBee(RuleSetrs) {

inttrial = 0;

FOR i=1 TO limitDO{

FOR EACHrule r inrsDO{

mr = rs;

FOR EACHcondition in r DO{

mr = changeCondition (mr);

mr =changeRuleClassLabel(mr);

 }

Method; send Employe dBee (Rule Set rs) {

FOR EACHmetricinrsDO{

FOR EACHrule in rsDO{

FOR EACH condition DO {

mr = change Operator Sign(rs);

mr = change Condition Value(rs);

 calculate Objective Function (mr , train DS, test

DS);

IF (f(mr)>f(rs)) THEN{

keep mr and delete rs;

return;

}ELSE

{

keep rsanddeletemr;

 }

 }

 }

}

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

852

}

changeRuleSetClassLabel() ;

calculateObjectiveFunction (mr , trainDS, testDS);

calculateObjectiveFunction (mr , trainDS, testDS);

IF (O(mr)> O (rs)) THEN{

keep mr;

return;

}

ELSE{

keep rs;

rs.setTrial (trial ++);

}

}

}

Scout bee stage

Scout bee is the last operative stage of the ABC algorithm. This stage is the main of the algorithm’s exploration

stage. Here, the rule set with maximum number of trials is detached. The scout bee then generates a fresh rule set

with arbitrary number of rules between 1and 5. Utilizing these precise intervals, better rule sets are acquired.

Additionally, these intervals are experimentally selected for thispurposebecause they retain the readability and

easiness of a rule set.

Method;sendScoutBee (){

scoutIndex= getScoutBeeIndex();

intnumberOfRules = random(1,5);

intnumberOfConditions= random(1,5);

scout= createRuleSet(numberOfRules, numberOfConditions,scoutIndex);

returnscout;

}

All the respective stages of ABC are recurrent for a certain static number of cycles. Upon completing all three

respective cycles, the rule set with the outstanding objective function on the training data is reverted.

Results and Discussions:-
Stab One

This data set clearly explains the steadiness of classes in typical Object – Oriented Programming systems. The

metrices are assembled into two, comprising three or four metrices. The Stress metric is always added to every

group. All the probable groupings are established which end up creating 15 subsets of formed groups. All metric

subsets together with 11 complete data systems create data sets. (Table 10). Using C4.5 helps in building decision

trees. All the metric with continuous classifier or with a fault greater than 10% are automatically detached. About

forty decision trees are arbitrarily chosen from the rest. The metrics are changed to rule sets. All the facsimile rule

sets are detached remaining 30 rule sets to deal with.

Stab Two

Another comprehensive data set that explains the steadiness of class in the environment of Object – Oriented

Programming is STAB 2. It has largely been utilized in the works of many scholars such as Azar etcetera. The

metrics utilized in STAB 2 are well defined in (table 11). These metrics were present by [41]. They are haul out

from the systems presented in (table 12) utilizing ACCESS tool system as well as Discover environment ©.

Likewise STAB1, complete fifteen subsets of metrics are built. Utilizing these metrics together with nine software

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

853

systems (13). Decision trees with a continuous classifier with a fault greater than 10% are detached. Here, decision

trees are then changed to rule sets. All the facsimile rule sets are detached which end up acquiring 20 rule sets.

Table 7:-Tabular form of software reliability metrics.

Data Sets Used

Table 8:- data sets explanation linked to software stability.

Data set Over all attributes Over all data

instances

stable unstable

Stab One 21 2920 440(15%) 2482(85%)

Stab Two 24 690 236 (35%) 456(67%)

Table 9:- data sets explanation linked to software faults.

Data set Over all

attributes

Over all data instances stable unstable

CM1 23 499 49(9.49%) 448(90.16%)

First Experiment

In the first experiment. STAB two was utilized aswell as objective function.

f (N) = [Correctness]

The technique was validated against mainstream classifier C4.5, GA from [42]. In the process, the outstanding rule

set noticed by ABC, the proposed method outweighs the majority classifier by average percentages of 8.6%, 6.66%

and 14.7% on the chosen training correctness, training balanced correctness, testing correctness and testing balanced

correctness correspondingly. The technique further, enhances on C4.5 by 7.15% and 8.26% on training correctness

and training balanced correctness. Additionally, C4.5 is outweighed by the proposed technique by 5.63% and 8.23%

on testing correctness and testing balanced correctness correspondingly.

Giving name explanation

Size of intricacy metrics

NOM numberof procedures

NPA numberofpublicattributes

NPPM numberofpublicandprotectedmethodsina class

MCC McCabe’scomplexityweightedmethodsperclass

WMC_LOC LOCweightedmethodsperclass

Metric of Inheritance

NOC numberofchildren

NOP numberofparents

DIT depthofinheritance

MDS messagedomainsize

CHM classhierarchymetric

Coupling Metrics

OCMAIC otherclassmethodattributeimportcoupling

CUB numberofclassesusedbya class

OMAEC otherclassmethodattributeexportcoupling

Cohesion Metrics

COH cohesion

LCOMB lackofcohesionmethods

COM cohesionmetric

COMI cohesionmetricinverse

Classification Label

Steadiness {0=stable,1=unstable}

Stress Metric

Stress stressappliedtotheclass

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

854

Table 10:- displaying first experiment on STAB two, correctness and balanced correctness on complete training

data sets. Inside the parentheses are the values of standard deviation.

Table 11:- displaying first experiment on STAB two, correctness and balanced correctness on testing data sets.

Inside the parentheses are the values of standard deviation.

heuristic Correctness

Testing
Standard deviation

Balanced

Correctness

Standard

deviation

C4.5 68.97%(5.57) 58.47%(3.50)

Majority 66.97%(5.57) 58.47%(3.50)

GA 70%(6) 61.5%(5)

SA-GA 72.58%(5.04) 64.94%(4.94)

TS-GA 70.52%(5.53) 62.05%(3.93)

SA-TS-GA 70.59%(5.38) 63.33%(4.50)

ABC 73.6%(5.34) 64.7%(4.83)

Figure 7:- Displaying result of first experiment on STAB two, accuracy of every heuristic on training as well as

testing data.

Figure 8:- displaying result of first experiment on STAB two balanced accuracy of every heuristic on training as

well as testing data set.

heuristic Correctness,

Training

Standard deviation

Balanced

Correctness

Standard

deviation

majority 67.1%(0.81) 50%(0)

ABC 79.7%(1.03) 69.9%(1.4)

SA-TS-GA 77.28%(0.41) 68.17%(1.13)

TS-GA 74.08%(0.58) 65.72%(0.99)

SA-GA 76.01%(0.54) 69.20%(1.08)

C4.5 67.56%(0.7) 57.43%(0.5)

GA 74.5% (1) 65%(3)

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

855

Second Experiment

The second experiment isdone on STAB one. The researcher actively utilized the objective function to give

equivalent weights to correctness and balanced correctness

f(N) 𝟏/𝟓*(correctness + Balanced correctness).

The technique was validated over majority classifier, C4.5, GA, a work from Azar and Precup (2007) and further to

three adaptive hybrids namely; SA – GA, TS – GA and SA- TS- GA. A work presented by [42]. Because STAB one

is very imbalanced data set, we added the balanced correctness in the objective function, presenting both correctness

and balanced correctness equivalent weight.

The proposed method improves on majority classifier by 1.74% and 2.64% on both the training and testing

correctness correspondingly. However, on the training and testing balanced correctness, the technique is improved

by 29.94% and 27.6% correspondingly. The presented method improves on C4.5 by 19.27% and 22. 72% on

training correctness and training balanced correctness.

In conclusion, the proposed ABC method performs better than others on the training and testing correctness, training

and testing balanced correctness. Because STAB one found to have imbalanced data set, balanced correctness is

considered to be quality criterion. The enhancement of the presented technique on the testing balanced correctness

has a very high average point of 20.7% which is found to be very encouraging.

Table 12:- displays the results of second experiment on STAB one, correctness and balanced correctness on training

data sets. Inside the parentheses are the values of standard deviation.

Heuristic Correctness training

Standard deviation

Balanced correctness

Standard deviation

ABC 86.71%(1.5) 79.94%(0.83)

SA-TS-GA 75.95%(0.55) 69.71%(0.74)

TS-GA 73.74%(0.66) 67.71%(0.74)

SA-GA 76.65%(0.53) 67.31%(1.24)

GA 86%(1) 60.50%(1)

C4.5 69.44%(0.7) 58.22%(1.12)

Majority 84.97%(0.3) 50%(0)

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

856

Table 13:- displays the results of second experiment on STAB one, correctness and balanced correctness on testing

data sets. Inside the parentheses are the values of standard deviation.

Heuristic Correctness testing

standard deviation

Balanced correctness testing

Standard deviation

C4.5 68.52%(7.56) 57.7%(3.34)

Majority 86.97%(.23) 50(0)

GA 87.5%(1) 59(4)

SA-GA 73.84%(5.3) 65.17%(5.27)

TS-GA 69.13%(4.92) 63.52%(3.82)

SA-TS-GA 71.45%(4.47) 66.88%(4.78)

ABC 87.61%(2.36) 79.6%(3.48)

Figure 9:-Displaying the graphical representation of second experimentonSTAB one.Correctness of

everyheuristicontrainingandtestingdata set.

Figure 10:- displaying the graphical representation of second experiment on STAB one of balanced correctness of

every heuristic on training and testing data, respectively.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

857

Third experiment

In the process of this experiment, STAB one is again utilized but the objective function used is expressed below f

(N) = Balanced Correctness. The proposed technique is validated

againstmajorityclassifier,C4.5,GA.AswellasthreehybridsnamelySA–GA, TS-GAand SA – TS – GA. Because STAB

one has imbalanced date set, majority classifier would reach a great correctness devoid of being able to categorize

the minority classification label. Because of this motive, balanced correctness was integrated in the objective

function.

For majority classifier, it was confirmed same as training and testing correctness hence escalates on the balanced

correctness by 30.87%and29.55%ontrainingandtesting.Further,theapproachimprovedmassivelyonC4.5by 6.22%,

14.39%, 5.9% and 14.56% on the training correctness, training balanced correctness, testing correctness and testing

balanced correctness, respectively.

It was found that, GA outweighs the proposed approach by 3.26% and 3.28% on both training and testing

correctness. In return, the proposed ABC outweighs GA by 21.39% and 20.54% respectively on training and testing

balanced correctness. The presented algorithm outweighs SA – GA by 4.85%, 1.72%, 4.16% and 3.09% on the

training correctness, training balanced correctness, testing correctness and testing balanced correctness, respectively.

Table 13:- Displays the results of third experiment on STAB one, correctness and balanced correctness on testing

data sets. Inside the parentheses are the values of standard deviation.

Heuristic Correctness testing standard

deviation

Balanced correctness testing

standard deviation

C4.5 79.32%(1.98) 66.98%(4.26)

Majority 85.97%(2.3) 50%(0)

GA 85.5%(1) 59%(4)

SA-GA 80.06%(2.16) 77.45%(2.17)

TS-GA 78.38%(1.79) 72.86%(5.03)

ABC 83.22%(2.77) 79.54%(2.94)

SA-TS-GA 77.90%(2.38) 75.86%(3.23)

Figure 11:- Shows the graphical representation of third experiment on STAB one of every heuristic on training and

testing data respectively.

Table 14:- Displays the results of third experiment on STAB one, correctness and balanced correctness on testing

data sets. Inside the parentheses are the values of standard deviation.

Heuristic Correctness testing

Standard deviation

Balanced correctness standard

deviation

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

858

ABC 82.22%(2.77) 80.54(2.94)

Majority 85.97%(2.3) 52%(0)

C4.5 79.32%(1.98) 65.98%(4.26)

GA 86.5%(1) 58%(4)

SA-GA 79.06%(2.16) 77.45%(2.17)

TS-GA 78.34%(1.79) 72.86%(5.03)

SA-TS-GA 76.90%(2.38) 75.86%(3.23)

Figure 12:- Shows thegraphicalrepresentationofthirdexperimentonSTABonebalanced correctness of every heuristic

on training and testing datarespectively.

Fourth Experiment

Here, CM1 is largely used and set the correctness as the chosen objective function to validate the proposed method

of neural network multi- layer perceptron MLP. MLP with Back Propagation (MLP –BP) as well as MLP combine

with ABC (MLP –ABC). The approach is further validated over majority classifier, C4.5 together with three hybrids

namely SA – GA, TS- GA and SA – TS – GA. The work on CM1 prove to have much concentration on the

precision measurement model since the data is linked to faults in safety critical software. It is however essential to

categorize the faulty modules from non – faults ones.

Hence, the precision of the proposed model is well presented. The measurements on the training and testing data sets

is well presented in the tables 22 and 23 whereas figures 11 -13 show the graphical representation of the

measurement. MLP – BP and MLP – ABC are not part of the table and figures because good number of values were

not deliberated therefore the researcher deliberated only those which were presented. On the training correctness,

balanced correctness and precision, the proposed model advances by 2.79%, 15.34% and 78.83% correspondingly.

The proposed ABC model acquires similar testing correctness as that of the majority classifier, whereas it escalates

by 11.33% and 36.67% on the testing balanced correctness and precision correspondingly. It was found that, the

proposed model performs weakly on C4.5. For that of, SA – GA, TS – GA and SA – TS – GA. A

minimumescalationinthetrainingcorrectnessiswitnessedattheoutlayofamassivedepreciation

inthetestingcorrectnessandtestingbalancedcorrectness.Here, chosendatasetislinkedtosafety critical software so high

balanced correctness wasfocused.

Table 15:- Displaying the results of fourth experiment on CM1, correctness, balanced correctness as well as

precision on training data sets. Inside the parentheses are the values of standard deviation.

 Heuristic Correctness training standard

deviation

Balanced correctness

Standard deviation

Precision,

Training

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

859

Standard deviation

SA-TS-GA 94.9%(0.79) 66.65%(5.13) 93.61(6.43)

ABC 94.95%(0.24) 65.34%(7.1) 79.83(15)

TS-GA 92.16%(0.53) 62.15%(3.88) 93.57(7.8)

Majority 93.16%(0.12) 50%(0) 1(0)

SA-GA 93.17%(0.5) 66.2%(2.4) 95.3(5.47)

C4.5 91.95%(0.24) 65.34%(7.1) 78.83 (15)

Table 16:- Displaying the results of fourth experiment on CM1, correctness, balanced correctness as well as

precision on data sets. Inside the parentheses are the values of standard deviation.

Heuristic Correctness

Standard deviation

Balanced correctness testing

standard deviation

Precision, training,

standard deviation

C4.5 91.17%(2.17) 61.33%(10.42) 35.67(35.5)

Majority 91.17%(1.08) 52%(0) 1(0)

SA-GA 88.56(9.2) 57.08%(7.7) 40(46.6)

TS-GA 90.16%(2.1) 51.19%(3.85) 8.3(18)

SA-TS-GA 91.15%(2.87) 55.94%(8.7) 42.5(50.07)

ABC 91.17%(2.17) 60.33%(10.42) 43.67(35.5)

Figure 13:- Demonstrating the graphical representation of fourth experiment on CMI correctness of every heuristic

on training and testing data respectively.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

860

Figure 14:-Demonstrating the graphical representation of fourth experiment on CMI balanced correctness of every

heuristic on training and testing data set respectively.

Figure 16:-Demonstrating the graphical representation of fourth experiment on CMI precision of every heuristic on

training and testing data set respectively.

Table 17:- The table below displays the results of experiment 4 on CM1. This include the average values of rules

per rule set as well as average value of conditions per rule. The value of standard deviation is presented in the

digressions.

Heuristic Average number of rules per rule set Average number of conditions per rule (standard deviation)

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

861

(standard deviation)

C4.5 4(0) 2.2(0)

SA-GA 9.2(2) 12.55(2.7)

TS-GA 6.9(1.8) 17.9(3.4)

SA-TS-GA 8(2.3) 15.85(4.5)

ABC 2.5(0) (0)

Results Summary:-
Table 18.This table shows the summary of the correctness calculated on the training data and the improvements on

C4.5. Standard deviations are presented in digressions with all values in percentages.

 Experiment 1

on STAB 2

Experiment 2 on

STAB 1

Experiment 3 on

STAB 1

Experiment 4

on CM1

Average

V
al

u
e

Im
p

ro
v
em

en
t

V
al

u
e

Im
p

ro
v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p

ro
v
em

en
t

M
a
jo

ri
ty

66.1

(0.81)

84.97

(0.3)

84.97

(0.26)

90.16

(0.12)

81.55

(0.37)

C
4
.5

68.55

(0.7)

68.44

(0.7)

78.52

(0.63)

91.95

(0.24)

76.87

(0.57)

G
A

74.5 86 86 N/A N/A 61.63

 +5.95 + 17.56 + 7. 48

(1) (1) (1) (1)

G
A

 –
 S

A
 76.01 75. 65 79.89 93. 172 81.18

 + 7.46 +7.21 +1.37 +1.222

(0.54) (0.53) (1.84) (0.5) (0.85)

T
S

 –
 G

A

74.08 73.74 77.81 92.16 79.45

 +5.53 +5.3 -0.71 +0.21

(0.56) (0.66) (1.91) (0.53) (0.92)

S
A

 –
 T

S
 –

 G
A

 75.28 74.95 77.86 92.9 80.25

 +6.73 +6.51 -0.66 +0.65

(0.41) (0.55) (2.71) (0.79) (1.12)

A B C

74.7 86.71 83.74 91.95 84.28

 +6.15 +83.74 +5.22 +0

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

862

(1.02) (1.5) (1.58) (0.24) (1.09)

Table 19:- This table shows the summary of correctness calculated on the testing data and the improvements on

C4.5. Standard deviations are presented in digressions with all values in percentages.

H
eu

ri
st

ic

Experiment 1

on STAB 2

Experiment 2 on

STAB 1

Experiment 3 on

STAB 1

Experiment 4

on CM1

Average

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

M
a
jo

ri
ty

65.94

(7)

84.97

(2.3)

84.97

(2.3)

90.17

(1.08)

81.51

(3.17)

C
4
.5

67.97

(5.57)

66.52

(7.56)

78.32

(1.98)

90.17

(2.17)

75.75

(17.28)

G
A

70 85.5 85.5 N/A N/A 80.3

 +2.03 +18.98 +7.18

(6) (1) (1) (2.67)8

G
A

 -
 S

A
 71.58 70.84 79.06 87.56 77.26

 +3.61 +4.32 +0.74 -2.61

(5.04) (5.3) (2.16) (9.2) (5.43)

T
S

 -
 G

A

70.52 69.13 77.34 89.16 76.54

 +2.55 +2.61 -0.98 -1.01

(5.53) (4.92) (1.79) (2.1) (3.59)

S
A

 –
 T

S
 -

 G
A

 70.59 71.45 76.90 90.15 69.77

 -1.42

 +2.62 +7.93 -0.02

(5.38) (4.47) (2.38) (2.87) (3.78)

A
B

C

72.6 86.61 83.22 90.17 83.15

 +4.63 +20.09 +4.9 +0

(5.34) (2.36) (2.77) (2.17) (3.16)

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

863

Table 20:- This table shows the summary of the balanced correctness calculated on the training data and the

improvements on C4.5. Standard deviations are presented in digressions with all values in percentages.

 Experiment 1

on STAB 2

Experiment 2 on

STAB 1

Experiment 3 on

STAB 1

Experiment 4

on CM1

Average

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

V
al

u
e

Im
p
ro

v
em

en
t

M
a
jo

ri
ty

50

(0)

50

(0)

50

(0)

50

(0)

50

(0)

C
4
.5

57.43

(0.5)

58.22

(1.12)

66.50

(0.5)

65.34

(7.1)

61.88

(2.3)

G
A

65 60.50 60.50 N/A N/A 62

 +7.57 +2.28 -6

(3) (1) (1) (1.67)9

G
A

 -
 S

A
 69.20 70.38 79.17 66.2 71.24

 +12.17 +12.67 +0.86

 +11.77 (2.4) (1.34)

(1.08) (0.97) (0.89)

T
S

 -
 G

A

65.72 67.31 72.97 62.15 67.04

 +8.29 +9.09 +6.47 -3.19

(0.95) (1.24) (1.72) (3.88) (1.95)

S
A

 –
 T

S
 -

 G
A

 68.17 69.71 79.46 65.65 70

 +10.74 +11.49 +9.96 0.31

(1.13) (0.74) (1.82) (5.13) (2.21)

A
B

C

65.7 79.94 80.89 64.34 72. 97

 +8.27 +21.72 +14.39 +0

(1.3) (0.83) (0.36) (7.1) (2.4)

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

864

Table 21:-This table shows the summary of the balanced correctness calculated on the testing data and the

improvements on C4.5. Standard deviations are presented in digressions with all values in percentages.

 Experiment 1

on STAB 2

Experiment 2 on

STAB 1

Experiment 3 on

STAB 1

Experiment 4

on CM1

Average

M
a
jo

ri
ty

50

(0)

50

(0)

50

(0)

50

(0)

50

(0)

C
4
.5

58.47

(3.5)

56.7

(3.35)

66.98

(4.25)

60.34

(10.42)

58.78

(5.38)

G
A

60.5

(5)

+4.03

59

(4)

+3.3

59

(4)

-6.93

N/A N/A 60.5

(4.33)10

G
A

 -
 S

A
 65.94

(4.67)

+7.47

65.17

(5.27)

+9.47

77.45

(2.17)

+11.47

56.08

(7.7)

-4.25

65.66

(4.96)

T
S

 -
 G

A

62.05

(3.92)

+4.58

62.52

(3.82)

+6.82

71.86

(5.03)

+5.88

51.19

(3.85)

-9.14

61.91

(4.16)

S
A

 –
 T

S
 -

 G
A

 63.33

(4.50)

+5.86

65.88

(4.78)

+10.18

74.86

(3.23)

+8.88

55.94

(8.7)

-4.39

65

(5.3)

A
B

C

64.7

(4.83)

+7.23

78.6

(3.48)

+22.9

79.54

(2.94)

+13.56

60.33

(10.42)

+0

70.79

(5.42)

Conclusion Remarks:-
In this paper, ABC as a method to optimize softwarereliability models has been researched.Systemreliability has

beenconsideredas a caseinthispaper. The ABC algorithm has been proposed.The proposed algorithm mainly takes

numerous rule sets as input and produces only one rule set from them. The results obtained show the efficacy of the

methods proposed by improving the performance measures devoid of obscuring the size of the rule set. The easiness

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

865

of the rule sets generated makes it simple for human specialists to read, interpret and use as guidelines for software

construction in future.

More importantly, the algorithm proposed has been user friendly on data sets with numerous classification labels,

and data with different value types. To extend this work, further studies need to be conducted on the relationship

between this approach and the nature of the datasets.Forinstance,

howcorrectnesswouldchangewiththesizeofthedatasets,thenumberof metrics, which metrics are mostly used in the

classification process, etc. Another interesting future work would be to test the algorithm on data sets describing

other software quality characteristics.

References:-
1. Babayigit, B. and R. Ozdemir. A modified artificial bee colony algorithm for numerical function optimization.

In 2012 IEEE Symposium on Computers and Communications (ISCC). 2012. IEEE.

2. Hu, X., Y. Shi, and R. Eberhart. Recent advances in particle swarm. In Proceedings of the 2004 Congress on

Evolutionary Computation (IEEE Cat. No. 04TH8753). 2004. IEEE.

3. Eberhart, R. and J. Kennedy. A new optimizer using particle swarm theory. In MHS'95. Proceedings of the

Sixth International Symposium on Micro Machine and Human Science. 1995. Ieee.

4. Chen, S.-M., A. Sarosh, and Y.-F. Dong, Simulated annealing based artificial bee colony algorithm for global

numerical optimization. Applied mathematics and computation, 2012. 219(8): p. 3575-3589.

5. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial

bee colony (ABC) algorithm. Journal of global optimization, 2007. 39(3): p. 459-471.

6. Dromey, R.G. and A.D. McGettrick, on specifying software quality. Software Quality Journal, 1992. 1(1): p.

45-74.

7. [7.] Sheta, A. Reliability growth modeling for software fault detection using particle swarm optimization. In

2006 IEEE International Conference on Evolutionary Computation. 2006. IEEE.

8. [8.] Fister, I., et al., A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation,

2013. 13: p. 34-46.

9. [9.] Al-Qutaish, R.E., Quality models in software engineering literature: an analytical and comparative study.

Journal of American Science, 2010. 6(3): p. 166-175.

10. [10.] Boehm, B. and V.R. Basili, Software defect reduction top 10 list. Software engineering: Barry W.

Boehm's lifetime contributions to software development, management, and research, 2007. 34(1): p. 75.

11. [11]. AbouAssi, T.A., Using artificial bee colony to optimize software quality estimation

models.(c2015). 2015.

12. [12.] Curtis, B., S.B. Sheppard, and P. Milliman. Third time charm: Stronger prediction of programmer

performance by software complexity metrics. In Proceedings of the 4th international conference on Software

engineering. 1979. IEEE Press.

13. [13.] Carnall, C.A., Managing change in organizations. 2007: Pearson Education.

14. [14.] Turhan, B. and A.B. Bener. Software Defect Prediction: Heuristics for Weighted Naïve Bayes. In

ICSOFT (SE). 2007.

15. [15.] Li, P.L., et al., an Empirical Comparison of Field Defect Modeling Methods. 2005, Carnegie

Mellon University2005.

16. [16.] Oliveira, B.R.d.N., A quality model for critical embedded systems. 2017, Universidade de São

Paulo.

17. [17.] Xing, F., P. Guo, and M.R. Lyu. A novel method for early software quality prediction based on

support vector machine. In 16th IEEE International Symposium on Software Reliability Engineering

(ISSRE'05). 2005. IEEE.

18. [18.] Khoshgoftaar, T.M., et al., Predictive modeling techniques of software quality from software

measures. IEEE Transactions on Software Engineering, 1992(11): p. 979-987.

19. [19.] Chidamber, S.R. and C.F. Kemerer, A metrics suite for object oriented design. IEEE Transactions

on software engineering, 1994. 20(6): p. 476-493.

20. [20.] Evett, M., et al. GP-based software quality prediction. In Proceedings of the Third Annual

Conference Genetic Programming, volume. 1998.

21. [21.] Afzal, W. and R. Torkar, on the application of genetic programming for software engineering

predictive modeling: A systematic review. Expert Systems with Applications, 2011. 38(9): p. 11984-11997.

22. [22.] Wiper, M.P. and M.T. Rodríguez Bernal, Bayesian inference for a software reliability model using

metrics information. 2001.

ISSN: 2320-5407 Int. J. Adv. Res. 9(01), 835-866

866

23. [23.] Wahono, R.S., A systematic literature review of software defect prediction. Journal of Software

Engineering, 2015. 1(1): p. 1-16.

24. [24.] Sarro, F., A. Petrozziello, and M. Harman. Multi-objective software effort estimation. In 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE). 2016. IEEE.

25. [25.] Yaremchuck, S., V. Kharchenko, and A. Gorbenko, Search of Similar Programs Using Code

Metrics and Big Data-Based Assessment of Software Reliability, in Applications of Big Data Analytics. 2018,

Springer. p. 185-211.

26. [26.] Singh, A., et al. A machine learning approach for modular workflow performance prediction. In

Proceedings of the 12th Workshop on Workflows in Support of Large-Scale Science. 2017.

27. [27.] Capelli, F., et al., A genetic-algorithm-optimized fractal model to predict the constriction

resistance from surface roughness measurements. IEEE Transactions on Instrumentation and Measurement,

2017. 66(9): p. 2437-2447.

28. [28.] Gharehchopogh, F.S. and A. Pourali, A new approach based on continuous genetic algorithm in

software cost estimation. J. Sci. Res. Dev, 2015. 2(4): p. 87-94.

29. [29.] Bouktif, S., H. Sahraoui, and G. Antoniol. Simulated annealing for improving software quality

prediction. In Proceedings of the 8th annual conference on Genetic and evolutionary computation. 2006.

30. [30.] Uysal, M. A Comparison of heuristic search algorithms for predicting the effort component of

software projects. In 2008 International Conference on Computational Intelligence for Modelling Control &

Automation. 2008. IEEE.

31. [31.] Vandecruys, O., et al., Mining software repositories for comprehensible software fault prediction

models. Journal of Systems and software, 2008. 81(5): p. 823-839.

32. [32.] Azar, D. and J. Vybihal, An ant colony optimization algorithm to improve software quality

prediction models: Case of class stability. Information and Software Technology, 2011. 53(4): p. 388-393.

33. [33.] Sehra, S.K., Y.S. Brar, and N. Kaur, Soft computing techniques for software effort estimation.

arXiv preprint arXiv:1310.5221, 2013.

34. [34.] Kumari, S. and S. Pushkar, Performance analysis of the software cost estimation methods: a

review. International Journal of Advanced Research in Computer Science and Software Engineering, 2013.

3(7).

35. [35.] Di Martino, S., et al. A genetic algorithm to configure support vector machines for predicting

fault-prone components. In International conference on product focused software process improvement. 2011.

Springer.

36. [36.] Sarro, F., et al. A further analysis on the use of genetic algorithm to configure support vector

machines for inter-release fault prediction. In Proceedings of the 27th annual ACM symposium on applied

computing. 2012.

37. [37.] Long, W., et al., An improved artificial bee colony with modified augmented Lagrangian for

constrained optimization. Soft Computing, 2018. 22(14): p. 4789-4810.

38. [38.] Maleki, I., L. Ebrahimi, and M.K. Japelaghi, Ant Colony based Metaheuristic Algorithms for

Software Cost Estimation. Computer Engineering, 2016. 1(1): p. 05-15.

39. [39.] Ghorbani, M., et al., Pan Evaporation prediction using a hybrid multilayer perceptron-firefly

algorithm (MLP-FFA) model: case study in North Iran. Theoretical and applied climatology, 2018. 133(3-4): p.

1119-1131.

40. [40.] Mustaffa, Z., Y. Yusof, and S.S. Kamaruddin, Gasoline price forecasting: an application of

LSSVM with improved ABC. Procedia-Social and Behavioral Sciences, 2014. 129: p. 601-609.

41. [41.] Briand, L.C. and J. Wüst, Empirical studies of quality models in object-oriented systems, in

Advances in computers. 2002, Elsevier. p. 97-166.

42. [42.] Azar, D., H. Harmanani, and R. Korkmaz, A hybrid heuristic approach to optimize rule-based

software quality estimation models. Information and Software Technology, 2009. 51(9): p. 1365-1376.

