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Two field experiments were conducted to evaluate synthetic attractants 

derived from pepper flowers, flower buds and fruits, alone or in 

combination with the aggregation pheromone. The evaluation was 

carried out with the release and recapture of Anthonomus eugenii adults 

at different distances from the four cardinal points in separate trials. 

The volatility of the synthetic mixture and aggregation pheromone was 

determined by gas chromatographic analysis of the volatiles captured 

by dynamic headspace. The traps with synthetic mixture and essential 

oil captured insects at 10 m, while the aggregation pheromone trapped 

up to 60 m. The combination of synthetic mixture or essential oil with 

the aggregation pheromone did not increase the number of recaptures 

compared to the single pheromone. The synthetic mixture together with 

geranic acid recaptured adults up to 15 m, although they were not 

significantly different from the control.  The exclusion of geranic acid 

from the aggregation pheromone significantly reduced the number of 

recaptured insects (P<0.05), while geranic acid alone failed to capture 

weevils. The results could be improved by increasing the 

concentrations of the compounds or by adding other compounds 

released during the reproductive stages of pepper. These results could 

guide future efforts for the development of tools based on synthetic 

plant volatiles for the monitoring of this pest. 
 

          Copy Right, IJAR, 2021,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
The pepper weevil (Anthonomus eugenii Cano) is the main problem of pepper (Capsicum annuum L.) in regions 

where this crop is produced. This pest is present in Mexico, southern United States, Central America and the 

Caribbean, as well as in Hawaii, French Polynesia, Dominican Republic and Puerto Rico (EPPO, 2019; Addesso et 

al., 2021). Its presence was also reported in greenhouses in saouthern Canada (Labbé et al., 2018), the Netherlands 

(Van Der Gaag and Looman, 2013) and Italy (Speranza et al., 2014: Anonimo, 2018) where they were eradicated. 

 

Direct damage is caused by the larvae, as they develop endophytically, feeding on the placenta and seeds, resulting 

in severe damage to the fruit. Upon emergence, the adults damage reproductive structures of the plant, causing its 
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abscission and reduction in the field ranging from 30 to 90% of production if timely action measures are not 

implemented (Campbell, 1924; Fernández et al., 2020). Traditional methods are difficult because part of its 

development takes place inside the fruit, which allows the insect to evade any chemical application. In Mexico, in 

open fields, up to 15 insecticide applications are performed per season (Avendaño-Meza, 2017), which generates 

negative effects for beneficial organisms (Rodríguez-Leyva et al., 2007; Labbé et al., 2020). 

 

Since the discovery of the aggregation pheromone, it has been used effectively to monitor the insect in the field 

(Eller et al., 1994; Eller and Palmquis 2014), but this strategy is only efficient before flowering and at the end of the 

harvest, because the effect of the pheromone is diluted by the large number of volatiles released by flowers. Recent 

studies indicated that the pepper weevil responds to odors released by host plants (Addesso and McAuslane, 2009) 

and in particular by their reproductive structures (Bautista-San Juan et al., 2019). Several of these compounds have 

been identified, synthesized and evaluated in laboratory experiments; their combination with the aggregation 

pheromone showed synergism in the insect´s response in laboratory tests (Muñiz-Merino et al., 2014). 

 

Although the compounds released by the reproductive structures of peppers have been identified, no studies have 

been conducted to determine their effectiveness for monitoring insects in the field. Therefore, this work aimed to 

evaluate the attraction of synthetic compounds derived from flowers, flower buds, fruits and the aggregation 

pheromone for the capture of pepper weevil adults under field conditions. 

 

Materials And Methods:- 
Insects 

Insects of unknown age and mating status were collected in Ejido Vallejo (23.118245 º N, -100.545644 º W), 

municipality of Villa de Guadalupe, San Luis Potosí, Mexico, on serrano pepper cultivars during August 2018. The 

colony was established at the Colegio de Postgraduados, under controlled conditions of temperature (26±2 º C) and 

photoperiod (13:11 h light: dark). Every third day, emerged adults were removed and transferred to 3 L capacity 

containers, where they remained until use, continuously fed with developing jalapeño pepper fruits (≤ 30 mm in 

length). For field experiments, weevils more than 10 days old were used, separated by sex according to the 

characteristics described by Eller et al., (1995). The insects were left without food and water for 12 hours prior to 

field trials. 

 

Attractants 

Compounds (Z)-β-ocimene, 2-Isobutyl-3-methoxypyrazine, (Z)-3-hexenyl acetate, terpinolene, geraniol and geranic 

acid were purchased from Sigma Aldrich®, while (E)-β-ocimene was purchased from Chemos®. The components 

of the aggregation pheromone of the pepper weevil Z Glandlure II, E Glandlure II and Glandlure III & IV mixture 

(1:1) were purchased from Bedoukian Research® and were formulated according to the concentrations reported by 

Eller et al., (1994). The essential oil was extracted by steam entrainment with 100 g of poblano pepper cv. flower 

buds using the methodology described by Zheljazkov et al., (2013), with some modifications. For the synthetic 

mixture and essential oil, microcentrifuge tubes were used as releasers, which were loaded with 500 mg (mixture or 

essential oil) diluted in mineral oil (Herschi Trading®) with a final volume of 1 mL for field evaluation.  The 

treatments used during the 2018 and 2019 experiments are shown in Table 1. 

 

Table 1:- Treatments used in the field for the pepper weevil during the experiments carried out. 



ISSN: 2320-5407                                                                            Int. J. Adv. Res. 9(06), 357-364 

359 

 

 
a
 Treatment 2 corresponds to the essential oil extracted from the pepper flower buds; 

b
 1:1 Mixture; 

c
 Combination 

between treatments 1 and 3; 
d 

Combination between treatments 2 and 3; 
e
 The geranic acid was formulated 

separately and mixed with an equal amount of mineral oil, using microcentrifuge tubes as dispersers; 
f
 Same 

formulation as treatment 3 of the 2018 experiment. * Name of each treatment. 

 

Field experiments 

They were conducted in an area of the Colegio de Postgraduados, municipality of Texcoco, State of Mexico, Mexico 

(19.468861 º N, -98.898833 º W), in a field with a flat topography, without the presence of  pepper cultivation to 

avoid interference from weevils coming from the field. Yellow traps (30.5 cm x 15 cm) impregnated with glue 

(Adhequim®) were used, where the treatments were placed. The traps were placed one day before starting the 

experiment at a height of 0.30 m in the direction of the prevailing winds. They were distributed in a completely 

randomized block design, with three replicates per treatment with a separation of 100 m between each replicate and 

treatment. 

 

In the first experiment (August-December 2018) treatments were evaluated at six distances in separate trials, each 

lasting 15 days. A. eugenii adults were released at the four cardinal points of each treatment from each distance used. 

For evaluation 1, 720 adults were used, 5 females and 5 males were released from 5 m. For evaluation 2, the same 

number of insects was released from a distance of 10 m. In evaluation 3, 864 weevils were used, 6 females and 6 

males were released from 15 m. In evaluation 4, 1008 weevils were used, 7 females and 7 males were released from 

a distance of 30 m. In evaluation 5, 1296 adults were used, 9 females and 9 males were released from 60 m. The 
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second experiment was conducted during August-October 2019, where the treatments were evaluated at 5, 10 and 15 

m. At each distance, 600 weevils were used, of which 10 adults (5 females and 5 males) were released at the four 

cardinal points of each treatment.  The releases were carried out during 13:00 to 17: 00 hours in the afternoon, 

according to the period of greatest activity of females and males (Muñiz-Merino et al., 2014). The number of insects 

used was subject to their availability in the established colony. The traps were checked once a week, during the time 

each evaluation lasted (distance evaluated), while the volume level of each dispenser was checked every third day. 

 

Collection of volatiles in dispersers 

 The compounds of the synthetic mixture and aggregation pheromone were captured by dynamic headspace on days 

1, 7, 14, 21 and 28. The releasers were placed in a cylindrical glass flask with a 29/42 ground-glass neck, 21 cm 

high, 6 cm internal diameter and 500 mL capacity (Pyrex®). The flask had a ground-glass stopper (2942), with two 

glass tubes to which a Nalgene hose (3/16 ID) was attached, through which air was passed with an Elite 802 pump 

with a flow rate of 60 mL/min, regulated with a flow meter (Gilmont®).Three flasks were placed at the same time 

for each releaser, a 150 mm pasteur pipette (Brand®) was placed at each air inlet point, packed with 50 mg of Tenax 

TA 60/80 adsorbent (Sigma Aldrich®), which served as a filter. Another cartridge of the same type was placed in 

line at the outlet of each flask to collect the compounds from the disperser, with a capture time of 3 hours. The 

volatiles captured in each cartridge were eluted with 4 mL of HPLC grade hexane and brought to a concentration of 

100 µL by a gentle stream of nitrogen. The resulting solution was placed in 3 mL amber vials (Agilent-

Technologies®) and stored at – 4 °C until analysis by gas chromatography. 

 

Chromatographic analysis of the samples of the releasers 

1 μL of each concentrated sample was injected into a Hewlett Packard gas chromatograph (5890) with a flame 

ionization detector (GC-FID). Gas Chromatography conditions were: nitrogen as carrier gas, with a flow rate of 1 

mL min
-1

, the detector and injector temperature was 250 ° C. The run conditions were an initial temperature of 40 °C 

stable for 5 min, then increased by 5 °C min
-1

 until reaching 100 °C, then increased by 10 ° C min
-1

 until reaching 

210 °C, maintained for 5 min, with a total run time of 33 min. Identification and confirmation of the compounds 

were obtained by comparing retention times with commercial standards. 

 

Statistical analysis 

Data from the 2018 and 2019 field experiments were analyzed using linear mixed models, treatments were used as a 

fixed factor and replicates nested in weeks as a random factor. A post hoc analysis with Bonferroni correction with a 

probability of 0.05 was performed to test for significant differences within each group of means. All analyses were 

performed using SPSS v. 25.0 for Windows (IBM Corp. 2019). 

 

Results:- 
Field experiment during September-December, 2018. 

Traps placed at 5 m distance showed a significant difference in the mean number of recaptured weevils (F=31.558; 

df= 5, 48; P < 0.05). AP (8.55±1.02), SM: AP (7.33±1.02) and EO: AP (7.33±1.02) treatments recorded the highest 

means, while SM and EO presented much lower values, but higher compared to CO. In post hoc comparisons, the 

mean difference between AP compared to SM (8.11±1.02), AE (7.88±1.02) and CO (8.55±1.02) recorded 

significantly higher mean differences (P<0.05); while SM: AP and EO: AP presented similar mean differences 

compared to SM (6.88±1.02), EO (6.66±1.02) and CO (7.33±1.02). In the second evaluation at 10 m distance, a 

significant difference was also obtained among the treatments used (F=52.509; df= 5, 40; P < 0.05). The control 

(CO) recorded lower values compared to SM and EO, while AP, SM: AP and EO: AP presented the highest means. 

In post hoc tests, the mean differences between AP and SM (7.88±0.78), EO (8.22±0.78) and CO (9.00±0.78); SM: 

AP and SM (6.00±0.78), EO (6. 33±0.78) and CO (7.11±0.78); as well as EO: AP and SM (6.22±0.78), EO 

(6.55±0.78) and CO (7.33±0.78) were significantly higher (P<0.05).Results at 15 m (F=124.310; df=5, 40; P<0.05), 

30 m (F= 137.277; df=5, 40; P<0.05) and 60 m (F=41.353; df=5, 40; P<0.05) distances indicated an effect of the 

treatments, which differed statistically in the mean number of recaptures. The means in SM, EO and CO (0.70±0.11) 

were similar in these evaluations, while AP, SM: AP and EO: AP presented the highest means. In post hoc tests, the 

mean difference between AP, SM: AP and EO: AP was significantly higher compared to SM, EO and CO (P<0.05). 

Univariate tests showed a significant difference in these distances, which indicated that the proposed model was 

acceptable (P<0.05). 
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Field experiment during August-October, 2019. 

The mean number of adults recaptured at 5 m distance showed a significant difference among the evaluated 

treatments (F=23.024; df= 5, 40; P < 0.05). The mean difference in AP (2.48±0.14) was statistically higher than the 

remaining treatments (Figure 1; 5 m). SM: GA with GA (0.62±0.14), AP (-0.57±0.14) and CO (0.74±0.14); RS with 

GA (0.70±0.14), AP (-0.49±0.14) and CO (0.81±0.14); GA with SM: GA (-0.62±0.14), RS (-0.70±0.14) and AP (-

1.19±0.14); AP with SM: GA (0. 57±0.14), RS (0.49±0.14), GA (1.19±0.14) and CO (1.31±0.14); as well as CO 

with SM: GA (-0.74±0.14), RS (-0.81±0.14) and AP (-1.31±0.14) treatments recorded a significant difference 

according to post hoc comparisons (P<0.05). At 10 m, a significant difference was again found in the mean number 

of recaptured adults among the evaluated treatments (F = 8.895; df = 5, 40; P < 0.05). Means between AP 

(1.61±0.12) and SM: GA (1.31±0.12) were higher compared to CO (0.86±0.12) used as a control (Figure 1; 10 m). 

In post hoc Bonferroni comparisons, RS (-0.48±0.12), GA (-0.63±0.12) and CO (-0.75±0.12) treatments presented a 

significantly lower mean difference than AP (P<0.05), while AP was higher compared to RS (0.48±0.12), GA 

(0.63±0.12) and CO (0.75±0.12). On the other hand, SM: GA was significantly higher than CO (0.45±0.12). For the 

evaluation at 15 m, a significant effect among treatments on the number of recaptures was also observed (F=10.612; 

df=5, 40; P<0.05). Post hoc tests in SM: GA (-0.36±0.08), RS (-0.48±0.08), GA (-0.48±0.08) and CO (-0.48±0.08) 

were significantly lower (Figure 1; 15 m), compared to AP (P<0.05); while AP was significantly higher than SM: 

GA (0.36±0.08), RS (0.48±0.08), GA (0.48±0.08) and CO (0.48±0.08). 

 
Figure 1:- Average number of weevils recaptured at 5, 10 and 15 meters away during 2019. Treatments: SM 

(Synthetic mixture), EO (Flower bud essential oil), AP (A. eugenii pheromone), SM: AP (Synthetic mixture + A. 

eugenii pheromone), EO: AP (Flower bud essential oil + A. eugenii pheromone) and CO (Control). Means with 

different letters are significantly different at α = 0.05 (Bonferroni test). 

 

Volatility of compounds in the field 

Chromatographic analysis of the synthetic mixture with E-β-ocimene and Z-3-hexenyl acetate recorded the highest 

areas, while 2-isobutyl-3-methoxypyrazine presented the lowest area during field exposure time in microcentrifuge 

tubes. In contrast, in the aggregation pheromone, compounds (Z)-2-(3, 3-dimethylcyclohexylidene) ethanol, (E)-2-

(3, 3-dimethylcyclohexylidene) ethanol and (E)-3, 7-dimethyl-2, 6-octadienoic acid recorded the highest volatility. 

Five of the compounds remained up to 28 days of exposure in the field, while (E) - 3, 7-dimethyl-2, 6-octadienoic 

acid only remained in the disperser for up to 14 days. 

 

Discussion:- 
Traps with the synthetic mixture captured A. eugenii adults up to 10 m away, although they were not significantly 

different from the control. The number of recaptures was lower in the synthetic mixture compared to the aggregation 

pheromone. Similarly, A. rubi is weakly attracted to traps baited with pheromone, but does not respond to traps 

baited only with host plant volatiles (Wibe et al., 2014). Previous studies (Muñiz-Merino et al., 2014; Bautista-San-

Juan et al., 2019), demonstrated through laboratory bioassays by olfactometry that the response of males and 

females of A. eugenii was unequivocal towards the volatiles of the mixture used. Probably, the number of volatiles 

released in the field was below the reception threshold; this was suggested by the results of the chromatographic 
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analysis, where the compounds of the synthetic mixture showed higher volatility compared to the components of the 

aggregation pheromone. This may have caused the loss of attraction during the exposure time, so it would be 

necessary to increase the concentrations of the mixture in the dispersers or to add other compounds present in the 

pepper. 

 

The essential oil had a limited longevity in the field, since its volume decreased more than 50 % in five days. The 

short permanence of the extract in the field may have caused the low captures in the traps, since the compounds 

essential for attraction were not present. Perhaps, the higher release is due to the high vapor pressure of the 

compounds, linked to the ambient temperature recorded as suggested by Mette-Cecilie et al., (2019), who mention 

that a substance with a higher vapor pressure volatilizes more easily. The study of essential oils as attractants in the 

genus Anthonomus is scarce (McKibben et al., 1997), most have focused on repellent and insecticidal activity (Brito 

et al. 2021). Kendra et al., (2018) demonstrated the potential of essential oils for attracting X. glabratus, so their 

implementation in insect management is an option that would be worth exploring. 

 

The combination of aggregation pheromone and synthetic mixture from the host plant did not increase the number of 

recaptures of A. eugenii compared to the single pheromone. Szendrei et al., (2011) in field experiments observed 

that the addition of Z-3-hexenyl acetate and hexyl acetate with pheromone components from A. musculus did not 

improve attraction. Possibly, the ratio of the release of the components in the mixture used was not sufficient to 

attract the weevil and cause synergism, as happened with A. rubi, where the addition of 1, 4-dimethoxybenzene, 

together with the aggregation pheromone caused higher captures than with the single pheromone (Wibe et al., 2014; 

Mozūraitis et al., 2020). Although this combination failed to improve attraction, this work provides the first 

evaluation of pepper volatiles together with the pheromone, which in future studies could be refined to increase 

attraction. 

 

The synthetic mixture and geranic acid placed in the same trap captured insects at 15 m distance, although they were 

not significantly different from the control.  Rodriguez-Saona et al., (2020) found that the response of  A. musculus 

is not affected by the addition of geranic acid to the aggregation pheromone; furthermore, the addition of the sex 

pheromone of L. rugulipennis and 1, 4 dimethoxybenzene to the aggregation pheromone of  A. rubi did not cause 

significant changes in the number of captures (Baroffio et al., 2018). In the case of A. eugenii, recaptures decreased 

significantly when adults were released at greater distances from the release point, similarly Dissanayaka et al., 

(2020) observed a decrease as the release distance of R. dominica increased. Perhaps this is because as distance 

increases, the concentration of the compound decreases, reducing insect attraction. 

 

The aggregation pheromone (without geranic acid) captured fewer insects than the complete pheromone. In this 

respect, Eller et al., (1994) in field tests observed higher attraction of A. eugenii adults in traps baited with 

pheromone with the mixture of six compounds than with the mixture of five. Surely, the absence of geranic acid 

caused a reduction in the attraction of the insect, however, the study of the effect of different doses of geranic acid 

would help improve the attractiveness of the pheromone in the field. Geranic acid was ineffective in attracting A. 

eugenii adults, since traps with this compound showed lower captures compared to the control. Perhaps, as 

suggested by Eller et al., (1994), geranic acid is inactive when used individually and only works when the complete 

pheromone is present. In addition, the rapid volatility in the field may have caused a null response, since according 

to chromatographic analysis, this compound was only present for up to 14 days. 

 

Conclusion:- 
The traps with the mixture of (E)-β-ocimene, (Z)-β-ocimene, 2-Isobutyl-3-methoxypyrazine, (Z)-3-hexenyl acetate 

and terpinolene presented insects at short distance, similar to the essential oil. Improvement in detection systems for 

A. eugenii with the synthetic mixture should be possible by increasing the concentration of the components or by 

adding other compounds present in pepper. It is clear that the aggregation pheromone is an effective strategy for 

capturing A. eugenii adults, as long as it is placed before flowering and after harvest to capture as many adults as 

possible on alternate hosts. Further studies are required to develop a formulation that increases the efficacy of the 

synthetic mixture with the aggregation pheromone evaluated here. 
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