

RESEARCH ARTICLE

COMPUTING THE MATRIX POWERS OF MATRIX

K.K.W.A. S. Kumara

Department of Mathematics, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.

Manuscript Info	Abstract
<i>Manuscript History</i> Received: 20 March 2021 Final Accepted: 24 April 2021 Published: May 2021	In this paper, considering fractional matrix power definition, we define matrix powers of matrixusing matrix exponential and matrix logarithm. Finally present a guide for computing the matrix powers of matrix.
	Copy Right, IJAR, 2021,. All rights reserved.

Introduction:-

Matrices are broadly used in computer science, engineering, statistics and economic theory. Theory of matrices isan important area in linear algebra.General linear groups $GL_n(\mathbb{k})$, where $\mathbb{k} = \mathbb{R}$, the real numbers, or $\mathbb{k} = \mathbb{C}$, the complexnumbers, are considered as both groups and topological spaces.Matrix analysis are used in many areas specially matrix exponential and logarithm. Among the matrix functions matrix exponential is a very useful subclass of functions of matrices that has been studied widely. The computation of matrixfunctions has been one of the veryinterestingwork in $GL_n(\mathbb{k})$. Among thematrix functions one of the most interesting is the matrix exponential [3]. The principalmatrix power A^{α} for a matrix $A \in \mathbb{C}^{n \times n}$ and a real number $\alpha \in \mathbb{R}$ is defined by $A^{\alpha} = \exp(\alpha \log(A))$ [1] which is a generalization of z^{α} , where z is a non-zero complex number and α is a complex constant [4].

In this paper, first presentmatrix exponential and matrixlogarithm. Finally, defined matrix power A^B for matrices $A \in N_{M_n(\Bbbk)}(I, 1)$ and $B \in GL_n(\Bbbk)$, where $\Bbbk = \mathbb{R}$, the real numbers, or $\Bbbk = \mathbb{C}$, the complex numbers.

Matrix exponentialand matrix logarithmfor more detail in [2],[3]:-

Let $A \in M_n(\mathbb{k})$. The matrix valued series

$$Exp(A) = \sum_{n>0} \frac{1}{n!} A^n (1),$$

and

$$\log(A) = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n} A^n$$
 (2),

have radii of convergence (r. o. c) ∞ and 1 respectively.

Using these series we define the exponential function exp: $M_n(\Bbbk) \to GL_n(\Bbbk)$, by $\exp(A) = \exp(A)$ and $log: N_{M_n(\Bbbk)}(I, 1) \to M_n(\Bbbk)$, by $\log(A) = Log(A - I)$, where $N_{M_n(\Bbbk)}(I, 1) = \{A \in M_n(\Bbbk) | ||A - I|| < 1\}$.

i.e. for $A \in M_n(\mathbb{k})$,

$$\exp(A) = \sum_{n \ge 0} \frac{1}{n!} A^n (3),$$

and for ||A - I|| < 1,

Corresponding Author:- K.K.W.A. S. Kumara

681

$$\log (A) = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n} (A - I)^n (4).$$

The functions exp and log satisfy the following two properties:

- If ||A I|| < 1, then $\exp(\log(A)) = A$ and; (i)
- (ii) If $\|\exp B - I\| < 1$, then $\log(\exp(B)) = B$.

Definition of matrix power A^B :-

The matrix powers of matrix is interested can be defined in following way. Inmathematics, the matrix powers of matrix analogous to complex exponents [4]. We are now in a position to come up with a meaningful definition of what is meantby a matrix raised to a matrix power.

Let $A \in N_{M_n(\mathbb{k})}(I, 1)$ and $B \in GL_n(\mathbb{k})$, where $\mathbb{k} = \mathbb{R}$, the real numbers, or $\mathbb{k} = \mathbb{C}$, the complex numbers. Then the matrix power of A to B is denoted by A^B and is defined by $A^B = \exp(B \log(A))$.

Computation of matrix exponential and logarithm [2], [6]:-

- 1. If $D = diag(d_1, d_2, ..., d_n)$ is a diagonal matrix, then $p(D) = diag(e^{d_1}, e^{d_2}, ..., e^{d_n})$; 2. if A is diagonalizable, i.e., $P^{-1}AP = D = diag(d_1, d_2, ..., d_n)$ for some invertible $n \times n$ matrix P, then $\exp(A) = P \exp(D) P^{-1}$;
- Every $n \times n$ invertible complex matrix, A, has a logarithm, X. To find such a logarithm, we can proceed as 3. follows:
 - Compute a Jordan form, $A = PJP^{-1}$, for A and let m be the number of Jordan blocksin J. (i)
 - For every Jordan block, $J_{r_k}(\alpha_k)$, of J, write $J_{r_k}(\alpha_k) = \alpha_k I (I + N_k)$, where N_k is nilpotent. (ii) Furthermore, $N_k = \alpha_k^{-1}H$, where H is the nilpotent matrix of index of nilpotency, r_k , given by

$$H = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

(iii) If
$$\alpha_k = \rho_k e^{i\theta_k}$$
, with $\rho_k > 0$,

$$\operatorname{let} S_k = \begin{pmatrix} \log \rho_k + i\theta_k & 0 & \cdots & 0 \\ 0 & \log \rho_k + i\theta_k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \log \rho_k + i\theta_k \end{pmatrix}$$

- For every N_k , let $M_k = N_k \frac{N_k^2}{2} + \frac{N_k^3}{3} + \dots + (-1)^{r_k} \frac{N^{r_k-1}}{r_k-1}$, where r_k is the index of nilpotency of (iv) N_k . We have $I + N_k = e^{M_k}$.
- If $Y_k = S_k + M_k$ and Y is the block diagonal matrix $diag(Y_1, Y_2, ..., Y_m)$, then $log(A) = PYP^{-1}$. (v)

A Guide for computiong A^B by example:-

Let $A = \begin{pmatrix} 1 & 0 & -2 \\ 1 & 3 & 1 \\ 2 & 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 3 & -1 \\ -1 & 2 & 1 \end{pmatrix}$. Then eigen values of A are 3, 1 + 2i, 1 - 2i. Hence, the Jordan matrix J with three blocks J(3), J(1+2i), J(1-2i) is $J = \begin{pmatrix} J(3) & \dots & 0 \\ \vdots & J(1+2i) & \vdots \\ 0 & \dots & J(1-2i) \end{pmatrix}, \quad \text{where} J(3) = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}, \quad J(1+2i) = \begin{pmatrix} 1+2i & 1 \\ 0 & 1+2i \end{pmatrix} \text{ and} J(1-2i) = \begin{pmatrix} 1-2i & 1 \\ 0 & 1+2i \end{pmatrix} \text{ and} J(1-2i) = \begin{pmatrix} 1-2i & 1 \\ 0 & 1-2i \end{pmatrix}.$ Next we compute the nilpotent matrix N_k and S_k for each α_k . When $\alpha = 3, 1 + 2i, 1 - 2i$ we get, $N_2 = \frac{1}{3} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, N_2 = \frac{1-2i}{5} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, N_2 = \frac{1+2i}{5} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Hence $M_2 = N_2$. When $\alpha = 3$: $S_2 = \begin{pmatrix} \log 3 & 0 \\ 0 & \log 3 \end{pmatrix}$ When $\alpha = 1 + 2i$: $\rho = \sqrt{5}$ and $\theta = \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$, and hence

$$S_{2} = \begin{pmatrix} \log \sqrt{5} + i \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) & 0 \\ 0 & \log \sqrt{5} + i \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) \end{pmatrix}.$$

When $\alpha = 1 + 2i$: $\rho = \sqrt{5}$ and $\theta = 2\pi - \cos^{-1} \left(\frac{1}{\sqrt{5}}\right)$, hence
$$S_{2} = \begin{pmatrix} \log \sqrt{5} + i \left(2\pi - \cos^{-1} \left(\frac{1}{\sqrt{5}}\right)\right) & 0 \\ 0 & \log \sqrt{5} + i \left(2\pi - \cos^{-1} \left(\frac{1}{\sqrt{5}}\right)\right) \end{pmatrix}.$$

Thus, $Y_{1} = \begin{pmatrix} \log 3 & 0 \\ 0 & \log 3 \end{pmatrix}, Y_{2} = \begin{pmatrix} \log \sqrt{5} + i \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) & \frac{1-2i}{5} \\ 0 & \log \sqrt{5} + i \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) \end{pmatrix}$ and
 $Y_{2} = \begin{pmatrix} \log \sqrt{5} + i \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) & \frac{1+2i}{5} \\ 0 & \log \sqrt{5} + i \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) \end{pmatrix}.$
 $Y = \begin{pmatrix} Y_{1} & \dots & 0 \\ i & Y_{n} & i \end{pmatrix}$ and computing corresponding metric P_{1} we can obtain $\log(A)$ by computing

 $Y = \begin{pmatrix} Y_1 & \dots & 0 \\ \vdots & Y_2 & \vdots \\ 0 & \dots & Y_3 \end{pmatrix}$, and computing corresponding metrix *P* we can obtain log(*A*) by computing *PYP*⁻¹. Thus, *A^B*

can be computed using $(BPYP^{-1})$.

Conclusion:-

In this work, we defined the matrix powers of matrix for $A \in N_{M_n(\Bbbk)}(I, 1)$ and $B \in GL_n(\Bbbk)$, by $A^B = \exp(B \log(A))$, where $\Bbbk = \mathbb{R}$, the real numbers, or $\Bbbk = \mathbb{C}$, the complex numbers. Using Jordan block $J_r(\alpha)$ with $\alpha \neq 0$, we can compute $\log(A) = PYP^{-1}$, and hence A^B can be computed using $\exp(BPYP^{-1})$.

References:-

- 1. F.Tatsuoka, T. Sogabe, Y. Miyatake, T. Kemmochi, and Shao-Liang Zhang, Computing the Matrix Fractional Power with the Double Exponential Formula, arXiv:2012.01667v2 [math.NA] 10 Apr 2021.
- 2. M. A. S. Salman and V.C.Borkar, Exponential Matrix and Their Properties, International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 4, Issue 1, January 2016, PP 53-63.
- 3. A. Baker, An introduction to matrix groups and their applications, pp1-16, 2000.
- 4. J. H. Mathews and R. W. Howell, Complex Analysis for Mathematics and Engineering, Jones and Bartlett Publishers, pp138-140, 1997.
- 5. J. Gallier, Logarithms and Square Roots of Real Matrices Existence, Uniqueness, and Applicationsin Medical Imaging, 2013.