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In recent times, computer software applications are increasingly 

becoming an essential basis in several multipurpose domains including 

medicine, engineering, transportation etc. Consequently, with such 

wide implementation of software, the imperative need of ensuring 

certain software quality physiognomies such as efficiency, reliability 

and stability has ascended. To measure such software quality features, 

we have to wait until the software is executed, tested and put to use for 

a certain period of time. Numerous software metrics are presented in 

this study to circumvent this long and expensive process, and they 

proved to be awesome method of estimating software reliability 

models. For this purpose, software reliability prediction models are 

built. These are used to establish a relationship between internal sub-

characteristics such asinheritance, coupling, size, etc. and external 

software quality attributes such as maintainability, stability, etc. 

Usingsuchrelationships, one 

canbuildamodelinordertoestimatethereliabilityofnewsoftware 

system.Suchmodelsaremainlyconstructedbyeitherstatisticaltechniquessu

chasregression,or machine 

learningtechniquessuchasC4.5andneuralnetworks.The prototype 

presented isinvigoratedemployingprocedures of machine 

learninginparticularrule-basedmodels.Thesehaveawhite-

boxnaturewhich accordsthecataloguingandmakingthemgood-

looktoexpertsinthedomain. In this paper, wesuggest a 

powerfulinnovative heuristic based on Artificial Bee Colony (ABC) to 

enhance rule-based software reliability prediction models. The 

presented approach is authenticated on data describing reliability of 

classes in an Object-Oriented system. We compare our models to others 

constructed using other well-established techniques such as C4.5, 

Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search 

(TS), multi-layer perceptron with back-propagation,multi-lay 

perceptron hybridized with ABC and the majority classifier. Results 

show that, in most cases, the propose technique out- performs the 

others in different aspects. 
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Introduction:- 
It is known that, evaluating the quality, functionality and reliability of a software system has been a major concern in 

software quality setting. To predict software reliability is quite difficult.The main problem is apprehensive primarily 

with design faults, which is a very dissimilar situation from that handled by conventional hardware theory. A fault 

can be defined as manifestation in the code of an error made by the designer with respect to the requirements of the 

software system. Activation of a fault of an input value leads to an incorrect output [1]. However, detection of such 

an event corresponds to an incidence of a software system failure. The input values to the software modules either 

internally or externally may be considered as arriving to the software randomly.  In view of this, the software failure 

may not be generated stochastically, it may be detected in such a manner. Thus, it justifies the use of stochastic 

models of the underlying random process that administers the software failures [2]. Reliability of a software system 

can be explained as the probability of failure- free operation of a computer program for specific period of time in a 

specified environment. Statistical calculations and parameter estimations of software reliability is crucial tool for 

developing reliable software systems.  

 

Moreover, other researchers proposed numerous computer programs which are attested to be correct by this method 

but the program contained faults. Program testing is more practical approach and is empirical in nature. Program 

testing basically involves symbolic or physical execution of a set of test cases with the objective of exposing 

embedded faults in the program [3]. However, copious reliability software algorithms and metrics have been 

engineered and implemented by computer programmers to estimate the 

parametersofsoftwarereliabilitymodels.AnimprovedArtificialBeeColony(ABC)algorithm was projected to estimate 

the parameters of software reliability model [4]. This Algorithm has the capacity of dualistic search which makes the 

algorithm has more powerful worldwideexploration and better performance. Similarly, Particle Swarm Optimization 

(PSO) Algorithm to optimizethe problem of software reliability growth model and predict the number of software 

failures [5]. The performanceandaccuracyofABCalgorithmwillbeexaminedonthenumericproblemswithmulti- 

dimensionalandcomparewiththePSOalgorithm.However, thisresearchfocusesonhybridABC, 

GAandPSOalgorithmsandhowtheyareusedtooptimizevarioussoftwarereliabilitymodels.Go- model parameter is 

chosen as representative event function with respect to ABC and PSO hybrid algorithms. 

 

Research Background:- 
It is obvious that, computer engineering and technology largely play significant role in our contemporary times 

across the ages of human endeavors today. An extensive range of highly multifaceted software systems are 

progressively all-pervading in the areas of, Agriculture, Aerospace, Industrial control operations, Military 

operations, Processing industries, Transport operations, Finance, Health, and other related fields, playing an 

increasingly role. It is for this motive that, the quality performance of these complex software must be assured at all 

cost. However, the quality of a software product decides its acceptance or fate in the software development 

algorithm[6].  

 

Through theoretical research and engineering practice, many scientist and computer engineers by their grace wisdom 

and effort, numerous software reliability models have been proposed to predict and assess the reliability of software 

system as well as detecting its functional status. These models help the designer to do quantitative analysis and 

predict the credibility and behavior of the software before the release of the software to the world market. Some of 

these models include: Goel-Okumoto Model, Yamada S-Shaped Model, the Go model, a Weibull model, MO 

model, JM model, White-box and Black –box model. These models ensure the quality and reliability of the software. 

However, most of these models are in non-linear function which implies that, it is very difficult to determine their 

optimal parameters[7]. Usually, Maximum Likelihood Estimation (MLE) and Least Square Estimation (LSE) 

methods are two traditional techniques commonly used to estimate parameters. This approach is experimented by 

observations and inspirations of special behavior and collective movement of colonies of honey bees, swarm of ants, 

shoal of fish, and flock of birds[8]. However, the most common intelligent optimization algorithms include: Particle 

Swarm Optimization (PSO), Artificial Bee Colony (ABC), ant Colony Optimization (ACO), artificial fish-swarm 

algorithm (AFSA). These methods 

arestochasticoptimizationtechniquesthathavebeenusedbyengineersinwiderangeofnumerical application functions to 

solve real world optimizationproblems. 
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Software reliabilityEstimation 

Software reliability is a point to which a component, software system or process meets the 

neededrequirementswithoutsystemfailure.Itismeasuredbyitscharacteristics. 

 

Functionality:  

It is the ability of a software system to provide functions which meet stated and implied needs when the software is 

used under stated condition.  

 

Reliability: 

It is the capacity of a system or component to perform its required functions under stated conditions for a definite 

period of time. 

 

Maintainability:  

The ease with which a software system or component can be modified to correct faults, improve performance or 

other attributes, or adapt to a changed environment. 

 

Portability:  

“It is defined as the ease with which a system or component can be transferred from one hardware or software 

environment to another. 

 

The reliability of a software compliance is defined as the ability of the software product to stick to standards, 

conventions or regulations relating to reliability. Hence,softwaredefectcanberegarded as an indicator of software 

reliability.[9]. 

 

Table 1:- Detailed characteristics and sub-characteristics of software reliability. 

Characteristics  Sub-characteristics 

Functionality  Suitability, portability,interoperability,security, functionality compliance 

Reliability  Maturity, fault tolerance, recoverability, reliability compliance 

Usability  Understandability learnability, operability, attractiveness, usability 

compliance 

Efficiency  Time behavior, resource utilization, efficiency compliance 

Maintainability  Analyzability, changeability, stability, testability, maintainability 

compliance 

Portability  Adaptability, install ability, co-existence, replace ability, portability 

compliance 

 

To evaluate software quality and its reliability, the software system must first be executed, 

comprehensivelyassessedbeforeputtouse.Thisunbearablylongsoftwarelifecyclecanbeavery 

perilousandcostly.Additionally,thetestingstageinitselfisthemostessential.Becauseerrorsare unavoidable in software 

development; around “40 to 50% of user programs contain nontrivial faults[10] . It is stated that, simply testing the 

software would require at least 50% of the cost of development. It might even cost more in the case of safety critical 

software. Also, Dueto softwarefailure,theUSDepartmentofDefenselosesmorethanfour billiondollarsperyear[11]. 

Duetosuchevidence, it ismostimportanttoassesssoftwarequalityanditsreliability. This is why copious software 

reliability metrics have been presented in this study, such as McCabe’s cyclomatic metric. Halstead’s software 

science metric [12]. 

 

Table 2:- Proposed metrics. 

CBO Coupling Between Object Classes 

LCOM Lack of Cohesion in Methods 

RFC Response for a class 

WMC Weighted Methods per class 

DIT  Depth of the class in the Inheritance Tree 

 

These metrics are utilized to assess internal software reliability physiognomies. To emphasize the essential of 

measuring, we made reference to Pressman’s quote “if you don’t measure, judgment can be based only on subjective 



ISSN: 2320-5407                                                                               Int. J. Adv. Res. 9(01), 835-866 

838 

 

evaluation”[11]. With measurement, trends can be spotted, better estimation can be made, and true improvement can 

be accomplished over time [13] 

 

Software Reliability Estimation Models 

Due to the fact that, we unable to evaluate the reliability of software attributes, we depended on estimating them. As 

a result, we utilized estimation/prediction models such as mathematical/statistical. In this study, we principally 

focused on logical models since they can easily be interpreted. To predict the stability of software system, let us 

cogitate the vector as data point in the form V= 𝑉 = {, …,𝑡 n,…c} where ti represents metric and c label of 

classification (0=stable, 1 not stable).However,theclassinanObject–Orientedsystemisdefined by a data point. The 

table below displays data set of 14 cases, four metrics; these include Number of Children ((NOC), Lines of Code 

(LOC), Lines of Comments (LOC) and Number of Public Methods (NPM) and one label of classification. 

 

Table 3:- Software stability data set of classes in an Object-Oriented system. 

DATA SET NOC LOC LOC NPM FIRMNESS 

1 5 801 810 2 1 

2 5 490 1200 1 1 

3 3 4600 4040 2 0 

4 2 130 16000 2 0 

5 2 701 490 2 0 

6 2 202 120 5 1 

7 3 49 201 0 0 

8 5 124 1003 2 0 

9 5 760 1202 2 1 

10 2 340 490 6 0 

11 4 469 2900 2 1 

12 2 3481 3460 2 0 

13 2 1602 50400 1 1 

14 3 7501 40500 2 1 

 

The connection between the unknown classification label and the metrics is proven by 

thesoftwarepredictionmodels.However,oneofsuchmodelsisdecisiontree. Thismodeliswidely used to predict the 

reliability of software models. What below is a decision tree deduced from the abovedataset.Usually, 

thedecisiontreeisinversebeginningwiththerootnodedowntoaleaf. If a leaf is reached, then the classification label can 

be defined. In the process, nodes encrypt tests andonentirepath isaconjunctionofsuchtests.Thetreereads, 

“IfNOCismorethan3andLOCOis more than 410, then the class is notstable. 

 

The example of decision tree below can grow and become relatively difficult to read by human experts. It can also 

be converted into rule set. A rule set is a logical grouping of code analysis rules that identify targeted issues and 

specific conditions. From the above decision tree, a rule set can be deduced as follows. Rule 1: 

NOC>3&LOCO>410, Rule 2:   NOC≤2&LOC≤200, Default class: 0. The rule set can be interpreted as, (NOC) 

denotes the number of children which is greater than 3 and lines of comments (LOCO) also greater than 4100, then 

it unstable class. However, if the class has NOC less than or equal to 2 and lines of code (LOC) smaller than or 

equal to 200 then it not stable. Indeed, this rule is mostly used because it has the ability to serve as a guide in 

building a class with particular software reliability attribute. The reliability ofsuch rule setsis evaluated by accuracy, 

error rate, the balanced accuracy, Sensitivity, Specificity, and Precision. Confusion matrix for binary classification is 

used to display these evaluation measurements. 

 

 

 

 

 

 

 

 

 



ISSN: 2320-5407                                                                               Int. J. Adv. Res. 9(01), 835-866 

839 

 

Figure 2:- Confusion matrix for binary classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:- proposed decision tree. 
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In every entry c[y][t], we recorded the number of classesthat were identified by the model with labely whiletheir real 

classification ist. We defined a positive classlabel as a stable class (label0) and a negative classlabel asunstable class 

(label1). True Positive: denotes the number of classesthatare positive and were classified assuch. FalseNegative: 

represents the number ofclasses that are positive butwere categorized as negative. False Positive: indicates the 

number of classes that are negative but were categorized as positiveTrue Negative: signifies the number of 

classesthat are negative and were categorized as such. Gaging the rule set shown above, the researcher acquired the 

confusion matrix as displayed above. However, the Rule 1 applies to data set 1, 2, and 8. Rule 2 applies to data set 6 

and 14, while as the default rule applies to data set  3, 4, 5,7, 9, 10, 11,12 and 13. Quite a number of measurement 

techniques have been employed to evaluate the data set cases in this regard. In the assessment of Rule set using 

confusion matrix, we obtained. 

 

Figure 3:- Assessment of Rule set using confusion matrix. 

      

      

      

      

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematically, we let N= be the estimation model. This expression denotes the accuracy of {N}. However, this 

expression computes the percentage of data set which are accurately identified by N. 

Accuracy{N} =
truepositive +truenegative

truepositive +falsnegative +true  negative +falsepositive
  (1) 

 

A {N} = 1 − Accuracy {N}      (2) 

Eq (2) denotes the error rate of {N}, whereas A {N}, implies that the data set is falsely classified by N.   

 

From the above equations, it can be inferred that, there is inaccuracy due to data set imbalance. Below is an equation 

denoting a balanced accuracy of [n]. Here, we contemplated the case of a data set containing 100 data cases. Ninety-

nine data set have a classification label 0, and 1 data case has a classification label of 1. In this vein, a model 

assigning label (0) to all the cases has an extremely high accuracy (close to 100%). 

 

The situation arises when the misclassification of the fewer frequent categorization label is more expensive, that is 

when class label (1) in the previous example refers to an unhealthy individual but the model is classifying this case 

as a healthy individual who will not start his or her desired treatment. In this case, accuracy is not the appropriate 

measure to contemplate. Instead, the balanced accuracy computes the average accuracy of the classification model 

therefore giving equal weight to both classification labels.  

 

Eq.3: displays thebalanced accuracy 

 

Balanced accuracy {N} = 
1

2
  *

true  positive

true  negative +false  positive  
 

The 

prediction 

label 

Rule label:  

Positive =9 

Rule label: 

Negative = 0 

Rule label:   

Negative =0 

Rule label:  

Positive =5 
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= +
1

2
∗

true  negatve

truenegative +falsepositive
 

 

Here, it can be noted vividly that, Eq.3 denotes sensitivity because of its balanced accuracy whereas the second 

section denotes specificity. These two measurement measures have been signified by Eq.4 and Eq.5 

Sensitivity {N} =
truepositive

truepostive +falsenegative  
 (4) 

 

Specificity {N} = 
truenegative

truenegative +fal sepositive
  (5) 

 

Another famous measurement measure is precision. This measurement technique has the ability to show the 

probability of true positive cases. Many scientists and engineers prefer this technique when dealing with cases of 

reliability predictions. The prediction is computationally expressed as.  

 

Precision {N} = 
truepositive

truepositive +false
 (6) 

 

Figure 4:- To computationally display these measurements methods, we used confusion metrics as shown below. 

             

             

             

             

             

             

             

             

             

             

             

             

 

 

 

 

 

 

 

 

 

 

 

 

Table 4:- Software reliability measurement calculated from figure four. 

Software measurement function value 

Balanced accuracy 0.5*(15/(15+30))+0.5*(200/200+40) ≈ 20.67 

 

Error rate 1−20.67 ≈- 19.67 

 

sensitivity 15/(15+30) ≈ 0.3333 

 

Specificity 200/(200+40) ≈ 0.8333 

 

precision 15/(15+40) ≈  0.2727 

 

correction (15+200)/285 ≈ 0.7544 

The 

predictionlabel 

Rule label:  

Positive =15 

Rule label: 

Negative = 30 

Rule label:   

Negative =40 
Rule label:  

Positive =200 
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Statistical Models 
In the domain of software reliability parameter estimation, statistical model has been largely rummage-sale 

worldwide by research scientists and engineers. These models are constructed by utilizing discriminant analysis, 

principle component, regression techniques etc. according to[14], a discriminant analysis method for 

identifyingdefective computer programs was proposed. The main goal is to decrease the preliminary set of metrics 

into a subclass of non-correlated metrics. [15]Came up with multiple linear regression. They employ convolution 

metrics as indicators of change prone software systems. [16]Emerged with two subsystems of multi-purpose 

operating system. [16]Proposed with two subsystems of multi-purpose operating system. [17]Proposed medical 

imaging system that is used as experimental statistics. [18] Proposed relative least square and minimum relative 

error. They equated their models to least square and least absolute value. Minimum relative error appeared to be 

more powerful than other techniques only when data is approximately normally distributed. The authors notice a 

substantial enhancement in predicting software changes during the maintenance.  

 

[19]Investigated five major object-oriented software metrics recommended by Chidamber and Kemerer (1994). 

They also emerged with additional five objected oriented metrics. Their objective is to construct two least – square 

regression models whose dependent variable is the maintenance exertion well – defined asthe number of lines 

changed in a class. They examined with many variations of the model by considering a dissimilar subset of the 

independent variable every time.  

 

Data is collected from two profitable software systems written in an object – oriented programming language. The 

two software systems include interface system and quality evaluation system. However, experimental results show 

the effectiveness of the metrics used in predicting the maintenance exertion and emphasize the essential of size (1) 

and size (2) as estimation metrics, where size (1) denotes the total number of semicolons in a class and signifies the 

absolutenumber of attributes and local procedure in a class. 

 

HeuristicsandMetaheuristics 

This portion briefly presents related works of heuristics and metaheuristics. These include; GeneticProgramming 

(GP), Genetic Algorithm(GA), Simulated Annealing(SA), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO)and Artificial Bee Colony(ABC). 

 

Genetic Programming (GP). 

In the paradigm of software engineering, Genetic Programming is initially presented by [20]. The method of GP is 

to pose the improvement of software reliability modules. The approach is based on the explanations by [21]. 

Operator and cyclomatic complexity are two metrics used and are related lines of codes, (McCabe, 1976). These 

metrics are said to have robust relationship with reliability estimation proved by [22]. In this study, the assessment 

of the GP largely depends on the law of Pareto which denotes that “20% of the modules will classically account for 

approximately 80% of the errors” this method is said to be strong as opposed to random model when assessed on 

two major industrial assignments. These include; Pascal – written legacy telecommunication system and Ada – 

written command Control and Communications System (CCCS).[23]Emerged with GP method to mainly predict 

error – proneness and change- proneness using huge Windows – based applications coded in C++ programming 

language. To evaluate over – fitting, GP uses a random subclass selection of the data. GP is therefore evaluated on 

the whole data set given product and process metrics. The addressed GP is unique in that, it assimilates previous 

likelihood and misclassification into one ultimate fitness function. It is shown that, in comparison to logistic 

regression, Genetic Programming accomplishes awesome outcome with respect to Type -I and Type – II faults. Over 

improved 9% correctness is achieved by GP against logistic regression. 

 

Genetic Algorithms 

The use of Genetic Algorithm (GA) is introduced by [24] to specifically enhance the estimation of software strength. 

The strength of software is evaluated with respect to the size and domain specific values of the software. 

Experimental outcomes indicate that, GA has ability to enhance the precision of software estimation models. A 

comprehensive method to syndicate and acclimatize existing models to software systems from a particular domain is 

introduced by [25]. Their method was ably assessed on the Java classes of prediction stability. The results of the 

assessment indicate that, the introduction of two methods significantly perform better than C4.5. [26]Emerged with 

outstanding approach to optimize strength estimation models. In the approach, the author used Methodology 
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metrics and Developed Lines of Code (DLOC) together with the application of GA. The method is successfully 

validated in the application of 18 NASA data sets.  

 

[27]Posed GA method to predict the stability of software system. The method syndicates only one model built on 

common domain systems to data from dissimilar domains. The method is found to be better than C4.5. Dhiman, 

Goyal and Sandhu (2009), came up with GA method and assess it on jEdit data set for error –proneness estimation. 

The authors used a metric from chidamber and Kemerer (1994) together with LOC and Number of Public Methods 

(NPM). The method proves to have 80.14% correctness.On GA - based models for software strength estimation. The 

author employs KLoC metric and yields in a valid estimation model when evaluated over related models such as 

COCOMO (Boehm, 1981). 

 

[11]Also came up with an approach to optimize COCOMO –II model and further evaluated the two models on the 

TURKISH INDUSTRY data sets. The presented method has ability to deliver good estimation competencies even 

though it requires further enhancement. An assessment GA method for prediction the cost estimation of software 

using DLOC and the measure strength emerged from [28]. 

 

Simulated Annealing 

Three[29] renowned researchers  based their work on utilizing Simulated Annealing (SA) together with Bayesian 

Classifiers (BC) to guess the stability of software system. The authors’ method proceeds the BC as input and 

acclimatizes it by utilizing SA. The method isobserved to be much superior to the outcome of good initial adept built 

using BC. [30]Emerged with effort software component estimation. Method. The method is validated against that of 

Sheta (2006) and the approach is observed to be powerful estimation model. 

 

Ant Colony Optimization 

Ant Colony Optimization (ACO) usage method is recommended by [31] for software error – estimation. The 

introduced model is called Ant Miner+ which utilizes graph execution of the classification rules. Every metric is a 

node. The rout which the ant takes is categorized to be the classification itself. For the reasons of assessment, three 

comprehensives open – sources data sets from NASA software projects were utilized. They are; KC1, PC4 and PC1. 

The method has the ability to compete with other methods such as C4.5, SVM, and logistic regression, in terms of 

instinctiveness and unambiguousness. [32]presented an adaptive method that takes already existing models as input 

and acclimatizes them to fresh invisible data. Ant Colony Optimization procedure is constructed for this reason. The 

author assessed the method on steadiness of classes in an Object – oriented system. The evaluation outcomes show 

the preeminence of the presented model over C4.5 and arbitrary predicting. 

 

Particle Swarm Optimization 

[33]Introduced a comprehensive work on Particle Swarm Optimization (PSO) for estimation of software strength 

using the KLoC metric. Fuzzy logic software model is also introduced. The models are evaluated on traditional 

methods such as Walston- Felix, Bailey – Basiliadn Doty on NASA’s eighteen complete data sets. The outcomes 

reveal the preeminence of the two models being introduced. A multi – objective PSO for the strength of software 

estimation is presented by [34]. The inputs to the model are lines of cod size and the strength multiplier metrics. The 

models are validated on COCOMO model on two complete data sets, it was observed that, the introduced model 

gives better estimation, particularly on the initial data set with reduction error rate percentage. 

 

Hybrid Methods 

Three classic GA hybrid methods are presented by [11]. In the first phase, the authors hybridized GA with SA and in 

second phase with TS. In the third hybrid method, it combines GA, SA, and Tabu Search (TS) respectively. All the 

hybridized approaches are validated against C4.5 algorithm and a typical GA from Azar and that of Precup (2007) 

on complete outstanding data sets explaining the reliability of classes in an Object – Oriented Programming system. 

The hybridized methods outweigh other methods, hence, proving outstanding outcomes. But the hybrid methods 

need lot of implementation period. Again, the outcome of the hybrids are relatively multifaceted.  A fusion of GA 

and Support Vector Machine (SVM) for inter – release error estimation utilizing the metrics from Chidamber and 

Kemerer (1994) is introduced by [35].  

 

The principal goal of this GA is to locate appropriate setting of parameter. The method is validated against 6 well-

known machine learning approaches. These include Naïve Bays, Logistic Regression, C4.5, Multi – Layer 

Perceptron, K – Nearest Neighbor (K- NN) and Random Forest. Tenfold cross assessment is used.  The results 
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indicate that, the measurements for evaluation are accurate, precise, recall and F – measure. When, assessed on the 

jEdit PROMISE complete data set from (Promise), the fusion is observed to be very operative particularly for inter – 

release error estimation.[36]Recommended a comprehensive hybrid approach. The authors not only assessed the 

method on 6 machine learning methods, but also over variants of SVM. It is authenticated on numerous PROMISE 

data sets from (promise). Such as Log4j versions (1.0, 1.1) 

 

The hybrid proves to be very operative even though it needs more execution period than related models. 

[37]Emerged with the application of GP together with Artificial Bee Colony (ABC). The experiments were carried 

out on complete NASA data sets KC1, PC1 and mushroom data set. The hybrid method is equated to neural gas, 

support vector machines as well as symbolic regression. The correctness on assessing is calculated applying 10 fold 

cross evaluation. The hybridized GP –ABC achieves outstanding outcomes on the mushroom data set outweighs 

other data sets by average value of 2.9%. An outstanding hybrid approach on Ant Colony Optimization (ACO) and 

Genetic Algorithm (GA) is presented by [38]. The aim is to optimize software cost estimation using the KLoC 

metric. Up to ten complete NASA data sets are utilized as yardsticks. The approaches is found to be much more 

operative than COCOMO model from (Boehm, 1981) with respect to the Magnitude of Relative Error (MRE). 

 

Artificial Bee Colony 

A multi –layer perceptron (MLP) neural network utilizing ABC for the guessing of software error is introduced by 

[11]. The authors’ method is equated to MLP with back proliferation. They ended that, if correct parameters are 

establish to ABC, the neural network can be more successfully trained. Both methods are equated to: MLP trained 

utilizing ABC (MLP – ABC) against MLP trained utilizing back propagation (MLP – BP). The test is carried out on 

the three complete NASA data sets; CM1, KC1 and KC2. Testing the correctness and precision, it was found that, 

MLP –ABC outweighs MLP- BP by average value of 1.4% and 1.8%. Software algorithm to specifically optimize 

the prediction correctness of artificial neuralnetworks (ANN) is introduced by [39].  

 

The authors trained the proposed approach (ANN) by utilizing swarm intelligence methods. These include; PSO, 

ACO, ABC as well as firefly. The principal goal is to achieve the best parameter for the propose ANN, that is the 

number of input neurons, number of hidden layers and hidden neuron, number of output neuron, weights etc. they 

equated ANN – PSO, ANN –ACO, ANN- ABC and ANN- firefly on complete data sets from NASA namely; Arc, 

Camel (1.0, 1.2, 1.4, and 1.6), Intercafe and Tomcat respectively. The authors found that, ANN –PSO is best method 

which had the best outcome in seven out of eight data sets. The most second classified approach is ANN- ABC 

obtaining best outcomes in three out of the eight data sets. 

 

Parameters and C4.5 Input 

C4.5 algorithm assents input as data set, an instance is given in table 3. Here, the table contains 14 complete data set 

made up of 10 cases, 4 attributes which include ( LOC, DIT, LOCO and NOC) and a single classification label 

showing the reliability of software. However, the input data set must gratify the following conditions, 

1. The data must be written the inform of vector of attribute values 

2. The label must have initial definition and smartly outlined 

3. The number of cases must be greater than the labels.  

 

The data set is equally divided into two. One for testing and other for training. Here, the size of the training and 

testing is decided by the user. C4.5 trains data set and outputs a classifier. The enactment is always tested on training 

and testing data sets. 

 

Table 5:- C4.5 inputs data sets. 

Data case DIT LOC LOCO NOC Reliability 

1 5 86 86 2 reliability 

2 5 81 91 1 reliability 

3 3 84 78 2 unreliability 

4 2 71 96 2 unreliability 

5 2 70 80 0 unreliability 

6 2 69 71 5 reliability 

7 2 65 73 0 reliability 

8 3 68 65 2 unreliability 
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9 5 72 92 2 unreliability 

10 2 69 71 6 reliability 

11 5 75 70 0 unreliability 

12 3 72 91 0 unreliability 

13 3 80 76 2 reliability 

14 2 71 80 0 reliability 

 

Entropy and Gain 

For decision trees to be built and decide for the best one devoid of repeating through all the decision trees, C4.5 

algorithm utilizes two approaches namely; entropy and information gain criterion. Here, the event which occurs with 

probability is denoted by P [M]. Now the information gain criterion is calculated from the equation below. However, 

to demonstrate this, for instance, a data set where all the data points have a particular class d. by denoting M to be 

the event of categorizing a data point as class d . Here, P [M] = 1. By equation below, information [M] = 0. 

Therefore, the information gain criterion is considered as the sum of ambiguity in the result of the event.  

Information = log2
1

P[M]
 (7) 

 

The information gain criterion is linked to the entropy. Now let A denotes a data set of P positive classification 

labels and n negative classification labels. Here, the entropy can be calculated from the equation below. The entropy 

is actually dependent on the likelihood distribution of the classification labels. That is, if the entire data points in A 

belong to a single class, then, the data set is imbalanced, else it is unbiased. 

 

The entropy shows the distribution of the data set; either balanced or not balanced.  

Entropy [A] = − 
𝐩

𝐏+𝐧
 * 𝐥𝐨𝐠𝟐

𝐩

𝐩+𝐧
 − 

𝐧

𝐩+𝐧
 * 𝐥𝐨𝐠𝟐

𝐧

𝐩+𝐧
  (8) 

 

In the general form, the entropy can be expressed as follows where Pt denotes the probability of possessing 

classification label t   

= entropy [A] = Pt * information [j]  

= ∑ pt * log2
1

pt          

= ∑ pt * 𝐥𝐨𝐠𝟐𝐩𝐭 (9) 

 

Now let consider an instance where a case of data set possessing 14 cases belonging to similar class. Assuming p = 

14 and n = 0 then its entropy is zero per the equation expressed below. Similarly, if P = 0 and n = 10. But 𝐥𝐨𝐠𝟐 𝟎 = is 

categorized as zero and 0 *  𝐥𝐨𝐠𝟐 𝟎 = 0 

Entropy [A] = − 
14

14+0
 *  log2

14

14+0
 − 

0

14+0
 * log2

0

14+0
  (10) 

  = 1 log2( 1) – 0 = 0  

Now let also look at an instance of case of balanced data set [A] possessing 10 cases where p = 7and n = 

7respectively. The nature of this entropy equals 1 per the following algorithm 

Entropy [A] = − 
𝟕

𝟕+𝟕
 * 𝐥𝐨𝐠𝟐

𝟕

𝟕+𝟕
 −  

𝟕

𝟕+𝟕
 * 𝐥𝐨𝐠𝟐

𝟕

𝟕+𝟕
 

(11) 

 

 = − 
1

2
log2(0.5) – 0.5 log2(0.5) 

= 2 * − (0.5) * log2(0.5) 

= − (1) * − (1) = 1 

 

Assuming in the table above, the positive classification is reliable, where p = 5 and n = 9 respectively. Here, the 

Entropy can be calculated as follows 

Entropy [A] = − 
5

9+5   
+  log2

5

9+5 
−

5

9+5 
∗ log2

9

9+5 
 (12) 

 

          ≈ − 0.4 log2(0.4) – 0.6 log2(0.6) 

          ≈ − 0.4 * (−1.3) – (0.6) * (− 0.7) 

          ≈ 0.52 +0.42 ≈ 0.94 
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It can vividly be seeing from here that, the entropy is very close to that of balanced data set.  

Additionally, let a denotes an attributes which takes d discrete values where C4.5 splits the first data set into k 

subsets S1,…,Sk. every subsets Stpossesses Pt positive labels Nt negative labels. 

Therefore, the conditional entropy is calculated as follows where D│a is read as “D given a”.  It actually 

demonstrates quantity of bits information needed to categorize the example. 

If the Entropy [D│a] = then the data is said to be flawlessly separated. 

 

Entropy [D│a] = ∑
pt +nt

P+N
∗ Entropy (St) (13) 

Prior to the testing of the attribute a, the conditional entropy is required to measure the information gain. Here, the 

information gain is represented by GI where C4.5 selects best information gain when splitting a complete data. 

IG (a) = Entropy [D] – Entropy [D│a] 

 

C4.5 Algorithm 

The algorithm of C4.5 constructs classification decision tree based on divide and conquer “recursive algorithm”. 

 

IF thereareno cases inthe training setTHEN 

Create a leafnode and label it using some other    

knowledge source 

ELSE 

                  IF all casesinthetrainingsetare of the 

same categoryTHEN 

 

Create a leafnode and label it with the name of this 

category 

ELSE 

 Select one attribute 

 Performa testbasedonthisattribute 

Performa testbasedonthisattribute 

 

      Divide thetrainingset into subsets, each 

associated with one possible value of thetest 

outcome 

         Repeat thealgorithmabove with each subset 

of the training set. 

 

ENDIF  

       ENDIF 

 

 

 

 

 

The principal purpose of C4.5 algorithm is to construct a decision tree with substantial prediction power. Preferably, 

the outcome decision tree is compact. An example has been given below. 

 

Assuming, C4.5 is input a data set from the table 5 where the root of the tree can any attribute of DIT, LOC, LOCO 

or NOC. Here, utilizing the entropy and the gain criterion procedures, it can be inferred by C4.5 that, the “DIT > 3” 

has the outstanding procedures if it is selected as the root node. The data is then split per this assessment. Again, 

C4.5 calculate these measures assigningthis root and inferred that the previous test is whether LOCO is more than 

75. Therefore, this assessment is demonstrated in the subsequent level of the decision tree. This approach is 

recurrent till the data can no longer be split into further subsets thereby obtaining the final decision tree 
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Figure 5:- DecisiontreewithDITasparentnode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Artificial Bee Colony 

Artificial Bee Colony is innovative swarm intelligence method based on collective beesfor scavenging behavior. The 

basic idea is that, these animals collaboratively share information to achieve optimum goal.  It was initiated by [40]. 

The author addressed that, Swarm intelligence depends on the intelligent behavior of swarms such as ants 

scavenging behavior method, Ant Colony Optimization (ACO).  

 

Common Bees in Nature 

A group of bees can outspread over a long distance, approximately (up to 14km or 15km) in several ways to exploit 

a huge number of sources of good food. The source of the food is apparently denoted by a flower patch. Source of 

good food is one that gratifies the conditions outlined below: 

1. The targeted food source must be near to the nest 

2. The targeted food source must contain lot of energy 

3. The energy of food source is easily haul out 

 

Numerous kinds of bees do live in one colony, such as the worker bees, can also be classified as forager bees and are 

the ones to find and collect good food sources. However, the worker bees can be categorized into employed or 

unemployed forager bees. The employed forager bees essentially profit from a good food source and haul out good 

energy from it. They actually send signals of information concerning this source when returning to the hive. This 

information includes 

1. The actual distance from the hive to the source of the food 

2. The way to follow from the hive to the source of the food utilizing sun as location reference 

3. Finally, the lucrativeness of the food source; this means, the quantity of the haul out nectar from the food source 

 

It is pertinent to note that, the employed bee has a calculated limit of trials it goes in finding improved source of 

food. If the trial limit is reached, it will automatically leave the food source and immediately becomes a common 

unemployed forager bee, specifically a lookout. 

DIT > 3 

LOCO> 75 Not 

Reliable 

Not 

Reliable 
Reliable 
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The unemployed forager bees are ones that are to locate a source of good food and there are two types. They are 

scouts and onlookers.  The scouts tirelessly continue to reconnoiter locations arbitrarily around the nest to discover a 

good food source whilst the onlookers patiently stay in the nest to wait for the employed forager bees to return and 

share information about the source of thefood.  

 

When the onlooker bees receive the information about the food source from the employed forager bees, they then 

decide which food source to go depending on the lucrativeness of the food source. It can be noted here that; the 

exploitation of a good food source is done by the employed forager bees whilst the exploration of food source is 

done by unemployed forager bees. 

 

Figure 6:- the diagram below vividly describes the aforementioned information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5:- Types of common bees in a bee colony. 

Bee Task Quantity & sex 

Scouts & onlookers Find good food sources  

Queen Lay eggs One female 

Drones Mate with queen bee Numerous male bees 

Workers: employed & unemployed 

forager bees 

Profit from good food source Hundreds & thousands of female 

bees 

 

ProposedABC Algorithm 

The algorithm of Artificial Bee Colony is enthused from the scavenging behavior of bees in nature. Every food 

source equals the solution of the problem in the search area. Basically, the lucrativeness of a food source is 

determined by the ABC algorithm. The algorithm computes the predefined objective function.  Actually, ABC 

begins by arbitrary initialization of the solution search area. It does perform in three stages. 

1. Stage one comprises of sending the working bees:the nectar amount denotes the excellence solution; that is the 

objective function 

2. Stage two comprises of sendingtheobserverbees, observers’ bees are employed depending on a probability-

based selection process. Thus, a solution thatis exceedingly lucrative has a complexlikelihoodofbeing selected 

by observer bees. 

3. Stage three comprises of sending the lookout bees. 

 

Lookout bees use random search to locate good solutions. According to [40] they are categorized by low search 

costs and a low average in source of food excellence. The lookout bee locates new source of food fast, these sources 

are not essentially lucrative. A working bee is changed into lookout bee, if it cannot locate a better solution within 

the specified “limit” parameter, it will automatically leave the food source and become a lookout bee. The ABC 

algorithm saves the best solution found in the memory after the completion of all the three stages.  The process 

continues iteratively until discontinue condition is met. 
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METHOD:   Training Data SettrainDS, Testing Data Set testDS){ 

 

                         initialize( ) ; 

Repeat 

sendEmployedBees(); 

calculateProbabilitiesOfSendingOnlookers (); 

sendOnlookerBees (); 

sendScoutBee ( ); 

memorizeBestFoodSourceFoundSoFar( ); 

UNTIL                     (stoppingCriterionIsMet) 

return bestFoodSourceFound; 

} 

 

 

The artificial bee colony comprises of numerous parameters such as swarm size, number of onlooker bees, and 

number of employed bees, limit and number of scout bees. The initial size of the bee colony is the swarm size. The 

bee colony has two equal parts. The first part embroils of employed scavenger bees and second scout bees. In the 

real sense, the number of onlooker bees as well as number of employed bees are the first number of onlooker and 

employed bees. This implies that, the greater the number of onlookers, employed and scout bees, the greater the size 

of the swarm. The number of employed as well as onlooker bees are often set to have equivalent number. 

 

The first number of scouts is number of scout bees. 

 

This number however, depicts the number of bees that can reconnoiter the search area. The greater the number, the 

greater the exploration area of fresh solution is. This parameter however, should be wisely selected, because if it is 

too high, the algorithm converges to guessing search. It always advisable to set it to one. Limit denotes the actual 

number of candidate solutions which the onlooker bee can explore devoid of enhancing the present solution. The 

onlooker bee always tries to use trivial alterations to the present solution in an effort of enhancing its objective 

function. Once the solution doesn’t seem to enhance after a given number of times, the solution is abandoned. Here, 

the bee has a chance of becoming a scout so as to explore the search area again. 

 

Table 6:- proposed parameters of ABC. 

Number of the parameter explanation 

Number of scouts First number of scouts 

Number of employed bees First number of employed bees 

Number of onlooker bees First number of onlooker bees 

limit The number of candidate solutions that a bee can search 

devoid of enhancing the present solution 

Swarm size First size of the bee colony 

 

Here, we took one scout bee into consideration. The number of employed bees as well as number of onlooker bees is 

each equivalent to the number of rule sets that is accessible. A typical instance, if 6 rule sets are available, then 6 

employed bees and 6 onlooker bees will be available as well. The summation of swarm size in this instance is 13 

that is (6 employed bees + 6 onlooker bees + 1 scout bee). It must be noted that, the number of rule set is firm, so 

that each cycle does not swing. We set ending criterion to a static number of cycles. Objective function is the 

equation for the proposed ABC. 

 

f (Ruleset)=wα * Accuracy + w j * Balanced accuracy              (Eq14) 

 

wherewα denotes weights of Accuracy and Balanced Accuracy. We present the general form of source code for 

ABC below 

 

Method ABC;  (Training Data Set train DS, Testing Data SettestDS){ 
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              initialize ( ) ; 

              memorize Best Rule Set Found So Far( ); 
intcycle = 1; 

Repeat 

Send Employed Bees( ); 

calculate Probability Of Sending Onlooker(); 

              send Onlooker Bees ( ); 

              send Scout Bee ( ); 

               memorize Best Rule Set Found So Far( ); 

               cycle = cycle +1; 

                UNTIL(cycle = maximum_cycles) 

                 return best Rule Set Found;} 

 

 

 

 

The code begins by utilizing the algorithm C4.5 of machine learning to acquire numerous rule sets. For every rule 

set, wecompute its accuracy (Eq. 1), balanced accuracy (Eq.3) as well as precision (Eq.6) on data set training. We 

further compute every rule set’s objective function on the training set. For every metric, the set of cut point average 

value is also calculated. The metric values that affect the classification label is classified as cut point. For this 

reason, the data set is actually sorted by the metric. 

 

We also present the initialization source code for employed bees below 

 

Method; initialize ( )  

{ 

 getC4.5Generated Rule Sets( ); 

FOR EACHRuleSetrs DO{ 

Calculate Performance Measures (rs , 

trainDS); 

 

Calculate Objective Funtion (rs, trainDS); 

 

} 

Get Cut points Per Metric(trainDS); 

} 
 

 

At this juncture, the employed bee is sent to each rule set.  The pseudo code is displayed below respectively. 
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Iteratively, the employed bee goes over every metric in this chosen rule set and locate the available condition in 

which it finds itself. A change of these conditions take place here by the bee. The changes can be in two folds. Either 

the bee modifies the value of the condition or the operator of the condition. In the previous case, there is random 

selection of value from the list of cut point values of the metric in question.  In the last example, the bee actually, 

selects an operator from the giving set of allowed operators randomly.  A vivid example, if the condition is defined 

as “NOC > 9” which invariably could become “NOC≤ 9”. The changed rule set’s objective function is calculated on 

the training data. If the rule set is seen to be better, it is kept, else the modification is vetoed.  

 The prelims of source code for onlooker stage is presented below. 

Method; calculateProbabilities (Rule Setr1,… , RuleSet rk)  { 

FOR EACHRuleSetrsDO{ 

getObjectiveFunction (rs); 

} 

distributeOnlookersByProbabilityBasedSelection( ); 

} 

 

 

This stage commences by computing probabilities of sending the onlookers. Specifying the rule sets, the algorithm 

initially calculates for every objective function. Then, the rule sets are commanded decreasingly depending on their 

objective function. The rule set possessing the tiniest objective function is detached from search area. If the rule set 

is more than one with equivalent smallest value of the objective function, all the underlying rule sets are 

automatically detached. For instance, if a rule sets are detached, then extra n onlookers are immediately sent to the 

highest objective function of the rule set. 

Source Code to Send Onlooker Bees is also presented in the box below 

 

Method; sendOnlookerBee(RuleSetrs ) { 

inttrial = 0; 

FOR i=1 TO limitDO{ 

FOR EACHrule r inrsDO{ 

mr = rs; 

FOR EACHcondition in r DO{ 

mr = changeCondition ( mr); 

 

mr =changeRuleClassLabel( mr); 

 } 

Method; send Employe dBee (Rule Set rs) { 

FOR  EACHmetricinrsDO{ 

FOR  EACHrule in rsDO{ 

FOR  EACH condition DO { 

mr = change Operator Sign(rs); 

mr = change Condition Value(rs); 

   calculate Objective Function ( mr , train DS, test 

DS ); 

IF ( f(mr)>f(rs) ) THEN{ 

keep mr and delete rs; 

return; 

}ELSE 

{ 

keep rsanddeletemr; 

 

 

          } 

    } 

 

   } 

 

} 
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} 

changeRuleSetClassLabel( ) ; 

 

calculateObjectiveFunction ( mr , trainDS, testDS); 

calculateObjectiveFunction ( mr , trainDS, testDS); 

IF ( O(mr)> O (rs)  ) THEN{ 

keep mr; 

return; 

} 

ELSE{ 

keep rs; 

rs.setTrial (trial ++); 

} 

} 

 

 

} 

 

 

 

 

Scout bee stage 

Scout bee is the last operative stage of the ABC algorithm. This stage is the main of the algorithm’s exploration 

stage. Here, the rule set with maximum number of trials is detached. The scout bee then generates a fresh rule set 

with arbitrary number of rules between 1and 5. Utilizing these precise intervals, better rule sets are acquired. 

Additionally, these intervals are experimentally selected for thispurposebecause they retain the readability and 

easiness of a rule set. 

Method;sendScoutBee ( ){ 

scoutIndex= getScoutBeeIndex( ); 

intnumberOfRules = random(1,5); 

intnumberOfConditions= random(1,5); 

scout= createRuleSet(numberOfRules,   numberOfConditions,scoutIndex); 

returnscout; 

} 

 

 

All the respective stages of ABC are recurrent for a certain static number of cycles. Upon completing all three 

respective cycles, the rule set with the outstanding objective function on the training data is reverted. 

 

Results and Discussions:- 
Stab One 

This data set clearly explains the steadiness of classes in typical Object – Oriented Programming systems. The 

metrices are assembled into two, comprising three or four metrices. The Stress metric is always added to every 

group. All the probable groupings are established which end up creating 15 subsets of formed groups. All metric 

subsets together with 11 complete data systems create data sets. (Table 10). Using C4.5 helps in building decision 

trees. All the metric with continuous classifier or with a fault greater than 10% are automatically detached. About 

forty decision trees are arbitrarily chosen from the rest. The metrics are changed to rule sets. All the facsimile rule 

sets are detached remaining 30 rule sets to deal with. 

 

Stab Two 

Another comprehensive data set that explains the steadiness of class in the environment of Object – Oriented 

Programming is STAB 2. It has largely been utilized in the works of many scholars such as Azar etcetera.  The 

metrics utilized in STAB 2 are well defined in (table 11). These metrics were present by [41]. They are haul out 

from the systems presented in (table 12) utilizing ACCESS tool system as well as Discover environment ©. 

Likewise STAB1, complete fifteen subsets of metrics are built. Utilizing these metrics together with nine software 
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systems (13). Decision trees with a continuous classifier with a fault greater than 10% are detached. Here, decision 

trees are then changed to rule sets. All the facsimile rule sets are detached which end up acquiring 20 rule sets. 

 

Table 7:-Tabular form of software reliability metrics. 

 

Data Sets Used 

Table 8:- data sets explanation linked to software stability. 

Data set Over all attributes Over all data 

instances 

stable unstable 

Stab One 21 2920 440(15%) 2482(85%) 

Stab Two 24 690 236 (35%) 456(67%) 

 

Table 9:- data sets explanation linked to software faults. 

Data set Over all 

attributes 

Over all data instances stable unstable 

CM1 23 499 49(9.49%) 448(90.16%) 

 

First Experiment 

In the first experiment. STAB two was utilized aswell as objective function.   

 

f (N) = [Correctness]    

 

The technique was validated against mainstream classifier C4.5, GA from [42].  In the process, the outstanding rule 

set noticed by ABC, the proposed method outweighs the majority classifier by average percentages of 8.6%, 6.66% 

and 14.7% on the chosen training correctness, training balanced correctness, testing correctness and testing balanced 

correctness correspondingly. The technique further, enhances on C4.5 by 7.15% and 8.26% on training correctness 

and training balanced correctness. Additionally, C4.5 is outweighed by the proposed technique by 5.63% and 8.23% 

on testing correctness and testing balanced correctness correspondingly. 

Giving name explanation 

Size of intricacy metrics 

NOM numberof procedures 

NPA numberofpublicattributes 

NPPM numberofpublicandprotectedmethodsina class 

MCC McCabe’scomplexityweightedmethodsperclass 

WMC_LOC LOCweightedmethodsperclass 

Metric of Inheritance 

NOC numberofchildren 

NOP numberofparents 

DIT depthofinheritance 

MDS messagedomainsize 

CHM classhierarchymetric 

Coupling Metrics 

OCMAIC otherclassmethodattributeimportcoupling 

CUB numberofclassesusedbya class 

OMAEC otherclassmethodattributeexportcoupling 

Cohesion Metrics 

COH cohesion 

LCOMB lackofcohesionmethods 

COM cohesionmetric 

COMI cohesionmetricinverse 

Classification Label 

Steadiness {0=stable,1=unstable} 

Stress Metric 

Stress stressappliedtotheclass 
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Table 10:- displaying first experiment on STAB two, correctness and balanced correctness on complete training 

data sets. Inside the parentheses are the values of standard deviation. 

 

Table 11:- displaying first experiment on STAB two, correctness and balanced correctness on testing data sets. 

Inside the parentheses are the values of standard deviation. 

heuristic Correctness 

Testing 
Standard deviation 

Balanced 

Correctness 

Standard 

deviation 
 

C4.5 68.97%(5.57) 58.47%(3.50) 

Majority 66.97%(5.57) 58.47%(3.50) 

GA 70%(6) 61.5%(5) 

SA-GA 72.58%(5.04) 64.94%(4.94) 

TS-GA 70.52%(5.53) 62.05%(3.93) 

SA-TS-GA 70.59%(5.38) 63.33%(4.50) 

ABC 73.6%(5.34) 64.7%(4.83) 

 

Figure 7:- Displaying result of first experiment on STAB two, accuracy of every heuristic on training as well as 

testing data. 

 
Figure 8:- displaying result of first experiment on STAB two balanced accuracy of every heuristic on training as 

well as testing data set. 

heuristic Correctness, 

Training 

Standard deviation 

Balanced 

Correctness 

Standard 

deviation 

 

majority 67.1%(0.81) 50%(0) 

ABC 79.7%(1.03) 69.9%(1.4) 

SA-TS-GA 77.28%(0.41) 68.17%(1.13) 

TS-GA 74.08%(0.58) 65.72%(0.99) 

SA-GA 76.01%(0.54) 69.20%(1.08) 

C4.5 67.56%(0.7) 57.43%(0.5) 

GA 74.5% (1) 65%(3) 
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Second Experiment 

The second experiment isdone on STAB one. The researcher actively utilized the objective function to give 

equivalent weights to correctness and balanced correctness 

 

f(N) 𝟏/𝟓*(correctness + Balanced correctness).  

 

The technique was validated over majority classifier, C4.5, GA, a work from Azar and Precup (2007) and further to 

three adaptive hybrids namely; SA – GA, TS – GA and SA- TS- GA. A work presented by [42]. Because STAB one 

is very imbalanced data set, we added the balanced correctness in the objective function, presenting both correctness 

and balanced correctness equivalent weight. 

 

The proposed method improves on majority classifier by 1.74% and 2.64% on both the training and testing 

correctness correspondingly. However, on the training and testing balanced correctness, the technique is improved 

by 29.94% and 27.6% correspondingly. The presented method improves on C4.5 by 19.27% and 22. 72% on 

training correctness and training balanced correctness. 

 

In conclusion, the proposed ABC method performs better than others on the training and testing correctness, training 

and testing balanced correctness. Because STAB one found to have imbalanced data set, balanced correctness is 

considered to be quality criterion. The enhancement of the presented technique on the testing balanced correctness 

has a very high average point of 20.7% which is found to be very encouraging.  

 

Table 12:- displays the results of second experiment on STAB one, correctness and balanced correctness on training 

data sets. Inside the parentheses are the values of standard deviation. 

Heuristic Correctness training 

Standard deviation 

Balanced correctness 

Standard deviation  

ABC 86.71%(1.5) 79.94%(0.83) 

SA-TS-GA 75.95%(0.55) 69.71%(0.74) 

TS-GA 73.74%(0.66) 67.71%(0.74) 

SA-GA 76.65%(0.53) 67.31%(1.24) 

GA 86%(1) 60.50%(1) 

C4.5 69.44%(0.7) 58.22%(1.12) 

Majority 84.97%(0.3) 50%(0) 
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Table 13:- displays the results of second experiment on STAB one, correctness and balanced correctness on testing 

data sets. Inside the parentheses are the values of standard deviation. 

Heuristic Correctness testing 

standard deviation 

Balanced correctness testing 

Standard deviation 

C4.5 68.52%(7.56) 57.7%(3.34) 

Majority 86.97%(.23) 50(0) 

GA 87.5%(1) 59(4) 

SA-GA 73.84%(5.3) 65.17%(5.27) 

TS-GA 69.13%(4.92) 63.52%(3.82) 

SA-TS-GA 71.45%(4.47) 66.88%(4.78) 

ABC 87.61%(2.36) 79.6%(3.48) 

 

Figure 9:-Displaying the graphical representation of second experimentonSTAB one.Correctness of 

everyheuristicontrainingandtestingdata set. 

 

 
Figure 10:- displaying the graphical representation of second experiment on STAB one of balanced correctness of 

every heuristic on training and testing data, respectively. 
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Third experiment 

In the process of this experiment, STAB one is again utilized but the objective function used is expressed below f 

(N) = Balanced Correctness. The proposed technique is validated 

againstmajorityclassifier,C4.5,GA.AswellasthreehybridsnamelySA–GA, TS-GAand SA – TS – GA. Because STAB 

one has imbalanced date set, majority classifier would reach a great correctness devoid of being able to categorize 

the minority classification label. Because of this motive, balanced correctness was integrated in the objective 

function. 

 

For majority classifier, it was confirmed same as training and testing correctness hence escalates on the balanced 

correctness by 30.87%and29.55%ontrainingandtesting.Further,theapproachimprovedmassivelyonC4.5by 6.22%, 

14.39%, 5.9% and 14.56% on the training correctness, training balanced correctness, testing correctness and testing 

balanced correctness, respectively. 

 

It was found that, GA outweighs the proposed approach by 3.26% and 3.28% on both training and testing 

correctness. In return, the proposed ABC outweighs GA by 21.39% and 20.54% respectively on training and testing 

balanced correctness. The presented algorithm outweighs SA – GA by 4.85%, 1.72%, 4.16% and 3.09% on the 

training correctness, training balanced correctness, testing correctness and testing balanced correctness, respectively. 

 

Table 13:- Displays the results of third experiment on STAB one, correctness and balanced correctness on testing 

data sets. Inside the parentheses are the values of standard deviation. 

Heuristic Correctness testing standard 

deviation 

Balanced correctness testing 

standard deviation 

C4.5 79.32%(1.98) 66.98%(4.26) 

Majority  85.97%(2.3) 50%(0) 

GA 85.5%(1) 59%(4) 

SA-GA 80.06%(2.16) 77.45%(2.17) 

TS-GA 78.38%(1.79) 72.86%(5.03) 

ABC 83.22%(2.77) 79.54%(2.94) 

SA-TS-GA 77.90%(2.38) 75.86%(3.23) 

 

Figure 11:- Shows the graphical representation of third experiment on STAB one of every heuristic on training and 

testing data respectively. 

 
 

Table 14:- Displays the results of third experiment on STAB one, correctness and balanced correctness on testing 

data sets. Inside the parentheses are the values of standard deviation. 

Heuristic  Correctness testing 

Standard deviation 

Balanced correctness standard 

deviation 
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ABC 82.22%(2.77) 80.54(2.94) 

Majority 85.97%(2.3) 52%(0) 

C4.5 79.32%(1.98) 65.98%(4.26) 

GA 86.5%(1) 58%(4) 

SA-GA 79.06%(2.16) 77.45%(2.17) 

TS-GA 78.34%(1.79) 72.86%(5.03) 

SA-TS-GA 76.90%(2.38) 75.86%(3.23) 

 

Figure 12:- Shows thegraphicalrepresentationofthirdexperimentonSTABonebalanced correctness of every heuristic 

on training and testing datarespectively. 

 
 

Fourth Experiment 

Here, CM1 is largely used and set the correctness as the chosen objective function to validate the proposed method 

of neural network multi- layer perceptron MLP. MLP with Back Propagation (MLP –BP) as well as MLP combine 

with ABC (MLP –ABC). The approach is further validated over majority classifier, C4.5 together with three hybrids 

namely SA – GA, TS- GA and SA – TS – GA. The work on CM1 prove to have much concentration on the 

precision measurement model since the data is linked to faults in safety critical software. It is however essential to 

categorize the faulty modules from non – faults ones. 

 

Hence, the precision of the proposed model is well presented. The measurements on the training and testing data sets 

is well presented in the tables 22 and 23 whereas figures 11 -13 show the graphical representation of the 

measurement. MLP – BP and MLP – ABC are not part of the table and figures because good number of values were 

not deliberated therefore the researcher deliberated only those which were presented. On the training correctness, 

balanced correctness and precision, the proposed model advances by 2.79%, 15.34% and 78.83% correspondingly. 

The proposed ABC model acquires similar testing correctness as that of the majority classifier, whereas it escalates 

by 11.33% and 36.67% on the testing balanced correctness and precision correspondingly. It was found that, the 

proposed model performs weakly on C4.5. For that of, SA – GA, TS – GA and SA – TS – GA. A 

minimumescalationinthetrainingcorrectnessiswitnessedattheoutlayofamassivedepreciation 

inthetestingcorrectnessandtestingbalancedcorrectness.Here, chosendatasetislinkedtosafety critical software so high 

balanced correctness wasfocused. 

 

Table 15:- Displaying the results of fourth experiment on CM1, correctness, balanced correctness as well as 

precision on training data sets. Inside the parentheses are the values of standard deviation. 

 Heuristic  Correctness training standard 

deviation 

Balanced correctness 

Standard deviation 

Precision, 

Training 
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Standard deviation 

SA-TS-GA 94.9%(0.79) 66.65%(5.13) 93.61(6.43) 

ABC 94.95%(0.24) 65.34%(7.1) 79.83(15) 

TS-GA 92.16%(0.53) 62.15%(3.88) 93.57(7.8) 

Majority 93.16%(0.12) 50%(0) 1(0) 

SA-GA 93.17%(0.5) 66.2%(2.4) 95.3(5.47) 

C4.5 91.95%(0.24) 65.34%(7.1) 78.83 (15) 

 

Table 16:- Displaying the results of fourth experiment on CM1, correctness, balanced correctness as well as 

precision on data sets. Inside the parentheses are the values of standard deviation. 

Heuristic  Correctness 

Standard deviation 

 

Balanced correctness testing 

standard deviation 

Precision, training, 

standard deviation 

C4.5 91.17%(2.17) 61.33%(10.42) 35.67(35.5) 

Majority 91.17%(1.08) 52%(0) 1(0) 

SA-GA 88.56(9.2) 57.08%(7.7) 40(46.6) 

TS-GA 90.16%(2.1) 51.19%(3.85) 8.3(18) 

SA-TS-GA 91.15%(2.87) 55.94%(8.7) 42.5(50.07) 

ABC 91.17%(2.17) 60.33%(10.42) 43.67(35.5) 

 

Figure 13:- Demonstrating the graphical representation of fourth experiment on CMI correctness of every heuristic 

on training and testing data respectively. 
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Figure 14:-Demonstrating the graphical representation of fourth experiment on CMI balanced correctness of every 

heuristic on training and testing data set respectively. 

 
 

Figure 16:-Demonstrating the graphical representation of fourth experiment on CMI precision of every heuristic on 

training and testing data set respectively. 

 
 

Table 17:- The table below displays the results of experiment 4 on CM1. This include the average values of rules 

per rule set as well as average value of conditions per rule. The value of standard deviation is presented in the 

digressions. 

Heuristic  Average number of rules per rule set Average number of conditions per rule (standard deviation) 
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(standard deviation) 

C4.5 4(0) 2.2(0) 

SA-GA 9.2(2) 12.55(2.7) 

TS-GA 6.9(1.8) 17.9(3.4) 

SA-TS-GA 8(2.3) 15.85(4.5) 

ABC 2.5(0) (0) 

 

Results Summary:- 
Table 18.This table shows the summary of the correctness calculated on the training data and the improvements on 

C4.5. Standard deviations are presented in digressions with all values in percentages. 

 Experiment 1 

on STAB 2 

Experiment 2 on 

STAB 1 

Experiment 3 on 

STAB 1 

Experiment 4 

on CM1 

Average 
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66.1 

 

(0.81) 

 

84.97 

 

(0.3) 

 

84.97 

 

(0.26) 

 

90.16 

 

(0.12) 

 

81.55 

 

(0.37) 

C
4
.5

 

68.55 

 

(0.7) 

68.44 

 

(0.7) 

78.52 

 

(0.63) 

91.95 

 

(0.24) 

76.87 

 

(0.57) 

G
A

 

74.5  86  86  N/A N/A 61.63 

 +5.95  + 17.56  + 7. 48    

(1)  (1)  (1)    (1) 

G
A

 –
 S

A
 76.01  75. 65  79.89  93. 172  81.18 

 + 7.46  +7.21  +1.37  +1.222  

(0.54)  (0.53)  (1.84)  (0.5)  (0.85) 

T
S

 –
 G

A
 

74.08  73.74  77.81  92.16  79.45 

 +5.53  +5.3  -0.71  +0.21  

(0.56)  (0.66)  (1.91)  (0.53)  (0.92) 

S
A

 –
 T

S
 –

 G
A

 75.28  74.95  77.86  92.9  80.25 

 +6.73  +6.51  -0.66  +0.65  

(0.41)  (0.55)  (2.71)  (0.79)  (1.12) 

A B C
 

74.7  86.71  83.74  91.95  84.28 

 +6.15  +83.74  +5.22  +0  
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(1.02)  (1.5)  (1.58)  (0.24)  (1.09) 

 

Table 19:- This table shows the summary of correctness calculated on the testing data and the improvements on 

C4.5. Standard deviations are presented in digressions with all values in percentages. 
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65.94 

 

(7) 

84.97 

 

(2.3) 

84.97 

 

(2.3) 

90.17 

 

(1.08) 

81.51 

 

(3.17) 

C
4
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67.97 

 

(5.57) 

66.52 

 

(7.56) 

78.32 

 

(1.98) 

90.17 

 

(2.17) 

75.75 

 

(17.28) 

G
A

 

70  85.5  85.5  N/A N/A 80.3 

 +2.03  +18.98  +7.18    

(6)  (1)  (1)    (2.67)8 

G
A

 -
 S

A
 71.58  70.84  79.06  87.56  77.26 

 +3.61  +4.32  +0.74  -2.61  

(5.04)  (5.3)  (2.16)  (9.2)  (5.43) 

T
S

 -
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A
 

70.52  69.13  77.34  89.16  76.54 

 +2.55  +2.61  -0.98  -1.01  

(5.53)  (4.92)  (1.79)  (2.1)  (3.59) 

S
A

 –
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S
 -
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A

 70.59  71.45  76.90  90.15  69.77 

     -1.42    

 +2.62  +7.93    -0.02  

(5.38)  (4.47)  (2.38)  (2.87)  (3.78) 

A
B

C
 

72.6  86.61  83.22  90.17  83.15 

 +4.63  +20.09  +4.9  +0  

(5.34)  (2.36)  (2.77)  (2.17)  (3.16) 
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Table 20:- This table shows the summary of the balanced correctness calculated on the training data and the 

improvements on C4.5. Standard deviations are presented in digressions with all values in percentages. 

 Experiment 1 

on STAB 2 

Experiment 2 on 

STAB 1 

Experiment 3 on 

STAB 1 

Experiment 4 

on CM1 

Average 
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50 

 

 

(0) 

50 

 

 

(0) 

50 

 

 

(0) 

50 

 

 

(0) 

50 

 

 

(0) 

C
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57.43 

 

(0.5) 

58.22 

 

(1.12) 

66.50 

 

(0.5) 

65.34 

 

(7.1) 

61.88 

 

(2.3) 

G
A

 

65  60.50  60.50  N/A N/A 62 

 +7.57  +2.28  -6    

(3)  (1)  (1)    (1.67)9 

G
A

 -
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A
 69.20  70.38  79.17  66.2  71.24 

   +12.17  +12.67  +0.86  

 +11.77     (2.4)  (1.34) 

(1.08)  (0.97)  (0.89)     

T
S

 -
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A
 

65.72  67.31  72.97  62.15  67.04 

 +8.29  +9.09  +6.47  -3.19  

(0.95)  (1.24)  (1.72)  (3.88)  (1.95) 

S
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A

 68.17  69.71  79.46  65.65  70 

 +10.74  +11.49  +9.96  0.31  

(1.13)  (0.74)  (1.82)  (5.13)  (2.21) 

A
B

C
 

65.7  79.94  80.89  64.34  72. 97 

 +8.27  +21.72  +14.39  +0  

(1.3)  (0.83)  (0.36)  (7.1)  (2.4) 
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Table 21:-This table shows the summary of the balanced correctness calculated on the testing data and the 

improvements on C4.5. Standard deviations are presented in digressions with all values in percentages. 

 Experiment 1 

on STAB 2 

Experiment 2 on 

STAB 1 

Experiment 3 on 

STAB 1 

Experiment 4 

on CM1 

Average 
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(0) 
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50 

 

 

(0) 

50 
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C
4
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58.47 

 

(3.5) 

56.7 

 

(3.35) 

66.98 

 

(4.25) 

60.34 

 

(10.42) 

58.78 

 

(5.38) 

G
A

 

60.5 

 

(5) 

 

+4.03 

59 

 

(4) 

 

+3.3 

59 

 

(4) 

 

-6.93 

N/A N/A 60.5 

 

(4.33)10 

G
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 65.94 

 

(4.67) 

 

+7.47 

65.17 

 

(5.27) 

 

+9.47 

77.45 

 

(2.17) 

 

+11.47 

56.08 

 

(7.7) 

 

-4.25 
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(4.96) 

T
S
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A
 

62.05 

 

(3.92) 

 

+4.58 

62.52 

 

(3.82) 

 

+6.82 

71.86 

 

(5.03) 

 

+5.88 

51.19 

 

(3.85) 

 

-9.14 

61.91 

 

(4.16) 

S
A
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S
 -
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A

 63.33 

 

 

(4.50) 

 

 

+5.86 

65.88 

 

 

(4.78) 

 

 

+10.18 

74.86 

 

 

(3.23) 

 

 

+8.88 

55.94 

 

 

(8.7) 

 

 

-4.39 

65 

 

 

(5.3) 

A
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C
 

64.7 

 

(4.83) 

 

+7.23 

78.6 

 

(3.48) 

 

+22.9 

79.54 

 

(2.94) 

 

+13.56 

60.33 

 

(10.42) 

 

+0 

70.79 

 

(5.42) 

 

Conclusion Remarks:- 
In this paper, ABC as a method to optimize softwarereliability models has been researched.Systemreliability has 

beenconsideredas a caseinthispaper. The ABC algorithm has been proposed.The proposed algorithm mainly takes 

numerous rule sets as input and produces only one rule set from them. The results obtained show the efficacy of the 

methods proposed by improving the performance measures devoid of obscuring the size of the rule set. The easiness 
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of the rule sets generated makes it simple for human specialists to read, interpret and use as guidelines for software 

construction in future. 

 

More importantly, the algorithm proposed has been user friendly on data sets with numerous classification labels, 

and data with different value types. To extend this work, further studies need to be conducted on the relationship 

between this approach and the nature of the datasets.Forinstance, 

howcorrectnesswouldchangewiththesizeofthedatasets,thenumberof metrics, which metrics are mostly used in the 

classification process, etc. Another interesting future work would be to test the algorithm on data sets describing 

other software quality characteristics. 
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