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Introduction:- 
Matrices are broadly used in computer science, engineering, statistics and economic theory. Theory of matrices isan 

important area in linear algebra.General linear groups 𝐺𝐿𝑛 𝕜 , where𝕜 = ℝ, the real numbers, or 𝕜 =  ℂ, the 

complexnumbers, are considered as both groups and topological spaces.Matrix analysis are used in many areas 

specially matrix exponential and logarithm. Among the matrix functions matrix exponential is a very useful subclass 

of functions ofmatrices that has been studied widely. The computation of matrixfunctions has been one of the 

veryinterestingwork in 𝐺𝐿𝑛 𝕜 . Among thematrix functions one of the most interesting is the matrix exponential 

[3]. The principalmatrix power 𝐴𝛼  for a matrix 𝐴 ∈ ℂ𝑛×𝑛  and a real number𝛼 ∈ ℝ is defined by 

𝐴𝛼 = exp 𝛼 𝑙𝑜𝑔 𝐴   [1] which is a generalization of 𝑧𝛼 , where 𝑧 is a non-zero complex number and 𝛼 is a complex 

constant [4]. 
 

In this paper, first presentmatrix exponential and matrixlogarithm. Finally, defined matrix power 𝐴𝐵  for matrices𝐴 ∈
𝑁𝑀𝑛  𝕜  𝐼, 1 and𝐵 ∈ 𝐺𝐿𝑛 𝕜 , where𝕜 = ℝ, the real numbers, or 𝕜 =  ℂ, the complexnumbers. 

 

Matrix exponentialand matrix logarithmfor more detail in [2],[3]:- 

Let𝐴 ∈ 𝑀𝑛(𝕜). The matrix valued series 

Exp 𝐴 = 
1

𝑛!
𝐴𝑛

𝑛≥0

 1 , 

  and  

Log  𝐴 = 
(−1)𝑛−1

𝑛
𝐴𝑛                           (2),

𝑛≥1

 

have radii of convergence (r. o. c) ∞ and 1 respectively. 

 

Using these series we define the exponential functionexp:𝑀𝑛(𝕜) ⟶ 𝐺𝐿𝑛 𝕜 , by exp 𝐴 = Exp (𝐴) and 

𝑙𝑜𝑔:𝑁𝑀𝑛  𝕜 (𝐼, 1) ⟶ 𝑀𝑛(𝕜), by log 𝐴 = 𝐿𝑜𝑔 ( 𝐴 − 𝐼), where 𝑁𝑀𝑛  𝕜  𝐼, 1 =  𝐴 ∈ 𝑀𝑛(𝕜)  𝐴 − 𝐼 < 1  . 

 

 i.e. for 𝐴 ∈ 𝑀𝑛 𝕜 , 

exp 𝐴 = 
1

𝑛!
𝐴𝑛

𝑛≥0

 3 , 

andfor 𝐴 − 𝐼 < 1, 
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log  𝐴 = 
(−1)𝑛−1

𝑛
(𝐴 − 𝐼)𝑛 4 .

𝑛≥1

 

 

The functions exp and log satisfy the following two properties: 

(i) If  𝐴 − 𝐼 < 1, then exp log(𝐴) =𝐴 and; 

(ii) If  exp𝐵 − 𝐼 < 1,then log  exp(𝐵) =𝐵. 

 

Definition of matrix power 𝑨𝑩:- 
The matrix powers of matrix is interested can be defined in following way. Inmathematics, the matrix powers of 

matrix analogous to complex exponents [4].We are now in a position to come up with a meaningful definition of 

what is meantby a matrix raised to a matrix power. 

Let 𝐴 ∈ 𝑁𝑀𝑛  𝕜  𝐼, 1 and𝐵 ∈ 𝐺𝐿𝑛 𝕜 , where𝕜 = ℝ, the real numbers, or 𝕜 =  ℂ, the complexnumbers. Then the 

matrix power of 𝐴 to 𝐵 is denoted by 𝐴𝐵  and is defined by𝐴𝐵 = exp(𝐵 log(𝐴)). 
 

Computation of matrix exponential and logarithm [2], [6]:- 

1. If 𝐷 =  𝑑𝑖𝑎𝑔(𝑑1, 𝑑2 , … , 𝑑𝑛) is a diagonal matrix, thenexp(𝐷) =  𝑑𝑖𝑎𝑔(𝑒𝑑1 , 𝑒𝑑2 , … , 𝑒𝑑𝑛 ); 
2. if 𝐴 is diagonalizable, i.e.,𝑃−1𝐴𝑃 =  𝐷 =  𝑑𝑖𝑎𝑔(𝑑1, 𝑑2 , … , 𝑑𝑛) for some invertible𝑛 × 𝑛 matrix 𝑃, 

thenexp(𝐴) =  𝑃 exp(𝐷)𝑃−1;  

3. Every 𝑛 × 𝑛 invertible complex matrix, 𝐴, has a logarithm, 𝑋. To fnd sucha logarithm, we can proceed as 

follows: 

(i) Compute a Jordan form, 𝐴 = 𝑃𝐽𝑃−1, for 𝐴 and let 𝑚 be the number of Jordan blocksin 𝐽. 
(ii) For every Jordan block, 𝐽𝑟𝑘(𝛼𝑘), of 𝐽, write 𝐽𝑟𝑘  𝛼𝑘 = 𝛼𝑘𝐼 (𝐼 +  𝑁𝑘), where 𝑁𝑘  is nilpotent. 

Furthermore,𝑁𝑘 = 𝛼𝑘
−1𝐻, where 𝐻 is the nilpotent matrix of index of nilpotency, 𝑟𝑘 , given by                                           

𝐻 =

 

 
 

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋱ ⋱ ⋮

0 0 0 ⋱ 1
0 0 0 … 0 

 
 

. 

(iii) If 𝛼𝑘 = 𝜌𝑘𝑒
𝑖𝜃𝑘  , with 𝜌𝑘 > 0,  

let𝑆𝑘 =  

log𝜌𝑘 + 𝑖𝜃𝑘
0
⋮
0

0
log 𝜌𝑘 + 𝑖𝜃𝑘

⋮
0

…
…
⋱
…

0
0
⋮

log𝜌𝑘 + 𝑖𝜃𝑘

 . 

(iv) For every𝑁𝑘 , let𝑀𝑘 = 𝑁𝑘 −
𝑁𝑘

2

2
+

𝑁𝑘
3

3
+⋯+ (−1)𝑟𝑘

𝑁𝑟𝑘−1

𝑟𝑘−1
, where 𝑟𝑘  is the index of nilpotency of 

𝑁𝑘 . We have 𝐼 + 𝑁𝑘 = 𝑒𝑀𝑘 . 

(v) If𝑌𝑘 = 𝑆𝑘 + 𝑀𝑘and 𝑌is the block diagonal matrix 𝑑𝑖𝑎𝑔(𝑌1, 𝑌2, … , 𝑌𝑚 ), thenlog 𝐴 = 𝑃𝑌𝑃−1. 
 

 

A Guide for computiong 𝐴𝐵by example:- 

 Let𝐴 =  
1 0 −2
1 3 1
2 0 1

  and 𝐵 =  
0 1 1
2 3 −1
−1 2 1

 . Then eigen values of 𝐴 are 3, 1 + 2𝑖, 1 − 2𝑖. Hence, the Jordan 

matrix 𝐽with three blocks 𝐽 3 , 𝐽 1 + 2𝑖  , 𝐽 1 − 2𝑖  is 

𝐽 =  

𝐽(3) … 0
⋮ 𝐽(1 + 2𝑖) ⋮
0 … 𝐽(1 − 2𝑖)

 , where𝐽 3 =  
3 1
0 3

 , 𝐽 1 + 2𝑖 =  
1 + 2𝑖 1

0 1 + 2𝑖
 and𝐽 1 − 2𝑖 =

 
1 − 2𝑖 1

0 1 − 2𝑖
 . Next we compute the nilpotent matrix  𝑁𝑘and 𝑆𝑘 for each 𝛼𝑘 . 

When 𝛼 = 3, 1 + 2𝑖, 1 − 2𝑖 we get, 𝑁2 =
1

3
 

0 1
0 0

 , 𝑁2 =
1−2𝑖

5
 

0 1
0 0

 , 𝑁2 =
1+2𝑖

5
 

0 1
0 0

 . Hence 𝑀2 = 𝑁2. 

When 𝛼 = 3:  𝑆2 =  
log 3 0

0 log 3
 . 

When 𝛼 = 1 + 2𝑖: 𝜌 =  5 and𝜃 = 𝑐𝑜𝑠−1  
1

 5
 , and hence        
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𝑆2 =

 

 
 

log 5 + 𝑖 𝑐𝑜𝑠−1  
1

 5
 0

0 log 5 + 𝑖 𝑐𝑜𝑠−1  
1

 5
 
 

 
 

. 

When 𝛼 = 1 + 2𝑖: 𝜌 =  5 and𝜃 = 2𝜋 − 𝑐𝑜𝑠−1  
1

 5
 , hence 

𝑆2 =

 

  
 

log 5 + 𝑖  2𝜋 − 𝑐𝑜𝑠−1  
1

 5
  0

0 log 5 + 𝑖  2𝜋 − 𝑐𝑜𝑠−1  
1

 5
  
 

  
 

. 

Thus, 𝑌1 =  
log 3 0

0 log 3
 , 𝑌2 =  

log 5 + 𝑖 𝑐𝑜𝑠−1  
1

 5
 

1−2𝑖

5

0 log 5 + 𝑖 𝑐𝑜𝑠−1  
1

 5
 
  and  

𝑌2 =  
log 5 + 𝑖 𝑐𝑜𝑠−1  

1

 5
 

1+2𝑖

5

0 log 5 + 𝑖 𝑐𝑜𝑠−1  
1

 5
 
 . 

 

𝑌 =  
𝑌1 … 0
⋮ 𝑌2 ⋮
0 … 𝑌3

 , and computing coresponding metrix 𝑃  we can obtain log(𝐴) by computing 𝑃𝑌𝑃−1. Thus, 𝐴𝐵  

can be computed usingexp 𝐵𝑃𝑌𝑃−1 . 
 

Conclusion:- 
In this work, we defined the matrix powers of matrix for 𝐴 ∈ 𝑁𝑀𝑛  𝕜  𝐼, 1  and𝐵 ∈ 𝐺𝐿𝑛 𝕜 , by𝐴𝐵 =

exp(𝐵 log(𝐴)),where𝕜 = ℝ, the real numbers, or 𝕜 =  ℂ, the complexnumbers. UsingJordan block𝐽𝑟  (𝛼)) with 

𝛼 ≠ 0,we can computelog 𝐴 = 𝑃𝑌𝑃−1,and hence𝐴𝐵  can be computed using exp 𝐵𝑃𝑌𝑃−1 . 
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