

RESEARCH ARTICLE

COMPLEX-ROTATION CALCULATIONS FOR DOUBLY EXCITED STATES (N ℓ N' ℓ ') ^{2S+1}Lⁿ ((2 \leq N \leq 3) ; $(3 \le N' \le 4)$; $(0 \le \ell \le 2)$ AND $(0 \le \ell' \le 2)$] OF HELIUM ISOELECTRONIC SERIES

Youssou Gning¹, Malick Sow¹, Babou Diop¹, Boubacar Sow¹, Abdou Diouf¹, Matabara Dieng², Mamadi Biaye³ and Ahmadou Wague¹

- 1. Atomes Lasers Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal.
- 2. Department of physics, UFR Applied Sciences and Technologies of Information and Communication, University Alioune DIOP, Bambey, Senegal.
- 3. Departments of Physics and Chemistry, Faculty of Sciences and Technologies of Formation and Education, University Cheikh Anta Diop, Dakar, Senegal.

..... Manuscript Info

.....

Abstract

Manuscript History Received: 05 February 2021 Final Accepted: 10 March 2021 Published: April 2021

Key words:-

Complex Rotation Method, Variational Calculations, Correlated Wavefunction, resonance energies and widths, Doubly Excited States, Helium Isoelectronic Series

In this paper, we report the energies and resonant widths of the [(2s3s ${}^{1}S^{e}$ and ${}^{2}s^{3}S^{e}$); (2s4s ${}^{1}S^{e}$ and 2s4s ${}^{3}S^{e}$); (2s3p ${}^{1}P^{0}$ and 2s3p ${}^{3}P^{0}$); (2s4p ¹P⁰ and 2s4p ³P⁰); (2p3p ¹D^e and 2p3p ³D^e); (2p4p ¹D^e and 2p4p ³D^e); (3s4s ¹S^e and 3s4s ³S^e); (3s4p ¹P⁰ and 3s4p ³P⁰); (3p4p ¹D^e and 3p4p ³De) ; (3d4d ¹G^e and 3d4d ¹G^e)] Doubly Excited States of Helium isoelectronic series with nuclear charge Z ($2 \le Z \le 10$).Calculations are performedusing the Complex Rotation Method (CRM) in the framework of a variational procedure. The purpose of this study required a new correlated hydrogenic radial wave function combined with a Hylleraas wave function. The study leads to analytical expressions which are carried out under special MAXIMA computational program. This proposed variational procedure, leads to accurate results in good agreement with available other theoretical results. The present accurate data may be a useful guideline for future experimental and theoretical studies in the (N ℓ N' ℓ ') ^{2S+1}Lⁿsystems.

Copy Right, IJAR, 2021,. All rights reserved.

Introduction:-

On the theoretical level, the usual use of the independent particle model is not appropriate for the description of the properties of the autoionizing states because it does not take into account the mixing of the configurations as well at the level of the discrete states as of the states of the continuum. The main features of these theoretical studies are the difficulties of constructing a new wave functions that can describe doubly excited states with good precision. Thus, to remove this equivocation and contribute to a better understanding of the phenomena of electronic correlations, new theoretical approaches have emerged such as the diagonalization method [1 - 3], the variational method [4 - 3]10], the method of the complex rotation [11 - 19] etc... The advantage of complex rotation coordinates in the study of resonances is the obtaining of the energy and the width of resonances at the same time. For the complex rotation method, the Hylleraas wave functions were valid only for electrons of the same valence or of level less than or equal to 3. Thus some authors [11 - 19] were obliged to use the functions of Slater wave for the calculation of energies and resonance widths of doubly excited states. As part of our study, a new Incomplete Hydrogenic Radial Wave function combined with a Hylleraas wave function was developed in place of wave functions using Slater orbitals

*•Corresponding Author:- Malick Sow

Corresponding author Email address: malick711.sow@ucad.edu.sn

Address:-Atomes Lasers Laboratory, Department of physics, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar, Senegal.

48

valid in the case electrons of different valencies or levels greater than 3. In the case of two-electron atom systems, the exact resolution of the Schrödinger equation was impossible because of the electronic correlation term. A development of the correlation factor on the basis of the hypergeometric wave functions has been designed not to make the same approximations. We can add that the restriction to non-relativistic dynamics and the neglection of spin-orbit and nuclear-spin coupling as well as quantum-electrodynamic (QED) effects, does not allow tests at the highest level of precision.

Theory

The non-relativistic complex Hamiltonian operator for He-like ions is given by (in Rydberg):

$$H(r,\theta) = -(\Delta_1 + \Delta_2)e^{-2i\theta} - 2Ze^{-i\theta}\left(\frac{1}{r_1} + \frac{1}{r_2}\right) + \frac{2e^{-i\theta}}{r_{12}}$$
(1)

This relation (1) can be broken down into a sum of three terms as follows:

$$H(r,\theta) = T(r,\theta) + C(r,\theta) + W(r,\theta)$$
(2)

Where:

the kinetic energy operator of electrons: $(\mathbf{r}, \boldsymbol{\theta}) = -(\mathbf{A} + \mathbf{A})e^{-2i\theta}$

$$T(r,\theta) = -(\Delta_1 + \Delta_2) \cdot e^{-2i\theta} (3)$$

The Laplacian is written as(*i*=1, 2):

$$\Delta_{i} = \frac{1}{r_{i}^{2}} \frac{\partial}{\partial r_{i}} \left(r_{i}^{2} \frac{\partial}{\partial r_{i}} \right) + \frac{1}{r_{i}^{2} \sin \theta_{i}} \frac{\partial}{\partial \theta_{i}} \left(\sin \theta_{i} \frac{\partial}{\partial \theta_{i}} \right) + \frac{1}{r_{i}^{2} \sin^{2} \theta_{i}} \frac{\partial^{2}}{\partial \varphi_{i}^{2}} (4)$$

the operator of the electron-nucleus interaction energy:

$$\vec{C}(r,\theta) = -2Ze^{-i\theta} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$
(5)

 \checkmark the operator of the interaction energy between electrons:

$$W(r,\theta) = \frac{2e^{-i\theta}}{r_{12}} (6)$$

In the complex rotation method, the resonance parameters (position and resonances width) are obtained by solving the complex eigenvalue equation below:

$$\left\langle \psi_{\mu} \left(\vec{r}_{1}, \vec{r}_{2} \right) \middle| \hat{H} \left(\vec{r}, \theta \right) - E_{res} \middle| \psi_{\mu'} \left(\vec{r}_{1}, \vec{r}_{2} \right) \right\rangle = 0$$
(7)
where $E_{res} = \frac{\left\langle \psi_{\mu} \left(\vec{r}_{1}, \vec{r}_{2} \right) \middle| H \middle| \psi_{\mu'} \left(\vec{r}_{1}, \vec{r}_{2} \right) \right\rangle}{\left\langle \psi_{\mu} \left(\vec{r}_{1}, \vec{r}_{2} \right) \middle| \psi_{\mu'} \left(\vec{r}_{1}, \vec{r}_{2} \right) \right\rangle} = E_{r} - \frac{\Gamma_{r}}{2} i$ (8)

Thereal part E_r gives the resonance energy and the imaginary part Γ_r gives the resonance width and $\Psi_{\mu}(\vec{r_1}, \vec{r_2})$ is a trial wave function.

This new trial wave function that we used in this work is obtained by a combination of incomplete hydrogenic radial wave functions with Hylleraas wave functions. It is in the form: $\psi_{jkmnln'l'}\left(\vec{r}_{1},\vec{r}_{2}\right) = \left\langle \left(2r_{1}2r_{2}\right)^{l} \times \sum_{\nu=0}^{\nu=n-l-1} \left(n^{2}r_{0}^{2}\lambda^{2}2r_{1}2r_{2}\right)^{\nu} + \left(2r_{1}2r_{2}\right)^{l'} \times \sum_{\nu'=0}^{\nu'=n'-l'-1} \left(n'^{2}r_{0}^{2}\lambda'^{2}2r_{1}2r_{2}\right)^{\nu'} \right\rangle_{(9)}$ $\times r_{12}^{m} \times \left[r_{1}^{j}r_{2}^{k+L}Y_{00}^{(1)}Y_{L0}^{(2)} + (-1)^{s}r_{2}^{j}r_{1}^{k+L}Y_{L0}^{(1)}Y_{00}^{(2)}\right] \times \exp\left(-\lambda r_{1} - \lambda'r_{2}\right)$

The set consisting of the three parameters *j*, *k* and *m* (with *j*, *k* and $m \ge 0$) represents a state base of the two-electron system where $j + k + m \le \Omega$, (with Ω being an integer> 0).

İ takes into account the distance of the two electrons from the nucleus. k takes into account the approximation of the electrons from the nucleus. two *m* takes into account the distance between the two electrons.

• ℓ and ℓ ' are the orbital angular moments of the two electrons,

• L = $\ell + \ell'$: is the total angular momentum as for the terms L = 0, $k \ge m$,

•S: the total spin of the atomic system,

• $\vec{r_1}$ and $\vec{r_2}$ correspond to the positions of the two electrons,

• \mathcal{V}_0 : is the radius of Bohr,

•*n* and *n*': are major quantum numbers,

• $Y_{00}^{(1)}$, $Y_{L0}^{(2)}$, $Y_{L0}^{(1)}$ and $Y_{00}^{(2)}$: represent spherical harmonics of electrons 1 and 2.

The exponential parameters are given by:

$$\begin{cases} \lambda = \frac{Z}{\alpha n r_0} \\ \lambda' = \frac{Z}{\alpha' n' r_0} \end{cases}$$
(10)

Where Z is the nuclear charge; α and α 'are the variational parameters,

 r_{12}^{n} : represents the correlation factor defined by [20]:

For
$$r_1 < r_2$$
 we have: $r_{12}^n = 4\pi \sum_{l=0}^{\infty} \frac{1}{2l+1} a_l^n (r_1, r_2) \times (Y_l(\Omega_1) Y_l(\Omega_2))$ (11)
Where $a_l^n (r_1, r_2) = \frac{-\left(\frac{n}{2}\right)_l}{\left(\frac{1}{2}\right)_l} r_2^n \left(\frac{r_1}{r_2}\right)^l F\left(l - \frac{n}{2}, -\frac{1}{2} - \frac{n}{2}, l + \frac{3}{2}, \frac{r_1^2}{r_2^2}\right)$ (12)

$$F\left(l - \frac{n}{2}, -\frac{1}{2} - \frac{n}{2}, l + \frac{3}{2}, \frac{r_{1}^{2}}{r_{2}^{2}}\right)$$
 is the hypergeometric wave function defined by [21]:

$$F\left(l - \frac{n}{2}, -\frac{1}{2} - \frac{n}{2}, l + \frac{3}{2}, \frac{r_{1}^{2}}{r_{2}^{2}}\right) = 1 - \frac{(2l - n)(1 + n)}{2(2l + 3)} \times \frac{r_{1}^{2}}{r_{2}^{2}}$$
(13)

The correlation factor is then written as follow:

$$r_{12}^{n} = 4\pi \sum_{l=0}^{\infty} \frac{1}{2l+1} \times \frac{\left(-\frac{n}{2}\right)_{l}}{\left(\frac{1}{2}\right)_{l}} \times \frac{r_{1}^{l}}{r_{2}^{l-n+2}} \times \left(r_{2}^{2} - \frac{(2l-n)(1+n)}{2(2l+3)} \times r_{1}^{2}\right) (Y_{l}(\Omega_{1})Y_{l}(\Omega_{2})) (14)$$

With $Y_{l}(\Omega_{1})Y_{l}(\Omega_{2}) = \sum_{m=-l}^{l} Y_{l,m}^{*}(\Omega_{1})Y_{l,m}(\Omega_{2})$ and $\Omega_{l} = (\theta_{l}, \varphi_{l})$

In our calculations, we have set the dimension Ω of the base to 5 defined suchaccording to the values of the real parameters (j, k and m > 0) that $j + k + m \le \Omega$, and the rotation angle θ fixed to 0.35 radian. The restriction $\alpha = \alpha$ ' has been adopted. To obtain the results of energies and resonance widths, the analytical expressions are carried out under special MAXIMA computational program.

MAXIMA is a computer algebra system for the manipulation of symbolic and numerical expressions, including differentiation, integration, ordinary differential equations, and matrix elements. MAXIMA yields high precision numeric results by using exact fractions, arbitrary precision integers, and variable precision floating point numbers. Our MAXIMA source code is compiled on windows systems.

To obtain the minimum eigenvalue of the [2s3s ${}^{1,3}S^e$; 2s4s ${}^{1,3}S^e$; 2s3p ${}^{1,3}P^0$; 2s4p ${}^{1,3}P^0$; 2p3p ${}^{1,3}D^e$; 2p4p ${}^{1,3}D^e$; 3s4s ${}^{1,3}S^e$; 3s4p ${}^{1,3}P^0$; 3p4p ${}^{1,3}D^e$ and 3d4d ${}^{1,3}G^e$] doubly excited states of Helium isoelectronic series with nuclear charge Z ($2 \le Z \le 10$) in which we are interested and quoted in tables 1-10, the nonlinear parameters α and α 'are slightly varied that exhibit a plateau for the energy. At each minimum value of the energy we are interested, corresponds a minimum value of the resonance width given at near 0.001. Here 0.001 is not the precision of the result but a minimum limit of comparison between results.

Results and Discussions:-

The main results of our calculations for the energies and the resonance widths of the $[2s3s^{1,3}S^e; 2s4s^{1,3}S^e; 2s3p^{1,3}P^0; 2s4p^{1,3}P^0; 2p3p^{1,3}D^e; 2p4p^{1,3}D^e; 3s4s^{1,3}S^e; 3s4p^{1,3}P^0; 3p4p^{1,3}D^e and 3d4d^{1,3}G^e]$ doubly excited states of Helium isoelectronic series with nuclear charge Z ($2 \le Z \le 10$) are reported in Tables 1 – 10. The results are reported in Rydberg (Ry) for direct comparison. Our results are compared with other theoretical results available in the literature. For the calculation of the resonance parameters (energies and resonance widths) of He-like systems, several authors have used different methods. We noted, Ho [13 - 16] used the complex rotation method and a Hylleraas-type wave function, Biaye and al. [6 - 8] used the variational method of Hylleraas, Seminario and al. [22] used the variational method of stabilization, Sakho and al. [25 - 27] used the SCUNC (Screening Constant by Unit Nuclear Charge) method, Bachau and al. [28] also used the Feschbach method of operations, Sow and al. [29] used the Modified Atomic Orbital Theory (MAOT), Ivanov [30, 31] who used the method of complex rotation.

In Tables 1 and 2, we compared our results respectively with the theoretical results of Ho [13], Dieng and al. [10] for 2s3s ${}^{1}S^{e}$ state; Dieng and al. [10], Ivanov and al. [30] for 2s3s ${}^{3}S^{e}$ state; the results of Sakho and al. [27], Ivanov and al. [31] for 2s4s ${}^{1,3}S^{e}$ state. We note a good agreement between our results and those of the authors mentioned above. In Tables 3 and 4, we compare our results with those of Ho [13], Sakho and al. [27] for 2s3p ${}^{1,3}P^{o}$ state and those of Dieng and al. [10], Sakho and al. [27] for 2s4p ${}^{1,3}P^{o}$ state. Generally, we note a good agreement between our results and those of Ho [13], Dieng and al. [27] for 2s4p ${}^{1,3}P^{o}$ state.

Comparisons are made in Tables 5 and 6 with the results of Ho [16], Dieng and al. [12], Sakho and al. [26] for 2p3p ^{1,3}D^e, with the results of Dieng and al. [10], Sakho and al. [27] as well as for 2p4p ^{1,3}D^e state. Here again we note a good agreement.In Tables 7 and 8 the values of the energies we calculated have been compared with those of Dieng and al. [10], Bachau and al. [28] for the 3s4s ^{1,3}S^e and 3s4p ^{1,3}P^o states. For these states, we note a good agreement.Tables 9 and 10, show that our values and those of Dieng and al. [10], Ho [13], Bachau [28], and Ivanov [31] are in good agreement.

For all the states studied, the results obtained are in good agreement with the theoretical results we have consulted. The small difference noted between our results and those of the authors mentioned above is explained by the fact that Dieng and al. [10] used the variational method of Hylleraas considering only the radial part of the Hamiltonian then that Sakho and al. [27] used the semi-empirical procedure of the Screening Constant by Unit Nuclear Charge method. Moreover, this small difference with the results of Ivanov and al. [30, 31] using the same method of complex rotation is also due to the choice of nonlinear parameters (α and α '), the size of the basis Ω and the angle of rotation θ . However, it should also be noted that our results agree better with those of Ho [13, 16], because we used the same method of complex rotation and the same angular part of the wave function.

For the calculation of the resonance widths, our results were compared with those of Ho [13, 16] for doubly excited states $2s3s \, {}^{1}S^{e}$, $2s3p \, {}^{1,3}P^{o}$, $2p3p \, {}^{1,3}D^{e}$ and $2p4p \, {}^{1,3}D^{e}$. We also compare the results of our calculations for resonance widths with the values of Bachau [28] for the $3s4s \, {}^{1,3}S^{e}$, $3s4p \, {}^{1,3}P^{o}$, $3p4p \, {}^{1,3}D^{e}$ states. The results we obtained, were also compared to those of Ivanov and al. [31] for $3d4d \, {}^{1,3}G^{e}$ state. We then note a good agreement in the whole between the values obtained on the widths with the values of other authors, Ho [13, 16], Ivanov and al. [30, 31] and Bachau [28].

Summary and Conclusion:-

In this work, the variational procedure of the complex rotation method has been applied to the calculations of energies and resonance widths of the [(2s3s ¹S^e and 2s3s ³S^e); (2s4s 1Se and 2s4s ³S^e); (2s3p ¹P⁰ and 2s3p ³P⁰); (2s4p ¹P⁰ and 2s4p ³P⁰); (2p3p ¹D^e and 2p3p ³D^e); (2p4p ¹D^e and 2p4p ³D^e); (3s4s ¹S^e and 3s4s ³S^e); (3s4p ¹P⁰ and 3s4p ³P⁰); (3p4p ¹D^e and 3p4p ³D^e); (3d4d ¹G^e and 3d4d ¹G^e)]Doubly Excited States of Helium isoelectronic series with

nuclear charge Z ($2 \le Z \le 10$). It has demonstrated the possibilities to construct a new correlated wave function adapted to the correct description of the electron-electron correlations phenomena in the (nln'l') 2S+1L π Doubly Excited States of the He-like systems. These very important results obtained in this work indicate the possibility to apply the complex rotation variational procedure to the treatment of atomic spectra in two electron systems and probably in more complex atomic systems. The good results give also the possibility to analyze resonance energies and width via a very complex rotation flexible method, in contrast to the complex procedures of experimental and theoretical methods based on the determination of the photoionization cross-section. In summary, the manuscript reports on new calculations for key atomic-structure parameters of important fundamental few-body systems (helium and helium-like ions). While not allowing precision tests of physics due to the neglect of relativistic, spin, and QED effects, such results can still be helpful in the future development of theories to describe more complex atoms, or may be further developed to study the time-dependent evolution of atoms in external (e.g. laser) fields.

Z	2s3s	¹ S ^e					2s3s	³ S ^e			
	α =	- E ^{Present}	– E ^{Ho}	- E ^{Dieng}	Γ^{Present}	Γ^{Ho}	$\alpha =$	- E ^{Present}	_	- E ^{Sakho}	Γ^{Present}
	α'		[13]	[10]		[13]	α'		EDieng[10	[27]	
]		
2	2.2	1.1795102	1.1798	1.1799	0.0029	0.002	2.4	1.2265895	1.2254	1.2029	0.0010
	00	57	50	02	70	70	60	71	89	60	709
3	2.0	2.8311934	2.8311	2.8237	0.0044	0.004	2.3	2.9092799	2.9031	2.8767	0.0025
	77	84	50	79	20	30	50	73	72	40	566
4	2.0	5.2045873	5.2041	5.1898	0.0054	0.005	2.3	5.3023892	5.3030	5.2744	0.0046
	17	21	00	78	60	30	00	61	77	40	709
5	1.9	8.2997095	8.299	8.2782	0.0061	0.005	2.2	8.4552982	8.4252	8.3950	0.0074
	81	09	000	00	40	93	60	38	04	40	724
6	1.9	12.118407	12.116	12.088	0.0064	0.006	2.2	12.270167	12.269	12.238	0.0108
	57	994	00	743	43	37	45	761	553	160	543
7	1.9	16.046441	16.655	16.621	0.0068	0.006	2.2	16.805423	16.836	16.803	0.0148
	40	499	000	509	68	70	33	079	124	700	780
8	1.9	21.913270	21.916	21.876	0.0069	0.006	2.2	22.134305	22.124	22.091	0.0196
	28	359	400	498	21	90	17	159	918	580	165
9	1.9	27.865758	27.899	27.853	0.0072	0.007	2.2	28.117025	28.135	28.101	0.0249
	20	232	800	708	74	10	10	8647	934	760	303
1	1.9	34.607680	34.605	34.553	0.0073	0.007	2.2	34.896165	34.869	34.834	0.0309
0	10	863	400	141	19	25	00	068	172	200	618

Table 1:- Energies (– E) and resonances widths (Γ) of (2s3s ¹S^e and 2s3s ³S^e) doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other theoretical results. The results are reported in Rvdberg (Rv), 1Rv = 13.6056925 eV.

Table 2:- Energies (– E) and resonances widths (Γ) of (2s4s ¹S^e and 2s4s ³S^e)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10).Our present results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	2s4s	¹ S ^e				2s4s	³ S ^e			
	α =	- E ^{Present}	-	-	Γ^{Present}	α =	$-E^{Present}$	– E ^{Sakho}	- E ^{Ivanov}	Γ^{Present}
	α'		ESakho[27]	E ^{Ivanov[30}		α'		[27]	[30]	
]						
2	1.87	1.0850824	1.08899	1.07059	0.00093	2.07	1.0825365	1.09820	1.08240	0.000940
	0	74	9	9	093	2	21	0	0	977
3	1.81	2.5256305	2.55203	2.52559	0.00217	1.99	2.5483623	2.57112	2.54700	0.002227
	5	96	9	8	524	2	35	0	0	218
4	1.77	4.6054168	4.64033	4.60559	0.00397	1.95	4.6375433	4.66964	4.63660	0.004647
	5	85	8	8	826	2	75	0	0	005
5	1.75	7.3133752	7.35371	7.31059	0.00632	1.92	7.3503712	7.39342	7.35120	0.006453
	0	41	7	7	945	8	83	0	0	752
6	1.73	10.642346	10.6921	10.6405	0.00922	1.91	10.693418	10.7423	10.6908	0.009400
	4	787	75	96	194	1	223	20	00	881

7	1.72	14.591200	14.6556	14.5955	0.00126	1.90	14.652432	14.7162	14.6552	0.012892
	3	963	33	94	546	0	575	80	00	022
8	1.71	19.172428	19.2441	19.1755	0.00166	1.89	19.243317	19.3152	19.2448	0.016942
	4	460	32	92	396	1	588	80	00	895
9	1.70	24.379038	24.4576	24.3799	0.00211	1.88	24.459626	24.5393	24.4580	0.021547
	7	034	30	90	702	4	473	20	00	135
1	1.70	30.219179	30.2961	30.2099	0.00252	1.87	30.290158	30.3883	30.2980	0.026693
0	1	979	28	88	542	9	453	80.	00	639

Table 3:- Energies (– E) and resonances widths (Γ) of (2s3p ¹P⁰ and 2s3p ³P⁰)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	2s3p	${}^{1}P^{0}$					2s3p	$^{3}P^{0}$				
	α =	- E ^{Present}	_	_	Γ^{Present}	$\Gamma^{\text{Ho}}[$	α=	- E ^{Present}	_	_	Γ^{Present}	$\Gamma^{\text{Ho}}[1]$
	α'		E^{Ho} [13	E ^{Sakho}		13]	α'		E ^{Ho} [1	E ^{Sakho}		3]
]	27]					3]	27]		-
2	2.1	1.128393	1.1280	1.1247	0.0009	0.00	2.0	1.158931	1.158	1.172	0.0001	
	13	882	00	80	8091	0 60	59	5082	06	00	0156	
3	1.9	2.721862	2.7228	2.7214	0.0013	0.00	1.9	2.797664	2.797	2.809	0.00011	
	91	415	60	00	857	1 32	39	601	028	60	285	
4	1.9	5.036715	5.0365	5.0404	0.0024	0.00	1.8	5.157323	5.158	5.169	0.00014	0.00
	26	919	00	00	359	2 00	82	826	510	42	002	010
5	1.8	8.071542	8.0707	8.0812	0.0025	0.00	1.8	8.249212	8.242	8.251	0.00014	0.00
	88	724	00	90	296	2 36	48	437	240	46	385	010
6	1.8	11.82855	11.826	11.844	0.0026	0.00	1.8	12.04736	12.04	12.05	0.00014	0.00
	64	0327	300	580	685	2 62	30	5684	8 180	573	771	011
7	1.8	16.30230	16.303	16.330	0.0029	0.00	1.8	16.57593	16.57	16.58	0.00014	0.00
	49	4647	500	080	439	2 82	18	5608	6 3 3 0	221	791	011
8	1.8	21.50244	21.502	21.537	0.0030	0.00	1.8	21.85347	21.82	21.96	0.00015	0.00
	39	7409	600	810	721	2 95	09	2899	6 6 9 0	690	126	012
9	1.8	27.42245	27.423	27.467	0.0031	0.00	1.8	27.83764	27.79	27.80	0.00015	0.00
	33	0768	800	750	384	3 07	05	3419	9 263	185	355	012
1	1.8	34.08172	34.066	34.119	0.0032	0.00	1.8	34.50986	34.49	34.49	0.00015	0.00
0	29	4989	900	920	639	3 1 5	05	0659	4 0 5 0	501	445	012

Table 4:- Energies (– E) and resonances widths (Γ) of (2s4p ¹P⁰ and 2s4p ³P⁰)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present energies values are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	2s4p	${}^{1}P^{0}$			2s4p	$^{3}P^{0}$				
	$\alpha =$	$-E^{Present}$	-	—	Γ^{Present}	$\alpha = \alpha$	$-E^{Present}$	_	-	Γ^{Present}
	α'		E ^{Dieng[10]}	E ^{Sakho[27]}		,		E ^{Dieng[10]}	ESakho[27	
]	
2	1.9	1.0680838	0.975938	1.06741	0.000939	1.7	1.0856714	1.007528	1.0867	0.000957
	08	43	64	00	751	35	76	06	20	797
3	1.7	2.3781974	2.378209	2.50972	0.002089	1.6	2.5410905	2.444897	2.5464	0.002252
	79	97	49	00	751	77	99	46	70	985
4	1.9	4.4083861	4.408265	4.57704	0.003893	1.6	4.6331198	4.513855	4.6312	0.004121
	16	61	95	00	879	41	79	29	20	096
5	1.7	7.0748377	7.070269	7.26936	0.006270	1.6	7.3436176	7.215274	7.3409	0.006544
	77	58	67	00	165	21	53	27	70	066
6	1.6	10.367819	10.36592	10.5866	0.009209	1.6	10.674837	10.54946	10.675	0.009524
	54	981	140	800	023	08	341	290	720	140
7	1.6	14.293582	14.29595	14.5290	0.012711	1.5	14.679124	14.51655	14.635	0.013114
	34	822	660	000	167	94	332	310	470	122
8	1.6	18.858138	18.86072	19.0963	0.016799	1.5	19.229414	19.11661	19.220	0.017185

	20	024	050	100	244	90	106	120	220	822
9	1.5	24.288385	24.06038	24.2886	0.076484	1.5	24.427451	24.34967	24.429	0.021841
	96	562	970	300	218	85	591	590	970	871
1	1.5	30.074430	29.89506	30.1059	0.026861	1.5	30.269595	30.21577	30.264	0.027078
0	92	943	340	500	347	80	184	300	720	624

Table 5:- Energies (– E) and resonances widths (Γ) of (2p3p ¹D^eand 2p3p ³D^e)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	2p3p	$\mathbf{D}^{1}\mathbf{D}^{e}$						2p3p	$^{3}D^{e}$				
	$\alpha =$	- E ^{Present}	_	_	Γ^{Present}	$\Gamma^{\text{Ho}[16]}$		α =	- E ^{Present}	_	_	Γ^{Present}	$\Gamma^{\text{Ho}[16]}$
	α'		E ^{Ho[16]}	ESakho[26]		α'		E ^{Ho[16]}	ESakho[2]
]							6]		
2	1.9	1.14200	1.138	1.1381	0.0010	0.001	Ī	2.0	1.16844	1.1675	1.1667	0.0007	5.72
	79	0437	441	3994	06100	110		34	4747	681	3995	6484	X10 ⁻
	1.0					0.000	-			• • • • • •	• • • •	-	8
3	1.8	2.74776	2.748	2.7477	0.0024	0.002		1.9	2.81238	2.8111	2.8070	0.0007	3.32
	68	4991	201	9994	41337	208		22	8513	367	5999	6484	X10 ⁻ 8
4	1.8	5.08469	5.080	5.0798	0.0025	0.002	-	1.8	5.17664	5.1766	5,1708	0.0007	1.92
	05	9709	575	4000	40973	852		67	9821	751	1993	6484	X10 ⁻
													8
5	1.7	8.13469	8.135	8.1341	0.0032	0.003		1.8	8.26361	8.2642	8.2572	0.0076	1.26
	69	7914	532	5965	87123	246		34	9299	689	8011	2943	X10 ⁻
							-						0
6	1.7	11.9114	11.91	11.910	0.0036	0.003		1.8	12.0736	12.073	12.066	0.0111	0.94
	44	59921	2922	73990	93705	504		12	85560	9865	1997	6962	X10 ⁻
7	17	16 4110	16.41	16 400	0.0027	0.002	-	17	16 5000	16 605	16 507	0.0152	°
/	1./	10.4119	16.41	16.409	0.003/	0.003		1./	10.3990	16.605	16.597	0.0155	0.94 V10
	20	1/135	2002	30010	37081	080		97	/0302	8049	4/99	//01	8
8	1.7	21.6277	21.63	21.630	0.0039	0.003		1.7	21.8563	21.859	21.851	0.0202	< 10
	13	00513	4700	64090	70554	824		85	53876	9252	0597	7093	X10 ⁻
													8
9	1.7	27.5812	27.57	27.573	0.0040	0.003		1.7	27.8312	27.836	27.826	0.0258	< 10
	02	12480	9020	90030	00000	928		76	64406	1797	9200	3448	X10 ⁻
							-						8
1	1.6	34.2406	34.24	34.239	0.0040	0.004		1.7	34.5238	34.534	34.525	0.0320	< 10
0	94	47673	5600	42010	19086	010		69	90082	6364	0402	6381	X10
			1										5

Table 6:- Energies (– E) and resonances widths (Γ) of (2p4p ${}^{1}D^{e}$ and 2p4p ${}^{3}D^{e}$)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present energies results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	2p4p	¹ D ^e				2p4p	³ D ^e			
	$\alpha = \alpha$	$-E^{Present}$	_	_	Γ^{Present}	$\alpha = \alpha$	$-E^{Present}$	- E ^{Dieng}	_	Γ^{Present}
	,		EDieng[10]	ESakho[27]		,		[10]	ESakho[27]	
2	1.6	1.0726562	0.97594	1.07289	0.000948	1.7	1.0816717	1.00752	1.08149	0.000972
	79	74	092	996	181	28	96	983	997	850
3	1.6	2.5233280	2.37821	2.52064	0.002243	1.6	2.5446130	2.44490	2.54134	0.002302
	16	8_	397	002	131	64	80	069	003	162
4	1.5	4.5953245	4.35081	4.59343	0.004097	1.6	4.6256455	4.51385	4.62709	0.004197
	83	73	956	991	693	33	57	83	994	402
5	1.5	7.2932950	7.07026	7.29123	0.006516	1.6	7.3394504	7.21527	7.33821	0.006673
	62	85	952	990	633	12	59	228	994	735

6	1.5	10.613739	10.3659	10.6140	0.009496	1.5	10.678941	10.5494	10.6745	0.009723
	48	597	055	596	470	98	158	475	203	920
7	1.5	14.567834	14.2959	14.5618	0.013048	1.5	14.633208	14.5165	14.6359	0.013336
	37	992	083	997	520	89	895	113	393	670
8	1.5	19.144298	18.8606	19.1347	0.017161	1.5	19.227941	19.1165	19.2224	0.017538
	29	024	157	198	391	81	068	244	000	580
9	1.5	24.341659	24.0601	24.3325	0.021833	1.5	24.427343	24.3495	24.4341	0.022292
	23	317	955	598	600	76	722	189	785	600
1	1.5	30.144441	29.8947	30.1554	0.027049	1.5	30.271609	30.2155	30.2704	0.027640
0	19	210	369	003	404	71	506	132	602	320

Table 7:- Energies (– E) and resonances widths (Γ) of (3s4s ¹S^eand 3s4s ³S^e)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	3s4s	¹ S ^e					3s4s	³ S ^e				
	$\alpha =$	$-E^{Present}$	-	_	Γ^{Present}	Γ^{Bacha}	α =	- E ^{Present}	_	_	Γ^{Present}	Γ^{Bacha}
	α'		EBachau	EDieng		u [28]	α'		EBachau	E ^{Dieng[}		u[28]
			[28]	[10]					[28]	10]		
2	2.5	0.56461	0.563	0.569	0.0001	0.00	2.7	0.57349	0.574	0.569	0.0002	0.000
	00	6063	000	242	5026	013	79	7945	600	242	6758	240
3	2.3	1.35756	1.357	1.363	0.0001	0.000	2.6	1.37265	1.378	1.363	0.0002	0.000
	50	7675	400	931	8003	176	26	8307	800	931	9532	280
4	2.2	2.49326	2.498	2.505	0.0001	0.000	2.5	2.53093	2.530	2.505	0.0003	0.000
	80	3833	000	843	9729	194	40	7602	000	843	1184	300
5	2.2	3.98608	3.988	3.994	0.0002	0.000	2.5	4.02409	4.028	3.994	0.0003	0.000
	32	6875	000	976	0854	200	00	3339	000	976	2812	300
6	2.2	5.83010	5.822	5.831	0.0021	0.000	2.4	5.87731	5.874	5.831	0.0003	0.000
	00	0464	000	332	9870	200	68	0173	000	332	3872	320
7	2.1	8.00612	8.006	8.014	0.0002	0.000	2.4	8.06795	8.068	8.014	0.0003	0.000
	82	3365	000	910	1570	220	49	6329	000	910	4132	320
8	2.1	10.5351	10.53	10.54	0.0002	0.000	2.4	10.6044	10.60	10.54	0.0003	0.000
	67	98846	6000	5711	2019	200	35	28119	8000	5711	5080	320
9	2.1	13.4138	13.41	13.42	0.0002	0.000	2.4	13.4944	13.49	13.42	0.0003	0.000
	55	77157	2000	3733	3303	220	23	22949	6000	3733	5413	340
1	1.1	16.6438	16.63	16.64	0.0002	0.000	2.4	16.7358	16.73	16.64	0.0003	0.000
0	45	30746	6000	8978	4436	220	13	33123	0000	8978	7941	360

Table 8:- Energies (– E) and resonances widths (Γ) of (3s4p ¹P⁰ and 3s4p ³P⁰) doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	3s4p	$^{1}\mathbf{P}^{0}$					3s4p	³ P ⁰				
	$\alpha =$	- E ^{Present}	-	_	Γ^{Present}	Γ^{Bacha}	$\alpha =$	- E ^{Present}	_	-	Γ^{Present}	Γ^{Bacha}
	α'		EBachau	E ^{Dieng[}		u[28]	α'		EBachau	E ^{Dieng[1}		u[28]
			[28]	10]					[31]	0]		
2	2.3	0.57446	0.572	0.521	0.0002	0.000	2.3	0.56010	0.560	0.5385	0.0011	0.001
	00	0147	000	740	6762	26	50	5947	200	8148	5511	08
3	2.1	1.37418	1.374	1.274	0.0003	0.000	2.2	1.35438	1.352	1.3054	0.0012	0.001
	75	8508	400	919	7463	36	00	2444	600	6541	7742	24
4	2.1	2.52392	2.524	2.373	0.0038	0.003	2.1	2.49534	2.490	2.4178	0.0017	0.001
	12	9544	000	100	1580	80	30	7169	000	6517	4686	66
5	2.0	4.02299	4.020	3.828	0.0038	0.003	2.0	3.97655	3.978	3.8852	0.0029	0.005
	75	5817	000	345	7805	80	93	4611	000	6633	6759	80
6	2.0	5.86202	5.864	5.653	0.0038	0.003	2.0	5.81517	5.812	5.7187	0.0107	0.010
	54	6654	000	554	8961	80	65	2905	000	2832	8494	80
7	2.0	8.05400	8.056	7.862	0.0039	0.003	2.0	7.98045	7.994	7.9310	0.0135	0.012

	38	7508	000	730	0065	80	51	1403	000	5129	7120	40
8	2.0	10.5975	10.59	10.47	0.0039	0.003	2.0	10.5285	10.52	10.536	0.0146	0.013
	26	70536	4000	0913	0138	80	34	73202	2000	5097	7679	00
9	2.0	13.4846	13.48	13.49	0.0039	0.003	2.0	13.4036	13.39	13.550	0.0150	0.013
	18	48640	0000	3813	1927	80	25	96554	8000	3737	5133	20
1	2.0	16.7210	16.71	16.96	0.0039	0.003	2.0	16.6293	16.62	16.988	0.0157	0.013
0	12	33874	4000	8842	2227	80	18	27158	0000	3152	1585	20

Table 9:- Energies (– E) and resonances widths (Γ) of (3p4p ¹D^eand 3p4p ³D^e)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	3p4p ¹ D ^e							3p4p ³ D ^e							
	α =	- E ^{Present}	– E	– E ^{Ho}	Γ^{Present}	Γ^{Bacha}		α =	- E Present	– E	– E Ho	Γ^{Present}	Γ^{Bacha}		
	α'		Dieng[10]	[16]		u[28]		α'		Dieng[10]	[16]		u[28]		
2	2.2	0.55582	0.5388	0.539	0.0001	0.00		2.3	0.56255	0.5553	0.5505	0.0003	0.00		
	50	9906	8635	4520	2611	011		00	4523	6100	202	7319	036		
3	2.1	1.33502	1.3130	1.3197	0.0002	0.00		2.1	1.36505	1.3422	1.3382	0.0004	0.00		
	20	6334	8450	258	8118	026		50	0629	4326	968	5748	044		
4	2.0	2.46945	2.4342	2.4473	0.0002	0.00		2.0	2.50527	2.4757	2.4733	0.0004	0.00		
	45	4868	6838	737	8152	026		90	5682	2059	509	6174	046		
5	2.0	3.95451	3.9068	3.9222	0.0002	0.00		2.0	4.00073	3.9576	3.9556	0.0004	0.00		
	00	6979	9654	669	8209	024		50	2059	9969	339	6244	046		
6	1.9	5.79050	5.7350	5.7443	0.0020	0.00		2.0	5.82519	5.7900	5.7851	0.0004	0.00		
	70	7415	3620	855	1821	198		30	3057	0180	393	9176	048		
7	1.9	7.97108	7.9239	7.9137	0.0020	0.00		2.0	7.97310	7.9777	7.9618	0.0004	0.00		
	50	9339	8366	254	4009	154		20	8549	1205	660	9335	048		
8	1.9	10.5308	10.481	10.430	0.0020	0.00		2.0	10.4842	10.525	10.485	0.0005	0.00		
	32	65641	81910	2856	8246	126		08	55169	7726	8134	1101	050		
9	1.9	13.3281	13.420	13.294	0.0021	0.00		1.9	13.4432	13.444	13.356	0.0005	0.00		
	30	26898	89050	0066	1530	112		85	72085	7739	9823	1343	050		
1	1.9	16.5495	16.759	16.750	0.0021	0.00		1.9	16.6631	16.505	16.575	0.0005	0.00		
0	20	56284	79340	6751	1987	106		78	71518	0677	3727	1557	050		

Table 10:- Energies (– E) and resonances widths (Γ) of (3d4d ¹G^eand 3d4d ³G^e)doubly excited states of He-like ions with nuclear charge Z (Z = 2 – 10). Our present results are compared with other theoretical results. The results are reported in Rydberg (Ry), 1Ry = 13.6056925 eV.

Ζ	3d4d ¹ G ^e							3d4d ³ G ^e						
	α	- E ^{Present}	_	_	Γ^{Present}	Γ^{Ivanov}		α	– E	– E	_	Γ^{Present}	Γ^{Ivano}	
	=		EBacha	E ^{Ivanov}		[31]		=	Present	Bachau	E ^{Ivanov}		[31]	
	α'		u [28]	[31]				α'		[28]	[31]			
2	2.3	0.52895	0.524	0.5236	0.0051	0.0050		2.2	0.53975	0.539	0.5391	0.0000	0.0000	
	00	3581	200	648	48397	8875		58	8616	400	38523	01512	0145	
3	2.1	1.28143	1.282	1.2823	0.0115	0.0114		2.1	1.31382	1.314	1.3138	0.0000	0.0000	
	54	1437	000	5251	95162	4140		07	9868	000	35751	08517	0827	
4	2.0	2.38833	2.388	2.3890	0.0160	0.0153		2.0	2.43652	2.434	2.4348	0.0000	0.0000	
	66	8941	000	3500	52129	2500		30	7029	000	74885	18348	1654	
5	2.0	3.84150	3.840	3.8434	0.0178	0.0176		1.9	3.90326	3.902	3.9027	0.0000	0.0000	
	14	7003	000	0900	11772	8700		86	5227	000	06820	26263	2416	
6	1.9	5.64663	5.640	5.6452	0.0198	0.0192		1.9	5.71916	5.716	5.7175	0.0000	0.0000	
	78	0596	000	5900	79636	3700		56	4092	000	25390	31720	3069	
7	1.9	7.79351	7.790	7.7944	0.0207	0.0203		1.9	7.87636	7.878	7.8794	0.0000	0.0000	
	54	7077	000	7800	45921	2400		36	1206	000	24050	36934	3621	
8	1.9	10.2874	10.28	10.291	0.0219	0.0211		1.9	10.3855	10.38	10.388	0.0000	0.0000	
	36	91888	4000	00900	15766	2400		20	92451	6000	45287	40905	4088	
9	1.9	13.1286	13.12	13.134	0.0219	0.0217		1.9	13.2468	13.24	13.244	0.0000	0.0000	

	22	17823	8000	82300	29241	3700	07	73137	2000	64095	4575	4484
1	1.9	16.3247	16.31	16.325	0.0227	0.0222	1.8	16.4430	16.44	16.448	0.0000	0.0000
0	10	58006	8000	90000	73989	2200	98	08761	4000	00635	48937	4824

CrediT author statement

Youssou GNING: Conceptualization; Methodology, Software ; Formal analysis, validation

MalickSOW : Software, Formal analysis, validation, Data curation, Writing- Original draft preparation ;Writing-Reviewing and Editing,

Babou DIOP: Software , Visualization , Formal analysis, Validation.

Boubacar SOW: Software, Visualization, Formal analysis, Validation

Abdou DIOUF: Formal analysis, Visualization, Validation.

MatabaraDIENG : Formal analysis, Visualization, Validation.

MamadiBIAYE : Supervision, investigation, Validation

Acknowledgments:-

The authors are grateful to the Orsay Institute of Molecular Sciences (OIMS), Paris, France and the Abdus Salam International Center for Theoretical Physics (ICTP), Trieste, Italy, for support.

Conflicts of Interest:

The authors declare no conflicts of interest regarding the publication of this paper.

References:-

- 1. Wague, Z. Phys. D: Atoms, Molecules and Cluster, 6 : p. 337 (1987)
- 2. N. A. B. Faye, A. Wagué, J. Phys. B, 28, 1735 (1995)
- 3. S. Ndao, A. Wagué, N. A. B. Faye, and A. Konté, Eur. Phys. J. D, 5, 327 (1999)
- 4. D. Ray and P. K. Mukherjee, J. Phys. B: At. Mol. Opt. Phys., 24 : p. 1241-1249 (1991)
- 5. N. H. Ngo, Masson, Paris, p. 294-295 (1995)
- 6. M. Biaye and al., Phys. Scr., 71: p. 39-42 (2005)
- 7. M. Biaye, A. Konté, A. S. Ndao and A. Wague, Phys. Scr., 72 373 (2005)
- 8. M. Biaye, M. Dieng, I. Sakho and A. Wagué, Chin. J. Phys., 47, 166 (2009)
- 9. M. Dieng, I. Sakho, M. Biaye and A. Wague, Chin. J. Phys., 48, 1 (2010)
- 10. M. Dieng, M. Biaye, Y. Gning and A. Wague, Chin. J. Phys., 51, 4 (2013)
- 11. Y. K. Ho, Phys. Rev. A, 23: p. 2137 (1981)
- 12. Y. K. Ho, Physics Reports, 99. No. 1, 1-68 (1983)
- 13. Y. K. Ho and J. Callaway, J. Phys. B, 18: p. 3481 (1985)
- 14. Y. K. Ho and A. K. Bathia, Phys. Rev. A, 44: p. 2895 (1991)
- 15. Y. K. Ho, Z. Phys. D, 38: p. 191-196 (1996)
- 16. Y. K. Ho, Z. Phys. D, 42: p. 77 -81 (1997)
- 17. K. Bathia and Y. K. Ho, J. Phys. B, 31, 3307 (1998)
- 18. L. W. Manning and F. C. Sanders, Phys. Rev. A, 44, 11 (1991)
- 19. Y. Gningand al. Rad. Phys. and Chem., 106, 1-6 (2015)
- 20. A. Varshalovich and al., (Copyright by Scientific Publishing copte ltd 1988)
- 21. Samarskogo, Edition science, Moscou 281 (1974)
- 22. J. M. Seminario, F. C. Sanders, Phys. Rev. A, 42, 2562 (1990)
- 23. H. Feshbach, Phys. 5 (1958), 363 and Ann. Phys., 19, 287 (1962)
- A. Konté, A. S. Ndao, M. Biaye and A. Wagué, Phys. Scr., 74 605 (2006)
- 24. Sakho, Eur. Phys. J. D, 47, 37-44 (2008)
- 25. Sakho, A. Konte, A. S. Ndao, M. Biaye and A. Wague, Phys. Scr., 77 (2008)
- 26. Sakho, Eur. Phys. J. D 61, 267-283 (2011)
- 27. H. Bachau and al. Atomic data and Nuclear data Tables 48, 167 (1991)
- 28. M. Sow and al., Chin. J. Phys., Vol. 52, N°5, 1459-1470 (2014)
- 29. A. Ivanov and U. I. Safronova, Opt. Spectrosc. 75 506 (1993)
- 30. A. Ivanov and Y. K. Ho, Chin. J. Phys., 39, 415 (2001).