
ISSN 2320-5407 International Journal of Advanced Research (2021)

 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL

 OF ADVANCED RESEARCH

The Theory of Perfect

Learning

Thesis submitted to

University of Montreal

In partial fulfillment of the requirements

For the award of the degree of

DOCTOR OF PHILOSOPHY

BY

Nonvikan Karl-Augustt Alahassa

Under The Guidance of

Alejandro Murua,

Department of Mathematics and Statistics

University of Montreal

Canada

http://www.journalijar.com/

The Theory of Perfect Learning

Nonvikan Karl-Augustt Alahassa, Ph.D
alahassan@dms.umontreal.ca

December 2020

2

The Theory of Perfect Learning through The Shallow
Potts Neural Network Mixture Model

A Novel Mixture Neural Network Model

Nonvikan Karl-Augustt Alahassa, Ph.D

A Thesis in Statistics

University of Montreal

4

Contents

0.1 General Introduction . 12

1 Statistical topics 21
1.1 Mixture Models . 21

1.1.1 Example of Gaussian Mixture Model (McLachlan & Basford, 1988) 22
1.1.2 Notes on Dirichlet Mixture Models . 32

1.2 Major learning ingredients . 35
1.2.1 Cholesky Decomposition . 35
1.2.2 Markov Random Fields . 36
1.2.3 Gradient, Stochastic Gradient and batch learning 39
1.2.4 Notes on Divergence Metrics for Distributions 43
1.2.5 Never forget Bayes if your frequent likelihood get hard... 45

2 The Potts Model with Complete Shrinkage 47
2.1 The Potts Clustering . 47

2.1.1 The Bernouilli bonds . 47
2.2 Notes on Standard Application: Random Partitions Models 48
2.3 The Potts Clustering Model with Complete Shrinkage 50
2.4 Effective Python Implementation . 51
2.5 Experiments . 51
2.6 Extended Research on the Components size distribution 60

2.6.1 Frequency of frequencies distribution . 60
2.6.2 Objective . 60
2.6.3 Methodology and combinatorial approach to the count vector 61
2.6.4 The conditional bonds distribution (given the size constraint) 64
2.6.5 Fast-Algorithm to find Sc−list . 64
2.6.6 Finding the most probable configuration among Sc−list given a label assignment 65

3 Deep learning and the Classical Neural Networks 67
3.1 The General Multi-Layer FeedForward Neural Network:

Definitions & Concepts . 67
3.1.1 The Hold on Neural networks and the WHY 68

3.2 Classification of neural networks . 69
3.3 Activation function and Loss function types . 71
3.4 Notes on The Geometry of the loss function . 74

5

6 CONTENTS

3.4.1 The non-convexity problem . 75
3.4.2 Level Sets . 75

3.5 The Science of Gradients and Backpropagation in Deep learning 76
3.6 Talks on Deep Learning common regularization methods 78
3.7 A short example: The How it works . 82
3.8 Extended Notes on Pruning Method . 83
3.9 Effective Python Implementation of the model . 84
3.10 Performance and Comparison with Random Forest 86
3.11 The odds and the Even of neural networks . 87

4 Shallow Potts Neural Network Mixture Models 89
4.0.1 Efficiency of regression clustering . 89
4.0.2 Combination of neural network regression and Potts clustering model 90

4.1 Shallow Gibbs networks . 91
4.1.1 The sparse-Gibbs network . 92
4.1.2 Compound symmetry Gibbs network . 93

4.2 The random-Potts partition model . 94
4.2.1 Some practical considerations . 95

4.3 The shallow Potts Gibbs-network mixture model . 95
4.4 Bayesian variational inference . 97

4.4.1 Regularization on the CS-Gibbs model . 99
4.4.2 Keeping positive definiteness on the precision Matrix 101

4.5 Predictive Posterior . 103
4.5.1 On Double backpropagation . 106

4.6 Experimental evaluation . 107
4.6.1 The Results . 109
4.6.2 Convergence of the DBS optmizer. 113

5 Nearest Neighbor Multivariate Interpolation (NNMI) 119
5.1 Interpolation as a Machine learner . 119
5.2 Multivariate Interpolation . 120
5.3 Data Augmentation for Empirical Differentiation (DAED) 122
5.4 Generalization Method . 124

6 Generalization of similarity measure using Metric Learning 125
6.1 The Problem of Occlusions, Clutter and Noise . 126
6.2 Geometric Invariance . 126
6.3 Invariance descriptors and related works . 126

6.3.1 Holographic Nearest Neighbor (HNN) . 127
6.3.2 Shape Context . 128
6.3.3 Hough transformations features . 129
6.3.4 Fourier descriptors . 130

6.4 Other Invariance researches . 130
6.4.1 Chord distribution . 130
6.4.2 Moment invariants method . 131

6.5 Open Research Framework . 132

CONTENTS 7

7 Convolutional Neural Network Gibbs Model 135
7.0.1 Simple talks about Convolution . 135

7.1 Convolutional neural networks (CNNs) . 136
7.2 Pruned and Quantized CNNs for sparsity and model compression 137

7.2.1 Pruning a Convolutionnal Neural Network: computation speed and model size
reduction . 137

7.2.2 Other Proof-based and advanced Pruning methods 138
7.3 Quantized Convolutional Neural Networks . 138

7.3.1 Binarized Neural Networks (BNNs) . 139
7.4 Our CNN architecture . 140

7.4.1 Our 4-type CNN Gibbs Model . 140
7.4.2 The CIFAR-10 Photo classification dataset for experiments 141
7.4.3 Two additional layers and Invariants Networks as (universal) approximators . . 141

8 Concluding Remarks, Discussion notes & Applications 143
8.0.1 On the mixture models. 143
8.0.2 Extension to a Mixture of music composers. 143
8.0.3 The Multilayer feedforward Neural Network. 144
8.0.4 Notes on the Potts Models with Complete Shrinkage. 145
8.0.5 Concluding remarks on the Shallow Gibbs Structure. 146
8.0.6 A Generalized Double Back-Propagation Scheme (GDBS) for any parametric

model . 148
8.0.7 The Infinite Zelda Stochastic Game. 149
8.0.8 Other potential researches. 151

Bibliography 152

APPENDICES 219

A Other Experiments Results with the Shallow Gibbs Models 221

B Some Statistical Tables 225

8 CONTENTS

Errors: All the main results have been verified by our supervisor Alejandro Murua, and some parts
have already been published elsewhere in conferences circumstances, mainly in the Proceedings of
the Edge Intelligence Workshop 2020 (Alahassa & Murua, 2020) and The Eighth Annual Canadian
Statistics Student Conference (2020). There may be typos errors, for which we apologize and would be
grateful to receive corrections at alahassan@dms.umontreal.ca, as there is ongoing Proofreading work
for the paper.

keywords: Statistics, Mixture models, Potts model, Neural Networks, Probability and stochastic pro-
cesses, Graphical models, Structured models, Invariance descriptors, Convolutional Neural Network,
Artificial intelligence.

Acknowledgements: We would like to thank the following for contributions and suggestions: Alejan-
dro Murua (My supervisor) who has been involved and has stayed completely determined relentlessly;
Yoichi Mototake (from the Institute of Statistical Mathematics of Tokyo) that has also inspired me some
researches directions when we met the first time at Neural Information Processing Systems 2019 Con-
ference Annual Meeting – My application to this Conference was received at that time with NeurIPS
Travel Awards. We would also like to thank IVADO and The Natural Sciences and Engineering Re-
search Council of Canada (NSERC) for funding our PhD studies.

We are also grateful for all the support and guidance from the administration of the Department of
Mathematics and Statistics of University of Montreal, as well as all the dedicated teachers who have
supported us along the way.

A note about the supervisor. My (full) Professor Alejandro Murua has a very deep background in
artificial intelligence and applied machine learning researches, that has inspired me so much. Here are a
few works from him and some co-authors that the novice should read to further enrich his knowledge of
the topics covered in this document: A 2D extended HMM for speech recognition (Li & Murua (1999)),
Tensor train decompositions on recurrent networks (Murua et al. (2020)), Speech recognition using ran-
domized relational decision trees (Amit & Murua (2001)), High-dimensional variable selection with
the plaid mixture model for clustering (Chekouo & Murua (2018)), Kernel-based mixture models for
classification (Murua & Wicker (2015)), Fast spatial inference in the homogeneous Ising model (Murua
& Maitra (2017)), Classification and clustering of stop consonants via nonparametric transformations
and wavelets (Gidas & Murua (1995)), Model-based clustering and data transformations for gene ex-
pression data (Yeung et al. (2001)), Method and system for enhanced data searching (Marchisio et al.
(2008)), Hierarchical model-based clustering of large datasets through fractionation and refractiona-
tion (Tantrum et al. (2004)), Assessment and pruning of hierarchical model based clustering (Tantrum
et al. (2003)), Probabilistic segmentation and intensity estimation for microarray images (Gottardo et al.
(2006)), On Potts Model Clustering, Kernel K-Means and Density Estimation (Murua et al. (2008a)),
The conditional-Potts clustering model (Murua & Wicker (2014a)), The penalized biclustering model
and related algorithms (Chekouo & Murua (2015)), Functional connectivity mapping using the ferro-
magnetic Potts spin model (Stanberry et al. (2008a)), The gibbs-plaid biclustering model (Chekouo
et al. (2015)), Semiparametric Bayesian regression via Potts model (Murua & Quintana (2017b)), Fast
Approximate Complete-data k-nearest-neighbor Estimation (Murua & Wicker (2020)).

CONTENTS 9

Conflict of Interest Declaration. This work is the accomplishment of four (4) years of arduous re-
search on my doctoral thesis. During these years, I made some publications, but there is an essential part
of my research which remained private because I had to collaborate with several companies of Canada
such as (Robot) Advisors Inc., Quantolio Financial Technologies Inc., ApexMachina, Je rêve d’un Bu-
reau (a French firm), Plant-E Corp, etc. However, I declare that all of the work presented in this paper
is the unique culmination of my research at the University of Montreal with my research supervisor
Alejandro Murua. There is no conflict of interest with any of these private companies, and they are not
involved in any way.

10 CONTENTS

Table 1: Key notations guideline

Θ A model parameter
B A batch size
Ξ An integer or binary number
∇ Derivative w.r.t to all dimensions
∂ A partial derivative
D A set of data

w.r.t with respect to
ε A very small real number

Ep(z)[X] The expectation of X with respect to p(z)
πξ Probability of a component of label ξ

A(Y) Expected value of information from random variable Y
DKL(p‖q) The Kullback-Leibler (KL) Divergence between p and q

(a.e) Almost everywhere
ELBO Evidence Lower Bound

MCMC Markov Chain Monte Carlo
i.e That is
e.g For example
|S| Absolute value of S if S is a number, or Cardinal of S if S is a set
⊗ Kronecker product
� A graph set of edges or an edge-set
Λ Used mostly in chapter [4] as a model parameter
ρn A random partition for n data points
σ A bandwidth parameter or standard deviation
ζ Chapter or Section adopted symbol for a representation. Called Zeta.
ι Chapter or Section adopted symbol for a representation. Called Iota.
∝ Proportionality symbol
≈ Approximation symbol
⊂ Subset of
‖ · ‖ A norm. ‖ · ‖F is the Frobenius norm
∪ Union with

d← e A symbol used to mean d is assigned the value of e
d+ = e Used to mean d← d+ e
Mn×q The set of matrix with n rows and q columns
y|x y taken conditionally to x
S+ Space of Positive Definite Matrices

CONTENTS 11

Abstract. The perfect learning exists. We mean a learning model that can be generalized, and more-
over, that can always fit perfectly the test data, as well as the training data. We have performed in this
thesis many experiments that validate this concept in many ways. The tools are given through the chap-
ters that contain our developments. The classical Multilayer Feedforward model has been re-considered
and a novel Nk-architecture is proposed to fit any multivariate regression task. This model can easily be
augmented to thousands of possible layers without loss of predictive power, and has the potential to over-
come our difficulties simultaneously in building a model that has a good fit on the test data, and don’t
overfit. His hyper-parameters, the learning rate, the batch size, the number of training times (epochs), the
size of each layer, the number of hidden layers, all can be chosen experimentally with cross-validation
methods. There is a great advantage to build a more powerful model using mixture models properties.
They can self-classify many high dimensional data in a few numbers of mixture components. This is
also the case of the Shallow Gibbs Network model that we built as a Random Gibbs Network Forest to
reach the performance of the Multilayer feedforward Neural Network in a few numbers of parameters,
and fewer backpropagation iterations. To make it happens, we propose a novel optimization framework
for our Bayesian Shallow Network, called the Double Backpropagation Scheme (DBS) that can also fit
perfectly the data with appropriate learning rate, and which is convergent and universally applicable to
any Bayesian neural network problem. The contribution of this model is broad. First, it integrates all the
advantages of the Potts Model, which is a very rich random partitions model, that we have also modified
to propose its Complete Shrinkage version using agglomerative clustering techniques. The model takes
also an advantage of Gibbs Fields for its weights precision matrix structure, mainly through Markov
Random Fields, and even has five (5) variants structures at the end: the Full-Gibbs, the Sparse-Gibbs,
the Between layer Sparse Gibbs which is the B-Sparse Gibbs in a short, the Compound Symmetry Gibbs
(CS-Gibbs in short), and the Sparse Compound Symmetry Gibbs (Sparse-CS-Gibbs) model. The Full-
Gibbs is mainly to remind fully-connected models, and the other structures are useful to show how the
model can be reduced in terms of complexity with sparsity and parsimony. All those models have been
experimented, and the results arouse interest in those structures, in a sense that different structures help
to reach different results in terms of Mean Squared Error (MSE) and Relative Root Mean Squared Error
(RRMSE). For the Shallow Gibbs Network model, we have found the perfect learning framework : it is
the (l1, ζ, εdbs)−DBS configuration, which is a combination of the Universal Approximation Theorem,
and the DBS optimization, coupled with the (dist)-Nearest Neighbor-(h)-Taylor Series-Perfect Multi-
variate Interpolation (dist-NN-(h)-TS-PMI) model [which in turn is a combination of the research of the
Nearest Neighborhood for a good Train-Test association, the Taylor Approximation Theorem, and fi-
nally the Multivariate Interpolation Method]. It indicates that, with an appropriate number l1 of neurons
on the hidden layer, an optimal number ζ of DBS updates, an optimal DBS learnnig rate εdbs, an optimal
distance distopt in the research of the nearest neighbor in the training dataset for each test data xtest

i , an
optimal order hopt of the Taylor approximation for the Perfect Multivariate Interpolation (dist-NN-(h)-
TS-PMI) model once the DBS has overfitted the training dataset, the train and the test error converge to
zero (0). As the Potts Models and many random Partitions are based on a similarity measure, we open
the door to find sufficient invariants descriptors in any recognition problem for complex objects such as
image; using metric learning and invariance descriptor tools, to always reach 100% accuracy. This is
also possible with invariant networks that are also universal approximators. Our work closes the gap
between the theory and the practice in artificial intelligence, in a sense that it confirms that it is possible
to learn with very small error allowed.

12 CONTENTS

0.1 General Introduction
I would like to start this thesis with an uncommon question. What do you guess from the following lines
of text?

1N73LL1G3NC3
15 7H3

4B1L17Y
70 4D4P7 70

CH4NG3.
-73PH3N H4ZK1NG

This is the type of question that makes people think of how our mind learn and keep information.
Everybody can still guess that the first line is the word ”INTELLIGENCE”. The other part is much
hard for those who are reading that kind of sequence for the first time. I will reveal the answer to quick
it off: Intelligence is the ability to adapt to change - Stephen Hawking1. We may not be right, some
others have certainly found something else, better, but still rightful as language sentence. This question
reveals the universal truth in statistical learning field: machines never mistake, they output what you
have encoded, with the right comprehension system, with sufficient intelligencia.

Nowadays, some of the most heard expression in the domain of computer science and technology is
Artificial Intelligence (AI), divided into subfields such as intelligent agents, character recognition, hu-
man speech recognition, strategic games, graphs networks, natural language processing, machine learn-
ing, autonomously operating cars, reasoning, knowledge representation, planning, machine perception,
statistical methods, computational intelligence, and traditional symbolic AI, search and mathematical
optimization, artificial neural networks, information theory, intelligent assistants, learning heuristics,
knowledge representation and reasoning and deep learning. The set of references in those fields is sim-
ply infinitely not limited: Alpaydin (2016), Mitchell et al. (2013), Charniak (1985), Nilsson (2014),
McCarthy (1998), Russell & Norvig (2002), Gunning (2017), Minsky (1961), Fogel (1993), Goertzel &
Pennachin (2007), Nilsson (2009), Negnevitsky (2005), Cohen (1995), Plant (2011), Haugeland (1989),
Ginsberg (2012), McCarthy (1987), El Naqa & Murphy (2015), Mackenzie (2015), Lehr & Ohm (2017),
Surden (2014), Mohri et al. (2018), Dey (2016), Beam & Kohane (2018), Wagstaff (2012), Doshi-Velez
& Kim (2017), Wexler et al. (2019), Baştanlar & Özuysal (2014), Kononenko & Kukar (2007), Alpay-
din (2004), Mohammed et al. (2016), Mitchell et al. (1986), Natarajan (2014), Flach (2012), Mitchell
(1997), Chao (2011), Bonaccorso (2017), Chouldechova & Roth (2018), Ayodele (2010), Varshney
(2019), Harrington (2012), Murdoch et al. (2019), Flach (2001), Thomaz et al. (2006), Carbonell et al.
(1983), Jordan & Mitchell (2015), Lison (2015), Marsland (2015), Nadikattu (2018), Zinkevich (2017),
Solomonoff (2006), Goodfellow et al. (2016), LeCun et al. (2015a), Deng & Yu (2014), Nikolenko et al.
(2018), Kelleher (2019), Lauzon (2012), Hao et al. (2016), Sejnowski (2018), Wang & Raj (2017), Kim
(2017), Kai et al. (2013), Du et al. (2016), Vargas et al. (2017), Ng et al. (2014).

With the evolution of computers, engineers started thinking of a way to let the computer behave like
the human brain; and include this kind of intelligence in our everyday life. In the quest of the edge
of this achievement, the generalization of statistical methods to machine learning problems has started

1This quote has been written in the leet format on the back of a T-shirt hold by Neil deGrasse Tyson in 2019.

0.1. GENERAL INTRODUCTION 13

with acknowledgements of proven effective results of statistical models and distributions when solving
industrial and social problems. As Gaussian-like (Goodman (1963), Ahsanullah et al. (2014), Altman
& Bland (1995), Patel & Read (1996), Roy (2003), Bryc (2012)), exponential-like (Marshall & Olkin
(1967), Balakrishnan (2018), Verdu (1996), Epstein (1958), Mahdavi & Kundu (2017)), Benford law2

(Miller (2015), Fewster (2009)) was useful in detection of fraud (Diekmann & Jann (2010), Kossovsky
(2014), Tödter (2009), Diekmann (2007)) – in official statistics of a state’s election returns (Mebane
(2011), Deckert et al. (2011), Mebane & Kalinin (2009), Mebane Jr (2006), Alali & Romero (2013)),
in accounting and financial data (Durtschi et al. (2004), Watrin et al. (2008), Nigrini (2017), Krakar &
Žgela (2009)), in detection of winning offers for certain ebaY auctions which follow Benford’s Law as
well (Giles (2007), De Ceuster et al. (1998), Riccioni & Cerqueti (2018)), in money laundering (Badal-
Valero et al. (2018)), in image forensics (Fu et al. (2007), Andriotis et al. (2013)), in neural networks
(Busta & Weinberg (1998)), and for as many numerous examples in the field, it was obviously certain
above all doubt that statistics would rise to the house of God (Hooke (1979), Hood & Jones (2003)) with
eternal revolution (Salsburg (2001)).

Another famous example is the Boltzmann distribution. This distribution also called the Maxwell–Boltzmann
or Gibbs distribution concerns the distribution of an amount of energy between identical but distin-
guishable particles. The distribution is expressed in the form introduced by (Landau & Evgeny (1980),
McDowell (1999), Hernandez (2017), Russell (1996)). We may define it as:

qi ∝ e−
Hi
κη (1)

where Hi quantify the energy of the current state; qi is a probability to be in state i; the constant κ is
called or known as the Boltzmann constant and η the temperature of the thermodynamic system. The
symbol ∝ denotes the proportionality symbol. It represents the probability for the distribution of the
states in a system having different energies. The Maxwell-Boltzmann Distribution has already been
used to describes the speed of particles in terms of distribution in an idealized gas. It plays an impor-
tant role in understanding the kinetic, because this distribution forms the basis of the kinetic theory of
gases at a certain temperature (Bhattacharyay (2019), Kalanov (2008), Liu et al. (2014), Brandenburger
& Steverson (2019)). From this distribution, some interesting properties can be extracted for various
applications (Nash (1982); Novak & Bortz (1970); Kozliak (2004); Richmond & Solomon (2001)). In
fact, it has tons of application in almost every field in science: resource scheduling, the spatial dynamic
of diffusion systems, chemical kinetics, Gibbs entropy and thermodynamic entropy, Quantum Science
and Technology, lattice-Boltzmann networks, Boltzmann Workflow Generators, simulated annealing
and parallel annealing algorithm, neuromorphic systems, Quantum machine learning, graphical mod-
els, probabilistic modelling (Liang et al. (2014), Ernst et al. (2019), Gao et al. (2019), Takeda et al.
(2017), Rabbani & Babaei (2019), Aarts & Korst (1988), Neftci et al. (2014), Biamonte et al. (2017),
Mühlenbein et al. (1999), Yunpeng et al. (2006))

The Boltzmann Distribution was a preliminary to the Boltzmann Machine. A Boltzmann machine is
also known as an equivalent recurrent neural network (Medsker & Jain (2001)) – in binary decisions it

2Benford’s law, the remarkable logarithmic dissemination of critical digits found within the late nineteenth century. Ben-
ford’s law, moreover called the Newcomb–Benford law, the law of bizarre numbers, or the first-digit law, is an observation
about the repetition of some digits in various real-life sets of numerical data... (Berger & Hill (2015), Berger et al. (2011),
Burke & Kincanon (1991)).

14 CONTENTS

has some bias in each node. Boltzmann machines can be assembled to derive more advanced systems
such as deep belief networks (Hua et al. (2015), Hinton (2009), Tzortzis & Likas (2007)). Historically,
the Boltzmann machine is constructed from a spin-glass model of Sherrington-Kirkpatrick’s stochastic
Ising Model (Sherrington & Kirkpatrick (1975)). Austrian scientist Ludwig Boltzmann was the first
to introduce the Boltzmann distribution in the 20th century, but it was in 1985 that Stanford scientist
Geoffroy Hinton and Terry Sejnowski (Hinton & Sejnowski (1983)) has performed advanced researches
on this type of network. The success of those authors had come up in the 1980s with a new development
of backpropagation (LeCun et al. (1988), Plaut & Hinton (1987), Hinton (2007)). A Boltzmann machine
architecture is also equivalent to a known network such as stochastic Hopfield network with hidden
units with much more applications and improved features (Barra et al. (2012), Hopfield (2007), Paik &
Katsaggelos (1992), Young et al. (1997), Peng et al. (1996), Ramsauer et al. (2020)). More precisely,
Boltzmann Machine is obtained by applying simulated annealing on discrete Hopfield network. It is
closely related to the idea of a Hopfield network developed in the 1970s, and it relies on ideas from the
world of thermodynamics.

A Boltzmann machine may be arranged in units with an assigned quantity called energy or Hamiltonian
defined upon the network itself. Binary results are obtained from those units. It presents also some
stochastic properties unlike some Hopfield nets, even though in practice, they both present similar en-
ergy distributions, as well as the Ising models (Cipra (1987), Glauber (1963), Pfeuty (1970), Brush
(1967), Fredrickson & Andersen (1984), Kadowaki & Nishimori (1998),Joya et al. (2002), Aiyer et al.
(1990), Wen et al. (2009), McCoy & Wu (2014)):

H = −
(∑

i<j

∆ijvivj +
∑

i

δivi

)
(2)

Where ∆ij is to quantify the link, bond or connection between node j and node i, vi ∈ {0, 1, 2, 3, ..., 100, ...},
is the state of unit i, {0, 1, 2, 3, ..., 100, ...} a set of possible3 states for vi, δi represents a bias from unit i
in the system (−δi is the activation threshold for the unit i, an external field). In a few theoretical terms,
a Boltzmann Machine (BM) is also a probabilistic generative undirected graph model with Boltzmann
equilibrium distribution (Upadhya & Sastry (2019), Yasuda (2018), Lauritzen & Richardson (2002));
those graph models satisfy Markov property (Andersson et al. (2001), Frydenberg (1990), Lauritzen
et al. (2018)).

One particular example is the binary-Gaussian Boltzmann Machine which is treated as a hybrid model
(Cho et al. (2013), Yamashita et al. (2014), Tan et al. (2019), Li et al. (2019d)), with applications (Pap-
pagari et al. (2014), Choo & Lee (2018)). When the Boltzmann machine has a continuous vector Λ of
variables (sometimes called visible variables), each of them having a Gaussian distribution condition-
ally to a given binary variable or latent configuration ζ , he is said to be a Gaussian Bernoulli Boltzmann
machine written as follows:

P (Λ) =
∑

ζ

P (ζ)P (Λ|ζ) (3)

3It may be infinite.

0.1. GENERAL INTRODUCTION 15

This model (in equation 3) can be seen as a Gaussian mixture model with a large number of compo-
nents. In a purpose of continuous variable binarization, the Gaussian Bernoulli Boltzmann machine
is frequently used (for example each data vector Λ, can be associated with its maximum a posteriori
estimate). In speech processing applications for example, a model like this can be used as a Universal
Background Model (Povey et al. (2008), Hasan & Hansen (2011), Morrison (2011), May et al. (2011),
Xiong et al. (2006), Hasan et al. (2010), Snyder et al. (2015)), and it can process higher dimensional
vectors with a lot of information than traditional mixture models.

One direct application of the Boltzmann Machine (BM) already quoted above is the Ising Model, which
is a type of Restricted Boltzmann machines (RBMs), in which the number of states possible to unit i
is limited to two (2): vi ∈ {0, 1}. An extended application is the Potts Model, in which the number of
possible state for unit i is finite and equal to q. The Potts model is a probabilistic system model created
by particles which are data points, and a similarity measure controls their interactions. For a set of data
{xi}1:N , with xi ∈ Rd, i = 1, . . . , N , we denote Ξki = 1 if xi belongs to the k-th cluster, and set our
∆ij in equation 2 to be ∆ij = ∆ij(i, j,Ξki). We can see the product vivj as a similarity measure, and
replace it by one more general notation vivj = s (xi, xj). The temperature η still has an influence on the
distribution of the system (look for equation 1), and all external fields −δi in 2 are equal to zero. For
each η, there is a probability pη ({Ξki}) associated with each configuration of the system (Murua et al.
(2008a)):

pη ({Ξki}) ∝ exp

{
−1

η
H ({Ξki})

}
= exp

{
− 1

2η

n∑

i=1

n∑

j=1

∆ij(i, j,Ξki)s (xi, xj)

}

The Potts model has the property to return less-likely configurations that assign different labels (clus-
ters) to observations that are similar (Ashkin & Teller (1943); Graner & Glazier (1992); Selke & Huse
(1983)). Its applications extend to Some of the popular unsupervised learning methods are clustering,
dimensionality reduction, image segmentation, association mining, anomaly detection and generative
models (Li & Lowengrub (2014), Blatt et al. (1997); Reichardt & Bornholdt (2004); Kullmann et al.
(2000); Grimmett (1994); Asikainen et al. (2003); Coniglio & Peruggi (1982); Georgii & Häggström
(1996); Fortuin & Kasteleyn (1972); Murua & Wicker (2014a); Machta et al. (1996); Sweeny (1983);
Cardy & Ziff (2003); Grimmett (2004); Tomita & Okabe (2001); Blatt et al. (1996b); Blatt et al. (1996a);
Janke & Schakel (2004); Duminil-Copin et al. (2017)). Each of these techniques has a different pattern
recognition objective such as identifying latent grouping, identifying latent space, finding irregularities
in the data, density estimation or generating new samples from the data.

Taking advantage of the Potts models, and analogously to the stochastic gradient learning method for
neural networks (Li & Liang (2018); Bottou (1991); Amari (1993); Bottou (2012); Zinkevich et al.
(2010); Paine et al. (2013); Zhang et al. (2013)), we introduced the Shallow Gibbs Potts model, which
in-place simulate a large number of clusters generated through random partitioning of the data to in-
fer a similar standard stochastic batch learning (Fukumizu (1998); Lange et al. (2012); Sahoo et al.
(2017); Hinton et al. (2012a); Runxuan (2005); Li et al. (2020); Hinton et al. (2012b)). The Shallow
Gibbs Model is a Bayesian Gaussian mixture model, in which the components weights are generated
with the Potts Clustering Model (the latent variable follows a Potts Model), the normal distribution is
used for multivariate target prediction, and finally, the weights and biases of the feedforward network
involved follow a Markov Random Field (MRF) with three (3) variants of structure investigated: a

16 CONTENTS

sparse, compound symmetric and fully-connected precision matrix respectively. The hyper-parameters
are backpropagated through a projection gradient-based learning method, and Monte Carlo sampling
are used to obtained estimation of the predicted target via variational inference (Paisley et al. (2012);
Mnih & Gregor (2014); Kingma & Welling (2013); Ranganath et al. (2014); Graves (2011); Blei et al.
(2017); Salimans et al. (2015); Braun & McAuliffe (2010); Campbell & Li (2019); Campbell & Li
(2019); Ranganath et al. (2013); Yin & Zhou (2018); Zhang et al. (2018a); Srivastava & Sutton (2017);
Guo et al. (2016)).

Our model may be extended to a Multilayer Gibbs Potts Mixture of Neural Network (MGPM-NN), i.e
with a multilayer neural network feature included, with potential research explorations, but in the scope
of this thesis, we have restricted the model to a Shallow Network type, with a Bayesian framework. This
type of model has already been used and studied in various contexts (Malach & Shalev-Shwartz (2019);
Khor et al. (2019); Arjevani & Field (2020); Schindler et al. (2016); Kim & Gofman (2018); McDonnell
et al. (2015); Zhang et al. (2017); Kaya et al. (2019); Zhou et al. (2019); Delalleau & Bengio (2011);
Bianchini & Scarselli (2014)). In the Sparse model, you will find structures that reduce the Markov
connections between the weights of the Neural Network in comparison to fully-connected one. To build
our models, some sparse models were very inspirational in the literature (Kepner & Robinett (2019);
de Dios & Bruna (2020); Liu et al. (2020); Bourely et al. (2017); Yang & Ma (2019); Mao et al. (2017);
Gardner (1989); Glorot et al. (2011); Sun et al. (2016); Louizos et al. (2017); Srinivas et al. (2017)). In
the quest of model parsimony, the compound symmetry was also helpful, as it is proven in the literature
of mixed models (Wolfinger (1993)).

Our contributions, work and findings. The theory of perfect learning argues a universal model that
can beat any type of statistical model given a suitable hyper-parameters input, set appropriately [see
3.10]. We have first introduced some statistical topics [see 1] such as mixture models [see 1.1], Cholesky
decomposition [see 1.2.1], graphical models such as Markov Random Fields [see 1.2.2], Kullback-
Leibler divergence [1.2.4], gradient and stochastic gradient optimization [see 1.2.3] and Bernstein-von
Mises theorem for asymptotic convergence of Bayesian estimators [see 1.2.5]. Then, we have extended
the Potts models to a novel version called Potts Model with Complete Shrinkage (PMCS) [see 2.3].
This novel framework constrains the size of the clusters which are the components of the partition. We
have accomplished the shrinkage by adapting an agglomerative clustering algorithm (Kurita (1991)).
There is also a doorway to find the conditional distribution of the bonds given the Shrinked Clusters
passing by the distribution of the Potts Model Components size distribution itself using Frequency
of frequencies distribution [see 2.6.1]. This last development may be computationally intractable for
large datasets, but remains a land of rich mathematical developments. The main advantage of the Potts
Model with Complete Shrinkage is that one can simulate random partitions with the Potts Model with
a cluster size constraint, and even evaluate a posteriori the distribution of the components size. As
described in section [see 2.3], we have found evidence of bell shape curve [figure 2.8, figure 2.20]
of the constrained cluster size distribution of PMCS, when applied to some datasets taken from the
multiple-output benchmark datasets available in the Mulan project website (Tsoumakas et al., 2020)
[see Table 2.1].

In a second work, we have built a neural network model universally applicable for regression (even
classification) purpose that can beat any other model in terms of prediction error or accuracy, random
forest included (look in table 3.4). The model can be augmented sufficiently to thousands of layers
[see 3.9], and a great number of epochs (training) times to reach a high level of precision. Finally, the

0.1. GENERAL INTRODUCTION 17

Shallow Gibbs Potts Neural Network model was truly effective in terms of Relative Root Mean Squared
Error (RRMSE) against the multi-layer multi-target regression (MMR) Zhen et al. (2017) [see 4.6.1 and
4.1]. Moreover, the chapter allocated to this development has gone into depth about subjects that are
important for the learning process: neural network types [3.2], activation functions [3.3], loss functions
and its convexity issues [3.3, 3.4], the gradient and stochastic gradients application via backpropagation
[3.5], the choice of the batch size, the learning rate schedule, and many more topics such as cross-
validation, hold-out, the pruning regularization method [3.6], etc.

We have also shown with experimental trials as well as with mathematical theoretical grounded develop-
ments how to simplify in terms of sparsity and parsimony a Bayesian Neural Network, specifically the
Shallow Gibbs Network [4.1] with complex structures on his weights distribution. The model weights
and biases distribution is Gibbs-based because we have set up two independent fields: one on all the net-
work weights W = (W(1),W(2)), and another one on all the network biases b = (b(1), b(2)). The Sparse-
Gibbs Network [see 4.1.1] simplify the model to to a sparsity ratio of l1(p + q)2/(l1(q + p))2 = 1/l1,
which is a very significant value of interest. One contribution of value is how we melt compound sym-
metry structure on Gaussian Markov Random Fields for the Shallow Gibbs Network in a much more
various ways [see 4.1.2 and 4.1.2]. The interest in those structures is more valuable when come our
experimental results where we have showed how different precision matrix structures help to reach dif-
ferent level of precision upon the predictions when it comes to the Mean Squared Error, as well as
the Relative Root Mean Squared Error (RRMSE) [A, 4.6.1, and 4.6.1]. Beyond the Bayesian Varia-
tional Inference framework, that includes all our statistical developments for the model, passing by the
approximated Bayes factors and Besag’s related algorithm [see 4.4], and going through the Evidence
lower Bound (ELBO) to maximize, in order to find the best solution to our Kullback Leibler Divergence
optimization, and approximated using Monte Carlo methods (Blundell et al. (2015)). Not the least, the
choice of our variational distribution family is not mean fields-based, as it preserves consistently the
original structure of the model [4.4].

The shallow network is such a complex model, in a sense that regularisation has been proposed for its
compound symmetry structure (the CS-Gibbs model) [4.4.1], and a substantive work has been done to
keep the precision matrix positive definiteness property unchanged through the gradient updates which
is more precisely an Iterative projected gradient (IPG) [see 4.4.1]. The model prediction scheme has
also been completely built form the-top-to-bottom in our development [4.5], where it is also explained
how the Shallow Gibbs model can be seen as Random Gibbs Network Forest model [4.5].

We have augmented the model (the Shallow Gibbs) with a Double Backpropagation Optimization
Scheme called the DBS optimizer [see 4.5.1], that need to be fine-tuned with appropriate learning rate
for the estimated prediction ŷest to converge. This optimizer has been derived from the Cholesky de-
composition used to simulate the response variable y of the model. In fact, the DBS optimizer have
experimental results of convergence and is convergent [see 4.6.2]. We are convinced that more mathe-
matical developments on this optimizer will help to accommodate the best learning rate given the data
set and the prediction scheme. In other words, we claim from our experiments that the DBS is a uni-
versal optimizer with a number of DBS updates that need to be determined. Our findings from the Potts
Model with Complete Shrinkage, to the attractive results of the Nk Hidden Layer Multi-feedforward
Neural Network [3.4] for multivariate regression models, all with the potentiality of the Shallow Gibbs
Neural Network Potts Model based on mixture models, that comes up with its novel convergent DBS
optimizer, coupled with our introduced framework in the last chapter that aims to search for the right
similarity measure using sufficient invariant metric descriptor [6] to reach 100% accuracy in any recog-

18 CONTENTS

nition task, combine everything we call under the modest appellation: The Theory of The Perfect
Learning (TTPL), for therefore it is already possible and at work. For the Shallow Gibbs Network
model [4.1], we have found the Perfect learning as the (l1, ζ, εdbs)−DBS configuration, where this con-
figuration has to be coupled with our findings in chapter [5], i.e, the (dist)-Nearest Neighbor-(h)-Taylor
Series-Perfect Multivariate Interpolation (dist-NN-(h)-TS-PMI) presented in [5.3], all summarized
in the following result [4]:

lim
l
1,opt,ζopt,εdbs,opt,distopt,hopt

(MSETrain,MSETest) = (0, 0) (4)

where MSETrain, MSETest are the Mean Squared Error of the train and test data respectively, distopt
is the optimal distance for the research of the nearest neighbor in the training dataset for each test data
xtest
i , hopt is the optimal order of the Taylor approximation for the Perfect Multivariate Interpolation

(dist-NN-(h)-TS-PMI) model once the DBS has overfitted the training dataset. l1,opt, ζopt are respec-
tively the optimal number of hidden neurons (neurons on the hidden layer of the Shallow Net), and the
optimal number of DBS updates, and finally εdbs,opt which is the optimal DBS learning rate. εdbs,opt
integrates simultaneously the DBS learning rate vector for all the model parameters, the DBS learning
rate for the training data, and the DBS learning rate for the test data.

To find the intuition of those mixed learning ingredients described in the previous paragraph, one needs
to realize that Multivariate Interpolation using Taylor theorem is the refined generalization of simple
Neighborhood Train-Test association [5.2], for the main advantage it offers. Therefore, it is not a coin-
cidence that Taylor Approximation theorem is only defined in a certain vicinity or a given neighborhood
set. Moreover, using the Multivariate version of Taylor Theorem [5.2.1], we can see that Taylor Se-
ries can help to approximate any (differentiable) function, analogiously to the Universal Approximation
Theorem [see 4.6.1] for (continuous) functions. Using the assumption (Fd) that :

There is an approximable differentiable function ι such as: ι(xtest
i) = (ψtest

i , ytest
i), where we already

know in a perfect overfitting DBS configuration (xtrain
j1

, ψtrain
j1

, ytrain
j1

) [i.e
ι(xtrain

j1
) = (ψtrain

j1
, ytrain
j1

)] and (xtrain
j2

, ψtrain
j2

, ytrain
j2

) [i.e ι(xtrain
j2

) = (ψtrain
j2

, ytrain
j2

)] for two
training data j1 and j2, With the precision that the training data point j2 and the test data i are taken in

a very closed neighborhood of j1.

where ψtrain
· is the parameter associated to (xtrain

· , ytrain
·) in the DBS optimization; we can sufficiently

approximate (ψtest
i , ytest

i), by applying an appropriate Data Augmentation for Empirical Differentiation
(DAED) [5.3], which enables a Perfect Multivariate Interpolation model [5.2], the dist-NN-(h)-TS-PMI
model.

This is a great revolution in Statistical Learning Theory, as we can sufficiently (i.e with h ≥ 2) inter-
polate any machine learning regression problem, with an empirical differentiation form when we know
the perfect parameters that fit the training data. By then, the famous overfitting problem is no more
an hindrance, but an extraordinary gateway to another type of learning method., as one can still
generalize the model with appropriate use of the Taylor Approximation Theorem, as illustrated in section
[5.3]. The conclusion of this part of the work is even powerful than experimental results, and can be
dictated in one universal rule [as it is mathematically valid under assumption (Fd)]:

0.1. GENERAL INTRODUCTION 19

When we overfit, training data can be augmented, and any parametric model can sufficiently be
differentiated to approximate test data solutions with small errors allowed (i.e, with almost

perfect solutions).

The generalization power of this rule4 is infinite, as the secret is to understand that every augmented
data can also be sufficiently differentiated, as much as we want to overlap all the possible data Space
domain:

x
aug-train
j1

= (xtrain
j1

(1) + δ, ..., xtrain
j1

(q))−→





(xtrain
j1

(1) + s1 · δ, ..., xtrain
j1

(q))

(xtrain
j1

(1), xtrain
j1

(2) + s2 · δ, ..., xtrain
j1

(q))
.

(xtrain
j1

(1), xtrain
j1

(2), ..., xtrain
j1

(q) + sq · δ)

(5)

with (s1, s2, ..., sq) is a q-tuple of integers or rationals, where xaug-train
j1

is our augmented data in the
training set, and δ ∈ R a very small number. The re-training process has to be done progressively to ob-
tain their perfect associated parameters [see 5.4]. To generalize the model to any parametric model, we
have proposed an effective Generalized Double Back-Propagation for any parametric model, augmented
with a differential and local neighborhood machine learning framework for almost sure convergence
presented in section 8.0.6.

We have also discovered with Tiles, and the Turing Machines, and some notions of advanced mathe-
matics, a system of creation of infinite machines capable of [LEARNING AND KNOWING EVERY-
THING] (8.0.8).

Thesis chapter organization. The chapter-structure of the thesis is as follows: Chapter 1 is dedicated
to those major topics and statistical ingredients that matter a lot in terms of learning, starting from
mixture models to divergence metric and even Beirntein Von-Mises theorem for asymptotic convergence
of Bayesian estimations. Chapter 2 presents the Potts models, the bonds approach which calls upon
percolation theory, the Complete Shrinkage Potts models in which we have successfully constrained the
minimum Potts Clusters size; all this with extended research on their distribution respectively (the Potts
clusters size). Another major part of the document is deep learning and the classical neural network
(feedforward approach), the how & the way it works effectively (chapter 3). We pursue the research by
building a unique model based on the Shallow Neural Network Structure, a combination of Gaussian
Markov Random Fields, a variational learning method that welcome a novel Bayesian framework: the
Shallow Potts Neural Network Gibbs Model. You will see further development of the model in chapter
4. The Nearest Neighbor Multivariate Interpolation has been presented in chapter 5. Our interests went
far to develop a generalized metric learning framework for the similarity measures (such as the one in
Potts Model) which can be extended for fast image classification, segmentation and retrieval (chapter 6).
A supplementary conceptual note about Convolutional Neural Network Gibbs Model has been proposed
in chapter 7, and may further get improved in many ways. Essentially, we have introduced some novel
architectures to explore [7.4.1] and have highlighted the importance of invariant networks [7.4.3] as
universal approximators. This chapter is also an attempt to propose some directives to solve open

4Always under the validity of assumption (Fd).

20 CONTENTS

questions in chapter [6]. Finally, our concluding remarks, discussion notes and applications will appear
in chapter 8.

The Shallow Gibbs model developed in chapter 4 [4] has an interesting application that we have pre-
sented in paragraph [8.0.7], titled Infinite Zelda Game as a note about how the model can also be applied
in Artificial Intelligence Stochastic Games using the dist-NN-(h)-TS-PMI-(l1, ζ, εdbs)−DBS optimizer.
Using the results from this thesis, we also contend that advances in learning theory would go very far if
appropriate comprehension of shallow neural networks kernels is integrated.

Chapter 1

Statistical topics

1.1 Mixture Models
Mixture models, also known as mixtures of distributions, in particular the mixture of normal distribu-
tions, have been used extensively as models in a wide variety of important practical situations. They
have been cited many years ago in the literature with the work of McLachlan & Peel (2004), Karl Pear-
son (Améndola et al., 2015), Tarter & Lock (1993), Li (1999), etc. The idea of using them was first
popularized by Duda et al. (1973), in their seminal research paper: Pattern Classification and Scene
Analysis.

They have already been applied to famous problems such as image retrieval (Permuter et al., 2003), im-
age classification and segmentation (Permuter et al. (2006);Chen et al. (2010a); Shen (2006)), handwrit-
ing recognition (Bishop, 2006a), speaker identification, (Reynolds, 1995), state-space models (Lemke,
2006), volatility models (Brigo & Mercurio (2002); Alexander (2004); Wang (2001)), biometric veri-
fication (Stylianou et al., 2005), incomplete data (Dempster et al., 1977), topic modelling (Wang et al.
(2017); Tong & Zhang (2016)), point set registration (Ravikumar et al. (2018), Ravikumar et al. (2018)
), etc. For the following lines, Ξ is an integer (Ξ ≥ 1).

Definition 1.1.1 (Deisenroth & Ong)
A Mixture model is a distribution obtained in the following form by a convex combination of Ξ simple
(base) distributions p(x):

p(x) =
∑Ξ

ξ=1 πξpξ(x)

0 6 πξ 6 1,
∑Ξ

ξ=1 πξ = 1

Where the pξ are called the components with an assigned distribution family, as e.g : Laplace, Nor-
mal, Exponential, Cauchy, Uniform, logistics (Casella & Berger, 2002). The πξ are called the mixture
weights or mixture proportions.

Mixture models can also describe datasets with multiple clusters (McLachlan & Basford (1988); Go-
vaert & Nadif (2003); Ng & McLachlan (2014); Coke & Tsao (2010); Verbeek (2004); Melnykov
et al. (2010); Govaert & Nadif (2008); Khalidov et al. (2011)). Assume we are given a dataset X =

21

22 CHAPTER 1. STATISTICAL TOPICS

{x1, . . . ,xN} = (xi)1:N , where xn, n = 1, ..., N are coming from an i.i.d distribution p(x) which is
unknown, a Mixture Clustering Model (MCM) of the data is obtained by finding for xi its correct com-
ponent pξ based on his posterior probability of being generated from this component; that is, the ξ-th
cluster consists of those observations assigned to the ξ-th component (ξ = 1, ...,Ξ). The following
notes are dedicated to Gaussian Mixture Models, which are the most famous in the literature for their
good generalization ability among many important probabilistic models.

1.1.1 Example of Gaussian Mixture Model (McLachlan & Basford, 1988)
Combining Ξ Gaussian distributions N (· | µξ,Σξ) in a convex way give rise to a mixture model called
Gaussian mixture, for which we have :

p(x | θ) =
∑

ξ p (x | z = ξ) p (z = ξ) =
∑Ξ

ξ=1 πξ N
(
x | µξ,Σξ

)

with 0 6 πξ 6 1,
∑Ξ

ξ=1 πξ = 1

(1.1)

where we defined z as a non-observed latent variable. H :=
{
µξ,Σξ : ξ = 1, . . . ,Ξ

}
gathers all the

components parameters of the model. π = (π1,π2, ...,πξ) is the vector of the mixture proportions πξ,
where πξ is the probability to observe the ξ-th component. µξ and Σξ are respectively the mean and the
covariance of the ξ-th mixture component N

(
x | µξ,Σξ

)
.

An illustration is given in Figure 1.1, displaying an example with a proper fitted GMM mixing weights
(in orange) and GMM where we change the weights to be equal πξ = 1/6 (in green) for a 6-Gaussian
mixture fitted to the Galaxies dataset1. This dataset contains a numeric velocity vector in km/sec of
82 galaxies from 6 well-separated conic sections of the Corona Borealis field in an unfilled survey
(Venables & Ripley, 2002).

As k-means, Gaussian mixture models also have clustering models properties for unlabeled data (Likas
et al. (2003); Su & Dy (2007); Vermunt (2011); Hamerly & Elkan (2004); Kulis & Jordan (2011);
Magidson & Vermunt (2002); Kodinariya & Makwana (2013)). However, the use of Gaussian mixture
models over k-means has a few benefits. The key difference between the two is that k-means informs
us what data point belongs to which cluster, but does not provide us with the likelihood that any of the
data points is for a given cluster.

Maximum Likelihood and Issues Encountered

A natural idea is to maximize the likelohood for πξ, µξ, and Σξ, with ξ = 1, . . . ,Ξ. Assuming that the
observations (xi)1:N are independent, the log-likelihood is:

`(H,π;x) =
N∑

i=1

log p (xi) =
N∑

n=1

log
Ξ∑

ξ=1

πξN
(
xn | µξ,Σξ

)

︸ ︷︷ ︸
=:L

(1.2)

1Look for the Galaxies dataset on this link https://stat.ethz.ch/R-manual/R-devel/library/MASS/
html/galaxies.html

https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/galaxies.html
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/galaxies.html

1.1. MIXTURE MODELS 23

Figure 1.1: Example of a 6-Gaussian Mixture Model (GMM) fitted with the Galaxies Dataset, fitted
GMM weights (in orange) and equal weights πξ = 1/6 (in green); histogram in blue.

where xi is the data vector for observation i, and p(·) is as defined above. Because of the sum of terms
inside the logarithm, an algorithm to maximize `(H,π;x) is difficult to implement numerically. This is
mainly due to the πξ which are unknown. The appropriate maximum likelihood suffers then from some
issues. In the number of issues with Maximum Likelihood for Gaussian Mixture Models, we have :

• Non-identifiability: there are many maximums for the likelihood; hence there are not unique, since
permuting the names of the components will deliver a diverse set of parameters values that fit the
data fairly as well (Kim & Lindsay (2015); Kéry (2018); Jiang & Tanner (1999); Iannario (2010)).
Let (ι(1), ι(2), ..., ι(ξ)) denote a permutation of the integers 1, . . . , ξ. In other words, with regard
to any permutation of the parameters positions, the probability likelihood stays invariant. With
(H,π) = {(H1,π1), (H2,π2), ..., (Hk,πξ)}, it means:

`(H,π;x) = `(ι(H,π);x) (1.3)

Let consider this case of a mixture model with two mean parameters M1 and M2, for x = (xi)1:N ,
with a base normal distribution N (xn |M1,σ) and N (xn |M2,σ) as for example, with a com-
mon scale parameter σ > 0:

p (x | ρ,M1,M2,σ) =
N∏

n=1

(ρ · p (xn |M1,σ) + (1− ρ) · p (xn |M2,σ))

where ρ ∈ [0, 1]. The issue here is exchangeability of the mixture components, because:

p (ρ,M1,M2, σ | y) = p ((1− ρ),M2,M1, σ | y)

The problem is compounded by the number Ξ of components in the mixture, mostly when it
grows, leading to Ξ! identical Log-likelihood (and posterior) maxima (Stephens, 2000).

24 CHAPTER 1. STATISTICAL TOPICS

• Existence of other local maxima: Even aside from re-labellings, there is often more than one
local maximum of the likelihood (Seidel & Ševčı́ková (2004); Jin et al. (2016); Srebro (2007)).
Finding one of the global maxima (or at least a good local maximum) may require searching for
the maximum from many different starting points (Ueda et al. (1999); Botev & Kroese (2004)).
As for example, suppose when Ξ > 1, there exist a component ξ, and some data item, i, for which
we have 0 < πξ < 1, µξ = xi, and Σξ = 0. This gives a limitless spike of likelihood thickness
at a certain point (the actual global maximum will be at a point with infinite likelihood), while
other points have non-zero probability density from other components. Because of this problem,
we need to try as many starting points as needed to find a good local maximum that may not be
one where some Σξ are closed to zero.

Expectation Maximization algorithm

As explained above, there are several issues to find the parameters of a mixture model passing by
the likelihood maximization. When the mixture is finite, there is a simpler approach, known as the
Expectation Maximization (EM) algorithm (Dempster et al. (1977), Dinov (2008), Day (1969)). It has
the property to be simple to implement (easy to actualize through updates), and exceptionally stable.

Definition 1.1.2 (GMM Expected Complete Log-Likelihood)
In the case z is still a latent unobserved variable, we define the following quantity as the Expected
Complete log-likelihood for all the data (xi, zi)1:N , which is as follows:

E[Ic(H;x, z)] =
N∑

1

Ep(z)[log p (zi | π)] +
N∑

1

Ep(z)[log p (xi | zi, µ,Σ)] (1.4)

where Ep(z)[X] is the expectation of X with respect to p(z).

We consider the unobserved latent variable z in equation (1.1), for a set of N data (xi)1:N , we maximize
1.4 and solve:

max
H

N∑

i=1

Ep(z)[log p (xi, zi |H)]

utilizing this specific EM iterative method to numerically approximate the maximum-likelihood. For a
Gaussian mixture with Σξ, the desire maximization (EM) calculation can be depicted as follows, where
it interchanges between step (E) and (M) until it converges:

1. Choose a random Gaussian parameters H,

2. Repeat the two steps a) and b) below until convergence:

a) Expectation (E) Step: Calculate the riξ value using the existing values of the parameters,i.e,
compute the riξ = p(zi = ξ | xi,H) of components for all data xi. The riξ are called the
responsibilities, by applying Bayes’ Rule, we easily have:

1.1. MIXTURE MODELS 25

riξ = p(zi = ξ | xi,H) =
πξN (xi | µξ,Σξ)∑
ξ′ πξ′N (xi | µξ′ ,Σξ′)

(1.5)

As you can notice, the likelihood of data xi is proportional to the responsibility riξ of the
ξ-th mixture component:

p
(
xi | πξ,µξ,Σξ

)
= πξN

(
xi | µξ,Σξ

)

b) Maximisation (M) Step: Re-estimate the parameters using the current responsibilities, by
applying a weighted average:

πξ =
1

N

∑

i

riξ, µξ =
∑

i

riξxi/
∑

i

riξ, Σξ =
1

Nξ

N∑

i=1

riξ
(
xi − µξ

) (
xi − µξ

)>

Initializations can be random, or based on an initial guess You may start with some initial guess (perhaps
random) of the parameter values, or perhaps with some initial guess of the responsibilities riξ (in which
case you start with an M step). Continue interchanging and executing E and M steps until there is little
change. Now, we need to justify the reason why the updates are set as they are in the EM algorithm
Maximisation (M) Step.

Theorem 1.1.1 (Update of the GMM Means)
The update of the mean parameters µξ, ξ = 1, . . . ,Ξ, of the GMM is given by:

µnew
ξ =

∑N
n=1 rnξxn∑N
n=1 rnξ

where the responsibilities rnξ are defined in equation 1.5

Proof 1.1.1 (Deisenroth & Ong)
The gradient of the log-likelihood with respect to the mean parameters µξ, ξ = 1, . . . ,Ξ, requires us to
compute the partial derivative

∂p (xi |H)

∂µξ
=

Ξ∑

j=1

πj
∂N (xi | µj,Σj)

∂µξ
= πk

∂N (xi | µξ,Σξ)

∂µξ

= πξ (xi − µξ)>Σ−1
ξ N (xi | µξ,Σξ)

where we exploited that only the ξ-th mixture component depends on µξ.

26 CHAPTER 1. STATISTICAL TOPICS

∂L

∂µξ
=

N∑

i=1

∂ log p (xi |H)

∂µξ
=

N∑

n=1

1

p (xi |H)

∂p (xi |H)

∂µξ

=
N∑

i=1

(
xi − µξ

)>
Σ−1
ξ

πξN (xi | µk,Σξ)∑Ξ
j=1 πjN (xi | µj,Σj)︸ ︷︷ ︸

=riξ

=
N∑

i=1

riξ
(
xi − µξ

)>
Σ−1
ξ

We now solve for µnew
ξ so that

∂L(µnew
ξ)

∂µξ
= 0> and obtain:

N∑

i=1

riξxi =
N∑

i=1

riξµ
new
ξ ⇐⇒ µnew

ξ =

∑N
i=1 riξxi∑N
i=1 riξ

This concludes the proof of Theorem 1.1.1.

Theorem 1.1.2 (Updates of the GMM Covariances)
The update of the covariance parameters Σξ, ξ = 1, . . . ,Ξ of the GMM is given by

Σnew
ξ =

1

Nξ

N∑

i=1

riξ
(
xi − µξ

) (
xi − µξ

)>

where Nξ are defined as:

Nξ :=
N∑

i=1

riξ

Proof 1.1.2 (Deisenroth & Ong)
Our approach is to compute the partial derivatives of the log-likelihood L with respect to the covari-
ances Σξ, set them to 0, and solve for Σξ. We start with our general approach

∂L

∂Σξ

=
N∑

i=1

∂ log p (xi |H)

∂Σξ

=
N∑

i=1

1

p (xi |H)

∂p (xi |H)

∂Σξ

We then obtain

∂p (xi |H)

∂Σξ

=
∂

∂Σξ

(
πξ(2π)−

D
2 det (Σξ)

− 1
2 exp

(
−1

2

(
xi − µξ

)>
Σ−1
ξ

(
xi − µξ

)))

= πξ(2π)−
D
2

[
∂

∂Σξ

det (Σξ)
− 1

2 exp

(
−1

2

(
xi − µξ

)>
Σ−1
ξ

(
xi − µξ

))

+ det (Σk)
− 1

2
∂

∂Σξ

exp

(
−1

2

(
xi − µξ

)>
Σ−1
ξ

(
xi − µξ

))]

We now use the identities:

1.1. MIXTURE MODELS 27

∂
∂Σξ

det (Σξ)
− 1

2 = −1
2

det (Σξ)
− 1

2 Σ−1
ξ

∂
∂Σξ

(
xi − µξ

)>
Σ−1
ξ

(
xi − µξ

)
= −Σ−1

ξ

(
xi − µξ

) (
xi − µξ

)>
Σ−1
ξ

and obtain the desired partial derivative required as:

∂p (xi |H)

∂Σξ

=πξN
(
xi | µξ,Σξ

)
·
[
−1

2

(
Σ−1
ξ −Σ−1

ξ

(
xi − µξ

) (
xi − µξ

)>
Σ−1
ξ

)]

Putting everything together, the partial derivative of the log-likelihood with respect to Σξ is given by :

∂L

∂Σξ

=
N∑

i=1

∂ log p (xi |H)

∂Σξ

=
N∑

n=1

1

p (xi |H)

∂p (xi |H)

∂Σξ

=
N∑

i=1

πξN
(
xi | µξ,Σξ

)
∑Ξ

j=1 πjN (xi | µj,Σj)︸ ︷︷ ︸
=riξ

·
[
−1

2

(
Σ−1
ξ −Σ−1

ξ

(
xi − µξ

) (
xi − µξ

)>
Σ−1
ξ

)]

=− 1

2

N∑

i=1

riξ

(
Σ−1
ξ −Σ−1

ξ

(
xi − µξ

) (
xi − µξ

)>
Σ−1
ξ

)

= −1

2
Σ−1
ξ

N∑

i=1

riξ +
1

2
Σ−1
ξ

(
N∑

i=1

riξ
(
xi − µξ

) (
xi − µξ

)>
)

Σ−1
ξ

Setting this partial derivative to 0, we obtain the result:

NξΣ
−1
ξ = Σ−1

ξ

(
N∑

i=1

riξ
(
xi − µξ

) (
xi − µξ

)>
)

Σ−1
ξ

⇐⇒ NξI =

(
N∑

i=1

riξ
(
xi − µξ

) (
xi − µξ

)>
)

Σ−1
ξ

By solving for Σξ, we obtain

Σnew
ξ =

1

Nξ

N∑

n=1

rnξ
(
xn − µξ

) (
xn − µξ

)>

This gives us a simple update rule for Σξ for ξ = 1, . . . ,Ξ and proves Theorem 1.1.2.

Theorem 1.1.3 (Update of the GMM Mixture Weights)
The mixture weights πk of the GMM are updated as:

πnewξ =
Nξ

N
, ξ = 1, . . . ,Ξ

where N is the number of data points and Nξ is defined in Theorem 1.1.2.

28 CHAPTER 1. STATISTICAL TOPICS

Proof 1.1.3 (Deisenroth & Ong)
To find the partial derivative of the log-likelihood with respect to the weight parameters πξ, ξ = 1, . . . ,Ξ,
we account for the constraint

∑
ξ πξ = 1 by using Lagrange multipliers (Rockafellar, 1993). The

Lagrangian is:

L = L + λ

(
Ξ∑

ξ=1

πξ − 1

)
=

N∑

i=1

log
Ξ∑

k=1

πξN
(
xi | µξ,Σξ

)
+ λ

(
Ξ∑

ξ=1

πξ − 1

)

where L is the log-likelihood defined in equation 1.2 and the second term encodes for the equality
constraint that all the mixture weights need to sum up to 1. We obtain the partial derivative with respect
to πξ as:

∂L

∂πξ
=

N∑

i=1

N
(
xi | µξ,Σξ

)
∑Ξ

j=1 πjN
(
xi | µj,Σj

) + λ

=
1

πξ

N∑

i=1

πξN
(
xi | µξ,Σξ

)
∑Ξ

j=1 πjN
(
xi | µj,Σj

)
︸ ︷︷ ︸

=Nξ

+λ =
Nξ

πξ
+ λ

and the partial derivative with respect to the Lagrange multiplier λ as:

∂L

∂λ
=

Ξ∑

ξ=1

πξ − 1

Setting both partial derivatives to 0 (a necessary condition for optimum) yields the system of equations:

πξ = −Nξ

λ

1 =
K∑

ξ=1

πξ

Solving for πξ, we obtain:

Ξ∑

ξ=1

πξ = 1⇐⇒ −
Ξ∑

ξ=1

Nξ

λ
= 1⇐⇒ −N

λ
= 1⇐⇒ λ = −N

This allows us to substitute −N for λ to obtain:

πnew
ξ =

Nξ

N

which gives us the update for the weight parameters πξ and proves Theorem 1.1.3.

Illustrative Python Example of EM algorithm at work

To help us illustrate the EM algorithm, we first generate some observations from a mixture of Gaussians.
For this we choose three (4) mixture components, with the following settings:

1.1. MIXTURE MODELS 29

π1 =
1

4
,µ1 = (1, 9),Σ1 =

(
0.5 0
0 0.2

)

π2 =
1

3
,µ1 = (1, 1),Σ2 =

(
0.92 0.38
0.39 0.91

)

π3 =
1

4
,µ1 = (8, 1),Σ3 =

(
0.2 0
0 0.2

)

π4 =
1

6
,µ1 = (8, 10),Σ4 =

(
1 0
0 1

)

Now, we generate N = 300 data from the three (4) components, and randomly. Once our data (xi)1:N

is generated, we plot the result in a 2D plot (in figure 1.2):

Figure 1.2: 4 Clusters of Data from Our 4 components set for EM illustration

EM algorithm tip: In this simple case, you can take the empirical covariances of the data to be
the initial covariances in each cluster, as well as the four(4) points [µ1,µ2,µ3,µ4] to be the initial
cluster means. On the other hand, using K-means as a first step and using the means and the
covariances from such clusters to initialise the EM algorithm works.

Based on what is known as a contour map, one way to show a two-dimensional Gaussian distribution is
what our simulated data looks like for a single iteration of the EM algorithm (figure 1.3).

After 12 iterations, we have reached convergence, but we have increased iterations to 50 (figure 1.4).

30 CHAPTER 1. STATISTICAL TOPICS

Figure 1.3: Initial GMM Clustering for the simulated data, iteration=1

Figure 1.4: GMM Clustering for the simulated data, EM algorithm, iteration=50

The odds and the ends: how do you choose Ξ?

The Curse of dimensionality: One downside of GMMs is that there are heaps of parameters to
learn, therefore they may require loads of data and an increased number of parameters to get great
results. An unconstrained model with τ -mixtures (or simply τ clusters) and κ dimensional data
involves fitting κ×κ× τ +κ× τ + τ parameters (τ covariance matrices each of size κ×κ, plus τ
mean vectors of length κ, plus a weight vector of length τ). That could be a problem for datasets
with a large number of dimensions (e.g. text data - Hansen et al. (2000); Bingham & Mannila
(2001); Fattah & Ren (2009)), since with the number of parameters required generally is as the
square of the dimension, it might immediately get difficult to find an adequate amount of data to
make good inferences. (Steinley & Brusco (2011); Huber & Hanebeck (2008); Meinicke & Ritter
(2001); Kim et al. (2015)).

1.1. MIXTURE MODELS 31

If you choose Ξ too small, you’ll underfit the data, whereas if you choose it too large, you can overfit.
One solution is to choose it using a validation set. I.e., you may choose the value of Ξ which maximizes
the average log-likelihood on the validation set (Grimm et al. (2017)). There are many other approaches
available to find Ξ (Melnykov & Melnykov (2012); Figueiredo & Jain (2002); Figueiredo et al. (1999);
Zhang et al. (2004); Pernkopf & Bouchaffra (2005); Yang et al. (2012); Najar et al. (2019); Zivkovic &
van der Heijden (2004); McLachlan et al. (1999); Chen et al. (2004)).

Similar to K-means, GMM requires the user to specify the number of components (clusters) before
training the model. Here, we can use the Aikaki Information Criterion (AIC). or the Bayesian Infor-
mation Criterion (BIC) to aid us in this decision (Steele & Raftery (2010); Soromenho (1994); Agusta
& Dowe (2003); Brame et al. (2006); Huang et al. (2017); Hirai & Yamanishi (2013); Chen & Khalili
(2009); Kim & Seo (2014); Hirai & Yamanishi (2011)). Let M be the maximum value of the likelihood
function for the model, e be the number of estimated parameters in the model andN be the total number
of data points. Then the AIC value CAIC of the model is the following:

CAIC = 2 · e− 2 · ln(M)

And the BIC value CBIC is denoted as:

CBIC = −2 · ln(M) + e · ln(N)

Figure 1.5: GMM AIC & BIC for the simulated data, Scikit Learn GMM, iteration=1000

For both evaluation criterion, AIC and BIC propose four (4) components (figure 1.5). There is also
a very elegant framework called Bayesian Mixture Models (Nasserinejad et al. (2017); Elguebaly &
Bouguila (2011); Miller & Harrison (2018); Frühwirth-Schnatter & Pyne (2010)) which automatically
adjusts the model complexity without requiring a validation set, but that is beyond the scope of this
EM illustration. We will still grasp your attention in the following section to Dirichlet Mixture Models
which is one of those Bayesian Models.

32 CHAPTER 1. STATISTICAL TOPICS

1.1.2 Notes on Dirichlet Mixture Models

The mixture models discussed above have their Bayesian version in which the mixture proportions and
the parameters of the components have all an assigned prior distribution: they become random variables.
The Dirichlet Mixture Models (DMM) represent one particular case of Bayesian mixture models (Moser
et al. (2015); Svensén & Bishop (2005); Medvedovic et al. (2004); Lartillot & Philippe (2004); Do et al.
(2005)) in which the mixture proportion πk (or the mixture weights) the weights are typically viewed as a
K-dimensional random vector drawn from a Dirichlet distribution (the conjugate prior of the categorical
distribution), and the parameters will be distributed according to their respective conjugate priors (Steck
& Jaakkola (2002), Tu (2014)).

Definition 1.1.3 (Darroch & Ratcliff (1971); Ongaro & Migliorati (2013); Lin (2016); Geiger & Heck-
erman (1996))
Let Y k = [Y1, . . . , Yk] be a vector with k components, where Yi ≥ 0 for i = 1, 2, . . . , k and

∑k
i=1 Yi = 1.

Also, let Ek = [E1,E2, . . . Ek] , where αi > 0 for each i. Then the Dirichlet probability density function
is:

f
(
yk
)

=
Γ (E0)∏k
i=1 Γ (Ei)

k∏

i=1

yEi−1
i (1.6)

where E0 =
∑k

i=1 Ei, yi > 0, y1 + · · · + yk−1 < 1 and yk = 1 − y1 − · · · − yk−1. We denote this
distribution by Dir (E1,E2, . . . ,Ek).

In practice, we have two types of priors implementation based on Dirichlet representation of the com-
ponents weights: a finite mixture model with Dirichlet distribution and an infinite mixture model
with the Dirichlet Process (Antoniak (1974)). In practice, the Dirichlet Process inference algorithm is
approximated and uses a truncated distribution with a fixed maximum number of components (called
the Stick-breaking representation). The number of components used almost always depends on the data.

1.1. MIXTURE MODELS 33

Since the Dirichlet distribution is a multi-dimensional Beta distribution, the stick-breaking ap-
proach (Ishwaran & Zarepour (2002); Lee & MacEachern (2020); Zarepour & Al Labadi (2012);
Ghahramani et al. (2010); Broderick et al. (2012); Griffin & Steel (2011); Griffin & Steel
(2006)) can be used for generating Dirichlet random variables. The general principle is to first
consider a stick with a length of 1., then split it using a suitable Beta distribution to stick it
into two parts, and hold one piece of stick. Then, properly split the remaining stick into two
pieces (Paisley (2010)). Repeat this process until there are k pieces of the stick. This stick-
breaking method generates a random vector (V1, . . . , Vi, . . . , Vk) , which is distributed as a Dirich-
let distribution Dir (E1, . . . ,Ek) , where Vi is the length of the ith piece of the original stick.
Mathematically, we generate a random vector (V1, . . . , Vk) as follows:

• Simulate a random variate Uj ∼ Beta
(
Ej,
∑k

i=j+1 Ei

)
, where j = 1, . . . k − 1. When

j = 1, we have U1 ∼ Beta
(
E1,
∑k

i=2 Ei

)
. The first piece of the stick has length 1 · U1,

such that the length of the remaining stick is 1− U1. Also, set V1 = U1.
• When j = 2, we have U2 ∼ Beta

(
E2,
∑k

i=3 Ei

)
. The second piece of the stick has

length (1− U1)U2, such that the length of the remaining stick is (1− U1)− (1− U1)U2 =
(1− U1) (1− U2) . Also, set U2 = (1− U1)U2.

• When j = k−1,we haveUk−1 ∼ Beta (Ek−1,Ek) . The (k−1)th piece of the stick has length
Uk−1

∏k−2
j=1 (1− Uj) , such that the length of the remaining stick is

∏k−1
j=1 (1− Uj) .Also, set

Vk−1 = Uk−1

∏k−2
j=1 (1− Uj) Note that the kth piece of the stick has length

∏k−1
j=1 (1− Uj)

and set Vk =
∏k−1

j=1 (1− Uj) .

The Dirichlet process is a prior probability distribution on partition clusters when the number of parti-
tions is said to be infinite or not finite. Variational techniques have this advantage, compared to a finite
Gaussian mixture model, to help to integrate this prior structure into Gaussian mixture models (GMM)
at almost no penalty in inference time. In other words, most of the time, variational inference algorithms
are applied to Dirichlet infinite mixture models for the practice of their estimation.

Mathematical formulation of the Dirichlet Mixture Models

Let us consider the mixture of Ξ Gaussian models:

q(x | Π,M,Σ) =
Ξ∑

ξ=1

πξN
(
x | µξ,Σ−1

ξ

)

where Π = (π1, . . . , πΞ) ,M = (µ1, . . . ,µΞ), Σ = (Σ1, . . . ,ΣΞ) , and N
(
x | µ,Σ−1

)
denotes the

Gaussian density with expectation µ and variance-covariance matrix Σ−1 (or precision matrix Σ :

N
(
x | µ,Σ−1

)
=

√
det(Σ)

(2π)d/2
exp

(
−1

2
(x− µ)>Σ(x− µ)

)

For training samples D = {x1, . . . ,xn} drawn independently from the true density p(x), the likelihood
p(D | Π,M,Σ) is given by:

34 CHAPTER 1. STATISTICAL TOPICS

p(D | Π,M,Σ) =
n∏

i=1

q (xi | Π,M,Σ)

For mixing weights Π, the symmetric Dirichlet distribution (Ng et al. (2011); Bela et al. (2010) ; Good
et al. (1976)) is considered as the prior probability2:

p (Π;α0) = Dir (Π;α0) ∝
Ξ∏

ξ=1

πα0−1
ξ

where Dir(Π;α) denotes the symmetric Dirichlet density with concentration parameter α [Orhan (2012a),
Orhan (2012b)]. For Gaussian expectations M and Gaussian precision matrices Σ, the product of the
normal distribution and the Wishart distribution (Srivastava (1965); Haff (1979)), called the normal-
Wishart distribution, is considered as the prior probability:

p (M,Σ; β0,Ψ0, ν0) =
Ξ∏

ξ=1

N
(
µξ | 0, (β0Σξ)

−1)Wishart (Σξ; Ψ0, ν0)

∝
Ξ∏

ξ=1

det (Σξ)
ν0−d

2
−1 exp

(
−β0

2
µξΣξµξ −

1

2
tr
(
Ψ−1

0 Σξ

))

where Wishart(Σ; Ψ, ν) denotes the Wishart density with ν degrees of freedom:

Wishart(Σ; Ψ, ν) =
det(Σ)

ν−d−1
2 exp

(
−1

2
tr
(
Ψ−1Σ

))

det(2Ψ)
ν
2 Γd

(
ν
2

)

Here, d denotes the dimensionality of input x and Γd(·) denotes the d-dimensional gamma function
defined by:

Γd

(ν
2

)
=

∫

S+
d

det(S)
ν−d−1

2 exp(− tr(S))dS

where S+
d denotes the set of all d× d positive symmetric matrices. Note that the above normal-Wishart

distribution is conjugate for the multivariate normal distribution with unknown expectation and unknown
precision matrix (Sugiyama (2015);Hutter (2008)).

Proposition 1.1.1 (Hutter (2008) & Sugiyama (2015))
By the Bayes theorem, the posterior probability p(Π,M,Σ | D) of the Dirichelet Mixture Model defined
above is given as:

p (Π,M,Σ | D;α0, β0,Ψ0, ν0) =
p(D | Π,M,Σ)p (Π;α0) p (M,Σ; β0,Ψ0, ν0)

p (D;α0, β0,Ψ0, ν0)
(1.7)

2Analogous to multinomial distribution to the binomial distribution, Dirichlet is the multinomial version for the beta
distribution.

1.2. MAJOR LEARNING INGREDIENTS 35

where p (D;α0, β0,Ψ0, ν0) is the marginal probability of the data D itself with respect to (w.r.t) all other
parameters.

The proof is trivial based on the Bayes theorem, and this posterior distribution is not computationally
tractable (Sabourin & Naveau, 2014). We can have many practical approximation inference methods
for this infinite mixture model: Markov chain sampling method (Neal, 2000), variational inference
techniques Kurihara et al. (2007) for the Dirichlet process, etc. We will limit this presentation about
infinite (and finite) Dirichlet Mixture Models to this simple introduction for the scope of this thesis.

Extension to other Dirichlet Mixture Models (DMM)

They are other types of Dirichlet Mixture Models (DMM) commonly known as Dirichlet Hidden Markov
Mixture Models (DHMM) that you may want to investigate. They have four (3) principal characteristics
:

1. The Dirichlet process is still a prior probability distribution on the mixture weights of the compo-
nents;

2. Markov models – These are used to model sequences where the future state depends only on
the current state and not any past states. (memoryless processes): the latent variable z follows a
Markov model (Davis (2018), Fink (2014), Bahl et al. (1992), Fosler-Lussier (1998)).

3. Hidden Markov models – Used to model processes where the true state is unobserved (hidden)
but there are observable factors that give us useful information to guess the true state: because the
latent variable z is hidden for the observable (xi)1:N , the latter are said to follow a Hidden Markov
Model (HMM) – (Brown et al. (1993); Vaičiulytė & Sakalauskas (2020); Beal et al. (2001); Chen
et al. (2015b); Fuse & Kamiya (2017); Ko et al. (2015); Nasfi et al. (2020); Moon et al. (2010);
Brown et al. (1993); Xu et al. (2008); Torbati & Picone (2015); Bastani et al. (2014)).

1.2 Major learning ingredients

1.2.1 Cholesky Decomposition

For symmetric, positive definite matrices, the Cholesky decomposition or Cholesky factorization is
useful in practice to generate samples from a Gaussian-like distribution.

Theorem 1.2.1 (Cholesky Decomposition)
A symmetric, positive definite. matrix A can be factorized into a product A = ZZ>, described as:



a11 · · · a1n

...
an1 · · · ann


 =



l11 · · · 0
...
ln1 · · · lnn






l11 · · · ln1
...
0 · · · lnn




where Z is a lower triangular matrix with positive diagonal elements, Z is called the Cholesky factor of
A, and Z is unique.

36 CHAPTER 1. STATISTICAL TOPICS

Application to Gaussian distribution sampling. The following example is from Williams & Ras-
mussen (2006). For a Gaussian variable y ∼ N(η, κ0), the multivariate normal distribution has a joint
probability density given by:

p (y | η, κ0) = (2π)−d/2 |κ0|−1/2 exp

(
−1

2
(y − η)Tκ−1

0 (y − η)

)

where η ∈ Rd is the mean vector and κ0 ∈ Md(R) is the (symmetric, positive definite) covariance
matrix. To get some samples of y from this distribution, apply the following steps:

• Compute the Cholesky decomposition: we want to compute the Cholesky decomposition of the
covariance matrix κ0. That is, we want to find a lower triangular matrix Z ∈ Md(R) such that
κ0 = ZZT . Matrix Z will be useful in a further step.

• Generate Independent Samples v ∼ N(0, I);

• Compute y = η + Zv. The variable y = η + Zv has a multivariate normal distribution since is a
linear combination of independent normally distributed variables. Moreover,

E[y] = E[η + Zv] = η + ZE[v] = η

and
E
[
(y − η)T (y − η)

]
= κ0

1.2.2 Markov Random Fields
A graphical probabilistic model is a graphical representation used to expresses the conditional depen-
dency between random variables. A graphical model has two components in it: vertices and edges. The
vertices indicate the state of the random variables and the edge indicates the direction of connections
(or transformations).

Markov Random Fields

A set of random variables having Markov property and described by an undirected graph is referred to
as Markov Random Field (MRF) or Markov network. In other words, a random field is said to be a
Markov random field if it satisfies Markov property.

Definition 1.2.1 (Simon (2011); Li (1994); Geman & Graffigne (1986); Spitzer (1971))
A Markov Random Field (MRF) is a graph G = (V,�), where V = {1, 2, . . . , N} is the set of nodes,
each of which is associated with a random variable (RV), uj, for j = 1 . . . N . � is the set of edges of
the graph.

• The neighbourhood of node i, denoted Ni, is the set of nodes to which i is adjacent; i.e., j ∈ Ni if
and only if (i, j) ∈ �.

• The Markov Random field satisfies

p
(
ui | {uj}j∈V\i

)
= p

(
ui | {uj}j∈Ni

)

1.2. MAJOR LEARNING INGREDIENTS 37

Ni is often called the Markov blanket of node i.

We denote the set of all cliques in the graph G = (V,�) as C, with a clique ci ∈ C meaning any fully
connected subset of the graph comprising its nodes. The joint probability for the Markov Random Field
(MRF) variables u = {u1, . . . uN} is represented by a Gibbs Field (Cressie & Lele (1992)) and can be
written as the product of clique potentials φi :

P (u) =
1

Z

∏

ci∈C

φi (ci) (1.8)

with φi (ci) the i th clique potential, a function only of the values of the members of the clique in ci.
Each potential function φi must be positive. A normalization constant Z is required in to create a valid
probability distribution Z =

∑
x

∏
c∈C φi (ci). Here follows an example from Bagnell (2020).

Clique Potentials as Energy Functions. Often, clique potentials of the form φi (ci) = exp (−f (ci))
are used, with fi (ci) an energy function over values of ci (Spitzer (1971); Sherman (1973); Preston
(1973); Clifford (1990)). The energy assigned by the function fi (ci) is an indicator of the likelihood
of the corresponding relationships within the clique, with a higher energy configuration having lower
probability and vice-versa. If this is the case, equation 1.8 can be written as:

P (x) =
1

Z
exp

[
−
∑

ci∈C

fi (ci)

]
(1.9)

For example, we can write energy functions over the cliques in the graph from Figure 1.6.
Let f1 ({x1, x2, x3}) = x2

1 + (x2 − 5x3 − 3)2 , and f2 ({x3, x4, x5}) = (x3 − x4)2 + (x3 + x4 + x5)2

Then the joint probability can be written as:

P (x) =
1

Z
exp

[
−
(
x2

1 + (x2 − 5x3 − 3)2)−
(
(x3 − x4)2 + (x3 + x4 + x5)2)]

Gaussian Markov Random Fields

Definition 1.2.2 (Gaussian Markov random field)
Let the neighbours Ni to a point si be the points {sj, j ∈ Ni} that are ”close” to si. A Gaussian
distribution x = (x1, x2, ..., xN) ∼ N(µ,Σ) that satisfies

p (xi | {xj : j 6= i}) = p (xi | {xj : j ∈ Ni})
is a Gaussian Markov random field.

An example commonly used in practice is the Multivariate Gaussian (MRF) distribution defined on
vector w = (vec(w1)T , vec(w2)T , ..., vec(wk)T)T , with i = 1, ..., k, wi ∈ Mli−1×li (with l0 = q),

38 CHAPTER 1. STATISTICAL TOPICS

Figure 1.6: A simple Markov Random Field

vec(wi) ∈ Rli−1×li , κw =
∑k

i=1 li−1 × li. The mean is µ=(µT1 , µ
T
2 , ..., µ

T
k), let’s say µk = E[vec(wk)]),

with precision matrix Q, and it has the following density :

p(w|Q) = (
1

2π
)κw/2det(Q)

1
2 exp(−1

2
(w − µ)TQ(w − µ))

The precision matrix Q is sparse:
Qij = 0 if j 6∈ Ni

The matrix block Qij is null if i and j are not neighbors, and we have:

E[vec(wi)|vec(w−i)] = µi + Q−1
ii

∑

j:j∼i

Qijvec(w
j)

where ∼ means w.r.t.3 the connected weights, and w−i is the set of all weights matrices without wi.

The Ising Model

The Ising model is also a Markov random field having binary variables and pairwise potential functions.
It has since been used in a broad range of application domains including economics, social networks,
computer vision, biology, and signal processing to explain the phenomenon of phase transition (Brush
(1967)). Progress has been made to understand its inference framework (computing the partition func-
tion and sampling) (Bresler (2015), Jerrum & Sinclair (1993), Sinclair et al. (2014), Goldberg et al.
(2003)).

The Ising model is made of magnetic node with two states dipole moments: +1 or −1. It has a network
graph with the following Hamiltonian of pair-wise interacting spins:

HHamiltonian (v) = −
∑

i

Qivi −
∑

i,j

Qi,jvivj

3with respect to.

1.2. MAJOR LEARNING INGREDIENTS 39

where (Qi,j)ij represent interactions, and (Qi)i (external) magnetic fields. This model is a Gibbs Field
based on equation [1.9] when a Boltzmann distribution is applied to the Hamiltonian.

Note that, more broadly, terms of interaction Qi,j can be more complex, namely, the following:

H(v) = −
∑

i

Qivi −
∑

i,j

Qi,jvivj −
∑

i,j,k

Qi,j,kvivjvk − · · ·

One example of such a complex network is the Hinton restricted Boltzmann machine (RBM) which
introduced the hidden layer of neurons which that dramatically improved the performance of the network
for learning purposes (Salakhutdinov et al. (2007)).

1.2.3 Gradient, Stochastic Gradient and batch learning
Gradient Descent

As you might know, the gradient of a function at a point provides the direction of the steepest ascent of
this function at the given point. The negative of the gradient then gives the direction of the steepest de-
scent. Therefore, the direction of the steepest descent is given by the negative of the gradient. A gradient
can therefore be ascent or descent. Both have the property of maximization (ascent) or minimization
(descent) depending on the direction of the optimization problem.

Gradient Descent is an algorithm to minimize a function J(θ). The idea is that for the current value of
θ, you calculate the gradient of J(θ), then take a small step in direction of negative gradient to minimize
the function, and repeat until convergence. The update equation is as follow:

θnew = θold − ε∇θJ(θ) (1.10)

Where ε is the step size or the learning rate. But the problem is that J(θ) might be very expensive to
compute sometimes. The inclusion of the word stochastic simply means that some random samples
from the training data are chosen in each run to update the parameter during optimisation, within the
framework of gradient descent. In other words, Stochastic Gradient Descent (SGD) repeatedly sample
a set of data and update the parameter after each random selection.

In Gradient Descent or Batch Gradient Descent, we use the whole training data per epoch whereas,
in Stochastic Gradient Descent, we use only single training example per epoch and Mini-batch
Gradient Descent lies in between of these two extremes, in which we can use a mini-batch (small
portion) of training data per epoch [Look for Section 3.6 for more implementation details].

Stochastic gradient

The Stochastic gradient can be also ascent or descent. We will illustrate the standard properties of this
algorithm using the descent configuration, because both (ascent & descent) have similar characteristics
(or identical features).

40 CHAPTER 1. STATISTICAL TOPICS

The stochastic descent of the gradient (often shortened as SGD) is a stochastic approximation of the
method of gradient descent to minimise an objective descent. A functionality that is written as a sum of
distinguishable functions. The term stochastic here applies to the fact that we understand that we do not
exactly know the gradient, but rather know a chaotic estimate of it instead.

This paragraph may require further readings about the Evidence Lower Bound (ELBO) in section 4.4
where more details have been proposed. Following Bottou (2012), the stochastic gradient descent algo-
rithm replaces the gradient by an estimate :

λn+1 = λn − εnZ (λn; ξn)

where we describe the estimate of the gradient by Z (λn; ξn) , with the optimized parameter λ, empha-
sizing the stochastic nature through the random vector ξn. A class of possibilities are given by

Z (λn; ξn) =

[
1

nt

∑

i∈St

∇ELBOi (λ
n)

]

where St ⊂ {1, . . . , no} and nt = |St| gives the number of observations to base the estimate of the
gradient on. In our case, we have set nt ≤ 2 enabling high-speed computation, but requiring many
iterations ≥ 2. We will consider the following assumptions on {εn} :

εn > 0 (A− 1)∑∞
n=1 εn =∞ (A− 2)∑∞
n=1 ε

2
n <∞ (A− 3)

Theorem 1.2.2 (Quasimartingale convergence theorem (Robbins & Siegmund, 1971) and (Fisk, 1965))
If (Xn)∞n=1 is a positive stochastic process, and

∞∑

n=1

E
[
(E [Xn+1 | Fn]−Xn) 1{E[Xn+1|Fn]−Xn>0}

]
<∞

then Xn → X∞ almost surely on a filtered probability space (Ω,F, (Fn)∞n=0 ,P) , with

Fn = σ (Xm | m ≤ n̂)

Now, let C : Rk −→ R be differentiable. How do solutions s : R → Rk to the following Ordinary
differential Equation (ODE) behave:

d

dt
s(t) = −∇C(s(t)) or in a discretized form:

sn+1 − sn
εn

= −∇C (sn)

The discretization uses Forward Euler discretisation method (Villatoro & Ramos, 1999).

Proposition 1.2.1 ((Robbins & Monro, 1951) and (Bach, 2018))
If sn+1 = sn − εnHn (sn) , with Hn (sn) an unbiased estimator for∇C (sn) , and C satisfies:

1.2. MAJOR LEARNING INGREDIENTS 41

1. C has a unique minimiser x?

2. ∀ε > 0, inf‖x−x?‖22>ε 〈x− x
?,∇C(x)〉 > 0,

3. E
[
‖Hn(x)‖2

2

]
≤ A+B ‖x− x?‖2

2 for some A,B ≥ 0 independent of n,

then subject to (A− 2) and (A− 3) we have sn → x?.

Proof. The proof structure broadly follows Bottou (1998) paper.

Step 1 Define Lyapunov sequence: hn = ‖sn − x?‖2
2. hn is not guaranteed to be decreasing. The

main Idea from (Bottou (1998)) is: hn may fluctuate, but if we can show that the cumulative ’up’
movements aren’t too big, we can still prove convergence of hn.

Step 2 Consider the hn variations: hn+1 − hn.

hn+1 − hn = 〈sn+1 − x?, sn+1 − x?〉 − 〈sn − x?, sn − x?〉
= 〈sn+1, sn+1〉 − 〈sn, sn〉 − 2 〈sn+1 − sn, x?〉
= 〈sn − εnHn (sn) , sn − εnHn (sn)〉 − 〈sn, sn〉+ 2εn 〈Hn (sn) , x?〉
= −2εn 〈sn − x?, Hn (sn)〉+ ε2n ‖Hn (sn)‖2

2

So
E [hn+1 − hn | Fn] = −2εn 〈sn − x?,∇C (sn)〉+ ε2nE

[
‖Hn (sn)‖2

2 | Fn
]

Step 3 Show that hn converge almost surely:

Assuming E
[
‖Hn(x)‖2

2

]
≤ A+B ‖x− x?‖2

2, we get:

hn+1 − hn ≤ −2εn 〈sn − x?, Hn (sn)〉+ ε2n (A+Bhn)

=⇒ hn+1 −
(
1 + ε2nB

)
hn ≤ −2εn 〈sn − x?, Hn (sn)〉+ ε2nA

≤ ε2nA

Condition (2) simply states that the opposite of the gradient −∇xC(x) always points towards the
minimum x∗. This is also a convexity criterion that ensures that the term 〈sn − x?, Hn (sn)〉 is
always negative. We have:

∀ε > 0, inf
‖x−x?‖22>ε

〈x− x?,∇C(x)〉 > 0 =⇒ 〈sn − x?, Hn (sn)〉 > 0

So,we get:
hn+1 −

(
1 + ε2nB

)
hn ≤ ε2nA

Introduce the series µn =
∏n−1

i=1
1

1+ε2iB

n→∞−→ µ∞, and h′n = µnhn Get:

42 CHAPTER 1. STATISTICAL TOPICS

E
[
h′n+1 − h′n | Fn

]
≤ ε2nµnA

=⇒E
[(
h′n+1 − h′n

)
1E[h′n+1−h′n|Fn]>0 | Fn

]
≤ ε2nµnA

{
µn ≤ 1

1+ε21B∑∞
n=1 ε

2
n <∞

=⇒ [Quasimartingale convergence] Theorem 1. =⇒ (h′n)
∞
n=1 converges a.s.

=⇒ (hn)∞n=1 converges a.s .

Step 4 Show that hn must converge to 0:

From previous calculations:

E
[
hn+1 −

(
1 + ε2nB

)
hn | Fn

]
= −2εn 〈sn − x?,∇C (sn)〉+ ε2nA

(hn)∞n=1 converges, so the sequence in the first member of the equation above is summable a.s.
. Because

∑∞
n=1 ε

2
n < ∞, so right term (ε2nA) is summable a.s., so the left term side is also

summable a.s. :
∞∑

n=1

εn 〈sn − x?,∇C (sn)〉 <∞ almost surely, and εn 〈sn − x?,∇C (sn)〉 −→ 0 almost surely

We can conclude that (hn)∞n=1 converge to zero, and this forces also to have: 〈sn − x?,∇C (sn)〉 →
0 almost surely .

We can reach this conclusion because we know that hn converges. Reasoning by contradiction:
let us assume that hn = ‖sn − x?‖2

2 converges to a value greater than zero and therefore, after a
certain time, remains greater than some ε > 0. Assumption (2) implies that 〈sn − x?,∇C (sn)〉 >
0, and then it remains greater than a strictly positive quantity. Since this would cause the sum
(
∑∞

n=1 εn 〈sn − x?,∇C (sn)〉) to diverge (but, this is not the case:
∑∞

n=1 εn 〈sn − x?,∇C (sn)〉 <
∞), we can conclude on that hn converges to zero. We get by then: sn → x? (and simultaneously
〈sn − x?,∇C (sn)〉 → 0), which ends the proof.

Application on our stochastic gradient algorithm: If C is the ELBO function [Section 4.4] averaged
across a data set, the true gradient is of the form:

∇C(λt) =
1

N

∑

i∈St

∇ELBOi (λ
n)

and an approximation is formed by subsampling:

∇̂C(λn) =
1

nt

∑

i∈St

∇ELBOi (λ
n) (St ∼ Uniforme(subsets of size nt))

The only difference between the Stochastic Gradient Ascent (SGA) algorithm versus the Stochastic
Gradient Descent (SGD), is that we want to maximize the ELBO function. For that purpose, we simply
reformat maximizing the ELBO as minimizing its negative to apply the convergence theorem. In our
case:

1.2. MAJOR LEARNING INGREDIENTS 43

i. The learning rate vector αt = (α1
t , α

2
t , α

3
t) defined in section 7.1 (α1

t for the weights, α2
t for

the biases and α3
t for the covariance matrix Σ) is set to be decreasing to make conditions [(A −

1), (A− 2), and (A− 3)] hold in our experiments :

α1
t = α2

t = α3
t =

10−50

t

ii. The Evidence Lower Bound (ELBO) is continuous and differentiable in every point, and is
bounded by log p(y) (Yang, 2017). So in Proposition [see 1.2.1], the condition (3) always holds
for the ELBO. But, it is not the case for condition (1) and (2) because of non-convexity of the
ELBO. In their seminal paper from 1951, Robbins and Monro showed that the stochastic opti-
mization will converge to a local optimum in our case (Robbins & Monro (1951)). So, it requires
good initialization.

In practice, the quality of the approximation depends on the variance of the estimator of Z (λn; ξn)
(Johnson & Zhang, 2013). The main advantage of this algorithm is that one can even estimate the
model with a cluster of small size, and still get good estimations. The Robbins-Siegmund theorem
(Robbins & Siegmund, 1971) provides the means to establish almost sure convergence under conditions
including (A− 2), also in cases where the loss function is non-smooth (Saad, 1998).

The size of the subset used to measure the gradient can be considered in the same manner as we think
of sample size in simple estimation problem. Big mini-batch sizes can have reliable gradient forecasts,
reducing the parameters update variances. Small mini-batches, by comparison, are easy to estimate.

1.2.4 Notes on Divergence Metrics for Distributions
In statistics, the principle of divergence in machine learning goes back to the term entropy, defined
as amount of information. In practice, for a random variable Y , with {y1, ..., yn} possible values, we
can define entropy as the expected value of information A(Y) computed as follows (MacKay (2003);
Bishop (2006a)):

A(Y) = E[I(Y)] = E[− log(p(Y))] = −
n∑

i=1

P (yi) logP (yi)

where I(Y) is the Fisher information of Y .

There is another advanced feature for entropy called cross-entropy, applied to measure the distance
between two probability distributions p and q, denoted as A(p, q). The cross-entropy is defined as :

A(p, q) = A(p) +DKL(p‖q) (1.11)

DKL(p‖q) = KL(p(y), q(y)) = Ep(y)

{
log

(
p(y)

q(y)

)}
(1.12)

44 CHAPTER 1. STATISTICAL TOPICS

where DKL(p‖q) is the Kullback-Leibler Divergence (KL) [Kullback & Leibler (1951)] between p and
q, sometimes denoted KL(p‖q) as well in the literature. From a Bayesian perspective, the KL diver-
gence is the information obtained as we switch from a previous distribution Q to a posterior distribution
P, and when the gain is null or negligible, it is equal to zero (0).

From a Bayesian perspective, the KL divergence is the information gained when we move from a prior
distribution Q to a posterior distribution P, and is equal to zero (0), when the gain is null, or negligible.

Let’s dive deep into the KL divergence

The following lines explain some properties of the KL divergence and its forward and reverse form
respectively.

DKL(p‖q) ∈ [0,∞], and is not symmetric (neither a distance metric, because it does not satisfy the
triangle inequality), that is (Amari, 2007):

DKL(p‖q) 6= DKL(q‖p)

As a consequence, we have an option between two possible targets to refine when attempting to approx-
imate p with another qθ distribution.

1. Optimize arg minθDKL (p‖qθ) called the forward KL;

2. Optimize arg minθDKL (qθ‖p) called the reverse KL.

The two opposite targets, as it turns out, really trigger different kinds of approximations. It is also not
possible to do both in reality, because you are constrained by the topic you are attempting to fix, and the
optimization facilities you have. A good resource is this paper from Huszár (2015) where they go more
in detail investigating this.

Also, the KL divergence is reduced when p and q are the same almost everywhere (a.e) :

DKL(p‖q) = 0⇐⇒ p
a.e.
= q

Finally, the p support has to exchange points in the q support in order for the KL divergence to be finite,
whether it is the forward or the reverse KL. In the case of forward KL as for example, if a point y exists
with q(y) = 0 but p(y) > 0, then DKL(p‖q) =∞.

A matter of smoothness and symmetry: the Jensen-Shannon Divergence

The comparability of two distributions is also calculated by the Jensen-Shannon Divergence (JSD).
There is no symmetrical Kullback-Leibler Divergence (KLD), and this is where the JSD comes to the
rescue. The JSD variant of the Kullback-Liebler Divergence, or KL(p, q), is symmetrical and smooth.

Assuming the Kullback-Leibler Divergence between p(y) and q(y) in 1.12, the Jensen-Shannon Diver-
gence (JSD) symmetrizes and smooths KL(p(y), q(y)) by:

JSD(p(y), q(y)) =
1

2
D

(
p(y),

1

2
p(y) + q(y)

)
+

1

2
D

(
q(y),

1

2
p(y) + q(y)

)

1.2. MAJOR LEARNING INGREDIENTS 45

For further research explorations, one can inspect other divergence metrics as well. The scope is not
limited, as for example, the square root of the Jensen-Shannon divergence (JSD) (Fuglede & Topsoe
(2004)) presents interesting properties. As it satisfies metric axioms between any two probability densi-
ties, and represents another difference by itself, including several variations of Jensen-Shannon metrics
(Yamano, 2019).

Historically introduced in Wong & You (1985) work, the Jensen-Shannon divergence can be interpreted
as the total KL divergence to the average distribution p+q

2
. His implementation is heavy; depending

on the application, the Kullback-Leibler divergence is always prefered, like in Variational Bayesian
Inference Blei et al. (2017) for example.

1.2.5 Never forget Bayes if your frequent likelihood get hard...
Haugh (2017) has inspired me to add some notes about the possibility to switch from classical/fre-
quentist likelihood to Bayesian learning whenever the time, because of Bernstein-von Mises theorem
of asymptotic equivalence between Bayesian estimation, and Maximum Likelihood Estimation (MLE)
under suitable assumptions.

Let Φ be our parameter of interest. We assume Φ is a variable with π(Φ) as its distribution. There is
also a random vector, Y. with likelihood p(y | Φ). Both have a joint distribution presented as follows:

p(Φ,y) = π(Φ)p(y | Φ)

An integral upon all possible values of Φ lead to the marginal distribution of Y:

p(y) =

∫

Φ

π(Φ)p(y | Φ)dΦ

Using Bayes theorem, this gives rise to the posterior distribution π(Φ | y) of Φ:

π(Φ | y) =
π(Φ)p(y | Φ)

p(y)
=

π(Φ)p(y | Φ)∫
Φ
π(Φ)p(y | Φ)dΦ

∝ π(Φ)p(y | Φ)

Theorem 1.2.3 (Bernstein-von Mises)
Under suitable assumptions and for sufficiently large sample sizes, the posterior distribution of Φ is
approximately normal with mean equal to the true value of Φ and variance equal to the inverse of the
Fisher information matrix (Le Cam (1986)).

The Bernstein-von Mises theorem means that asymptotically, there exist identical distributional sample
properties for Bayesian and MLE estimators, which is, in fact, a normal distribution.

46 CHAPTER 1. STATISTICAL TOPICS

Chapter 2

The Potts Model with Complete Shrinkage

2.1 The Potts Clustering
The Potts Clustering is a random partition model for clustering with the prior distribution on partitions
ρn being the Potts Model.

Let D = {xi ∈ Rp, i = 1, ..., n} be our data, i.e, the observations form the vertices of a graph (as in
the super-paramagnetic clustering framework). Let us denote this data graph by (G(D),�(G)), where
�(G), the edge-set is composed of pairs of nearest neighbors, i.e:

�(G) = {(x, y) ∈D2, kxy(σ) = kσ(x, y) > 0}
where kxy is said to be the similarities between the neighboring points x and y (kxy a Mercel kernel in
(x, y) given a bandwidth parameter σ). If x and y are neighboring points, we will write x ∼ y.

In Potts clustering, we assign labels i ∈ {1, ..., q} to each observation xi, i = 1, ..., n, so that observa-
tions similar to each other are likely to be assigned the same label. Denoting zsi = 1 if xi has been
assigned to the sth label, and zero, otherwise, the model density is given by:

p({zsi}|σ,X, β, q) = Z−1 exp
{
− β

∑

xi∼xj

kσ(xi, xj)(1− δ(xi, xj))
}

where β = 1
T

is the inverse temperature parameter, δ(xi, xj) =
∑q

s=1 zsizsj = 1 if xi and xj have the
same label assignment.

2.1.1 The Bernouilli bonds
Let’s introduce percolation (Duminil-Copin, 2016).

Definition 2.1.1 (Percolation configuration)
A percolation configuration b = (bij : (xi, xj) ∈ �(G)) is an element of {0, 1}�(G) . If bij = 1, the edge
(xi, xj) is said to be frozen (open), otherwise (xi, xj) is said to be not frozen (closed).

47

48 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

A percolation model is given by a family of probability measures on percolation configurations. Giving
The Kastaleyn-Fortuin mapping, which establishes a connection between a particular percolation model
and a limit of the Potts model (Hu, 1987), Bernouilli bonds are introduced to match the percolation
configuration for the Potts clustering. For an edge (xi, xj) ∈ �(G), the bond bij becomes frozen with
conditional probability (given δij):

pij = p(bij|δij) = δij
(
1− exp{−βkij(σ)}

)

where δij = δ(xi, xj) and kij(σ) = kσ(xi, xj).

This is known as the Fortuin-Kasteleyn-Swendsen-Wang model (Sokal, 1997a).

Maximal connected components (clusters) are obtained by finding all observations in a frozen path
(Murua & Quintana, 2017b),i.e, each cluster is then identified by those unique observations among a
given frozen path. Isolated observations form a cluster of size equal to 1. This is a major drawback,
because in real applications (biomedical datasets (Hu et al., 2018a), finance, computer science, engi-
neering (Ganganath et al., 2014)), it is often essential to obtain clusters of sufficient sample size to make
the clustering result meaningful and interpretable for subsequent analysis.

Because the bonds probabilities are conditioned by the label assignment process, it is obvious that the
clustering is influenced by q, the number of labels. The larger q is, the more subsets (of data) of unique
label are generated at random.

There is a need to control even the mean size of all subsets (of data) of unique label, after initial label
assignment. We only care about the initial labelling because for further steps (in the case of Swenden-
Wang algorithm) [Borgs et al. (2012); Salas & Sokal (1997); Häggkvist et al. (2004); Häggström et al.
(2002); Johansson & Pistol (2011); Martinelli et al. (1990); Ding & Barbu (2015); Häggkvist et al.
(2004)], each connected subset is assigned the same color label uniformly at random and independently
from each other, given the bonds {bij}.

2.2 Notes on Standard Application: Random Partitions Models
It is well-known that a random measure in Bayesian non-parametrics induces a distribution over random
partitions. Many Random partition models do exist with multiple applications (Dahl et al. (2017); Dahl
(2008); Loschi & Cruz (2005); Betancourt et al. (2020); Di Benedetto et al. (2017); McCullagh (2011);
Zanella et al. (2015); Stam (1983)). Some random partitions are implied by the Dirichlet process (DP)
prior p (πn) (Blackwell et al. (1973); Ferguson (1973); Antoniak (1974); Müller & Quintana (2010a)).
The most famous random partitions model, is the one of Müller & Quintana (2010a), which introduced
a cohesion measure :

P (πn = {S1, . . . , SΞ}) = K

Ξ∏

ξ=1

c (Sξ) (2.1)

where πn is a partition of the objects in a family of subsets S1, S2, . . . , SΞ of S0 = {1, 2, . . . , n} and c(S)

2.2. NOTES ON STANDARD APPLICATION: RANDOM PARTITIONS MODELS 49

is a non-negative cohesion that is specified for each subset of S0, Ξ = |ρ| is the number of partitions.
Here, the normalizing constant K =

∑
ρ∈P ΠΞ

ξ=1c (Sξ) , where P is the set of all possible partitions into
non-empty sets.

As a reminder : Cohesion is the measure of the strength of the functional relationship of the
elements in each subset that then controls the partition of subsets that can be roughly thought of
as a probability (Page et al. (2019); Müller et al. (2013)).

A popular choice is c(S) = m(|S| − 1)! where m is a precision parameter and |S| is the number of
elements in S. It follows that the resulting probability model for πn is

P (πn) =
mΞ−1

∏Ξ
ξ=1 (nξ − 1)!∏n

i=1(m+ i− 1)

where nξ = |Sξ| is the number of elements in cluster j that is known as the Dirichlet process (DP)
random partition.

Remark (Dahl et al. (2009))
The connection between product partition models and Dirichlet process mixture (DPM) models was
first shown by Quintana & Iglesias (2003). The proof is obvious. take the equation 2.1, and replace
c(S) = m(|S| − 1)!, we get :

P (πn = {S1, . . . , Sξ}) = K
Ξ∏

ξ=1

m(|Sξ| − 1)! = mΞ ·K
Ξ∏

ξ=1

(|Sξ| − 1)!

And it is easy to find the right K, that will make P (ρn = {S1, . . . , SΞ}) a probability:

K =
n∏

i=1

(m+ i− 1)

.

Among many related random partition models, we have :

1. Product partition models (PPM) [Hartigan (1990); Barry & Hartigan (1992); Dahl et al. (2009);
Loschi & Cruz (2005); Loschi & Cruz (2002); Quintana & Iglesias (2003)] is a special case.
These model assume that observations in different elements of a random partition of the data are
independent. So if the probability distribution for the random partitions is in a product form prior
to obtaining observations, it is also then in product form after obtaining the observations (Jordan
et al. (2007)).

Definition 2.2.1 (Product Partition Model)
Together with independent sampling across clusters, a PPM can be described as (Quintana &
Iglesias (2003); Blackwell et al. (1973); Pitman (1996); Dahl et al. (2009)):

P (y | πn) = {S1, . . . , SΞ}) ∝
Ξ∏

ξ=1

c (Sξ)P (ys)

50 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

2. Product partition models with a covariate-dependent extension (PPMx) proposed by Müller et al.
(2011a), Dunson & Park (2008), and Dahl(2008). This PPM version uses covariates approach,
with preditors dependent random probability measures. In this application, covariates are avail-
able and are used to a priori inform the clustering. This leads to random clustering models indexed
by covariates, i.e., regression models with the outcome being a partition of the experimental units.
There are many PPMx variants : Fung (2012), Quintana (2010); Quintana et al. (2020); Blei &
Frazier (2011); Jo et al. (2015); Barcella et al. (2017); Ferreira et al. (2014); Page & Quintana
(2018). One standard application of the Potts Model, is in fact to build random clustering covari-
ates model with regression. The main example is the model of Murua & Quintana (2017b). We
introduce briefly the scope of their model: suppose we have a set of n data available, and that each
individual i ∈ [n] in a given sample is associated with a p -dimensional vector yi of responses
of interest and a q-dimensional covariate vector xi. Suppose also that the interest lies in studying
the relationship between yi and xi, and in particular, in predicting the response yn+1 associated
with a covariate vector xn+1 of a future individual. Let p (yi | xi,Φi) be a likelihood model stat-
ing the relationship between the i th response and the associated covariate vector. The covariate
dependent random partition model with a hierarchical structure for these data is as follow:

y1, . . . , yn | ρn,Φ∗1, . . . ,Φ∗kn
ind∼ p

(
yi | xi,Φ∗si

)

Φ∗1, . . . ,Φ
∗
kn

iid.∼ p(Φ) and ρn ∼ p (ρn | xn)

Here ρn is a partition of [n] into kn subsets. Also, s1, . . . , sn are cluster membership indicators
such that si = j if the i th individual belongs to the j th cluster. In addition Φi = Φ∗si for all
i ∈ [n]. Model (1) groups in cluster j those individuals having identical parameter value Φ∗j .
Individuals within this cluster are conditionally iid given Φ∗j . What make the model particular
here is that ρn ∼ p (ρn | xn) is a Potts Model. This implies the existence of auxiliary binary
variables, the so-called bonds b = {bij}, so that:

p (ρn | xn) =
∑

b⇒ρn

p (b | xn)

They then apply the Metropolis-Hastings (MH) algorithm to sample parameters from this poste-
rior, by choosing an efficient MH proposal distribution and they obtain consistent improvements
compared to the results found in the literature. The model simultaneously allows for explicit
estimation of the number of clusters, and for good responses predictions (Murua & Quintana
(2017b)).

2.3 The Potts Clustering Model with Complete Shrinkage
One of the difficulties encountered when sampling partitions with the Swenden-Wang algorithm Swend-
sen & Wang (1987) for the random bond Potts Models as done by Murua & Quintana (2017a), is the
distribution of the temperature T of the Potts Model in its probabilistic form as a system of particles (data
points) and their interactions given by the similarity measure. The distribution of the system depends
on the temperature T . For each T there is a probability pT ({zkl}) associated with each configuration of
the system’s labels:

2.4. EFFECTIVE PYTHON IMPLEMENTATION 51

pT ({zki}) ∝ exp

{
− 1

T
H ({zki})

}
= exp

{
− 1

2T

n∑

i=1

n∑

j=1

(1− δij) s (xi, xj)

}

where δij =
∑
zklzkj between observations i and j equals one if they are assigned to the same cluster

k, and zero otherwise. s (xi, xj) is the similarity measure, and finally zki = 1 if observation i belongs
to cluster k. Then, as proposed by Murua & Quintana (2017a) (by introducing a set of latent variables,
the bonds b), the bond bij = 1 is said to be frozen if bij = 1 and αij = δij = 1, that is, the points xi
and xj are neighbors and have the same label. Otherwise, the bond is not frozen. The bond bij becomes
frozen with probability pij = 1− exp {−βκij(σ)}.

In our case, the similarities between pairs of covariate vectors are defined by κij = K (xi,xj) (K(·, ·)
is a Mercel Kernel). As usual, we have assumed that K is a function of the distances ‖xi − xj‖ , of the
form κij = κij(σ) = K (‖xi − xj‖ /σ) , where σ > 0 is a bandwidth parameter.

But, the drawback of the bonds approach is the increasing number of small clusters generated in a given
partition. To deal will it, we apply a modified agglomerative clustering approach (Kurita, 1991) by
merging all small clusters of size≤ h with their closest cluster in terms of minimal distance respectively,
where h is an integer greater or equal to 2. The algorithm uses a technique in which distances of all
pairs of observations are stored. Then the nearest cluster (with size ≥ h) is given by the cluster with
the closest node in terms of minimal distance to the cluster to be merged. This is what we call Potts
Clustering with Complete Shrinkage (PCCS), and this is the main contribution of this chapter.

2.4 Effective Python Implementation
The fully implemented architecture and Valid Python Code of the Potts Clustering with Complete
Shrinkage is available with comments on our github repository under GNU General Public license v3.0.
Please Send a request of access on the link : https://github.com/kgalahassa/Potts_
Clustering_Models_COmplete_Shrinkage or write directly to alahassan@dms.umontreal.ca
for more details.

The full descriptive code of the Potts Clustering with Complete Shrinkage (PCCS) requires at least 100
to 200 lines to present the complete algorithm; the reason why we prefer to (simply) distribute directly
the code through github.

2.5 Experiments
We have performed experiments with ten (10) datasets taken from the multiple-output benchmark
datasets available in the Mulan project website (Tsoumakas et al., 2020). The datasets are shown in
Table 2.1.

With those data described above, we have generated a set of Potts partitions in a number b, with b =
50, 100, with a shrinkage constraint = 2 (a minimum of two (2) observations per cluster in each partition
is required). We focus attention on four (4) characteristics that can help to compare the performance of
the algorithm from one given dataset to one another:

https://github.com/kgalahassa/Potts_Clustering_Models_COmplete_Shrinkage
https://github.com/kgalahassa/Potts_Clustering_Models_COmplete_Shrinkage

52 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

Table 2.1: Summary of the ten (10) datasets taken from the Mulan project.

Number of Number of Response variable
Dataset Domain Instances features dimension (targets)

Andromeda Water 49 30 6
Slump Concrete 103 7 3
EDM Machining 154 16 2

ATP7D Forecast 296 211 6
ATP1D Forecast 337 411 6

Jura Geology 359 15 3
Online sales Forecast 639 401 12

ENB Buildings 768 8 2
Water quality Biology 1 060 14 16

SCPF Forecast 1 137 23 3

• The number of data per cluster (NumbDC): this corresponds to the list of cluster size per partition;

• The Mean Number of data per cluster and per 100 individuals (MeanNumbC100): we take the
mean of the list of the number of data per cluster, and divide by 100 [shown in table 2.2].

• Number of cluster per partition (NumbCPar): this corresponds to a list of the number of clusters
per partition taken through all the partitions;

• The Mean Number of cluster per partition (MeanNumbCPar) [shown in table 2.2];

And finally a histogram to illustrate:

• The number of data per cluster (NumbDC);

• The number of cluster per partition (NumbCPar);

As for example, this histogram has Bell Shape Normal Curve for EDM number of cluster per partition
[b = 100, shrinkage = 2] (figure 2.8) for Water Quality number of cluster per partition [b = 100,
shrinkage = 2](figure 2.20).

2.5. EXPERIMENTS 53

Table 2.2: Summary of clustering statistics for the Mulan Project Dataset.

b = 50 b = 100

Dataset MeanNumbC100 MeanNumbCPar MeanNumbC100 MeanNumbCPar

Andromeda 0.132 2.431 0.229 1.396
Slump 0.301 2.294 0.405 1.702
EDM 0.491 1.356 0.0490 1.356

ATP7D 296 211 1.123 1.356
ATP1D 0.918 1.653 1.361 1.653

Jura 0.775 3.098 0.881 2.723
Online sales 1.617 2.647 2.862 1.495

ENB 1.691 3.039 2.495 2.059
Water quality 0.056 126.196 0.057 125.495

SCPF 0.351 2.705 0.473 2.009

(a) b = 50 (b) b = 100

Figure 2.1: Andromeda, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.2: Andromeda, Number of cluster per partition (NumbCPar), shrinkage = 2

54 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

(a) b = 50 (b) b = 100

Figure 2.3: Atp1d, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.4: Atp1d, Number of cluster per partition (NumbCPar), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.5: Atp7d, Number of data per cluster (NumbDC), shrinkage = 2

2.5. EXPERIMENTS 55

(a) b = 50 (b) b = 100

Figure 2.6: Atp1d, Number of cluster per partition (NumbCPar), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.7: EDM, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.8: EDM, Number of cluster per partition (NumbCPar), shrinkage = 2

56 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

(a) b = 50 (b) b = 100

Figure 2.9: ENB, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.10: ENB, Number of cluster per partition (NumbCPar), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.11: Jura, Number of data per cluster (NumbDC), shrinkage = 2

2.5. EXPERIMENTS 57

(a) b = 50 (b) b = 100

Figure 2.12: Jura, Number of cluster per partition (NumbCPar), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.13: Online sales, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.14: Online sales, Number of cluster per partition (NumbCPar), shrinkage = 2

58 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

(a) b = 50 (b) b = 100

Figure 2.15: scpf, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.16: scpf, Number of cluster per partition (NumbCPar), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.17: slump, Number of data per cluster (NumbDC), shrinkage = 2

2.5. EXPERIMENTS 59

(a) b = 50 (b) b = 100

Figure 2.18: slump, Number of cluster per partition (NumbCPar), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.19: Water Quality, Number of data per cluster (NumbDC), shrinkage = 2

(a) b = 50 (b) b = 100

Figure 2.20: Water Quality, Number of cluster per partition (NumbCPar), shrinkage = 2

60 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

2.6 Extended Research on the Components size distribution

2.6.1 Frequency of frequencies distribution
The objective of the Potts clustering algorithm is to find R(1 ≤ R ≤ n) clusters, C = {C1,C2, ...,CR}.
Each clustering specifies a sequence of cluster sizes, namely, letting ch = |Ch| be the size of the h-
th cluster, then the sequence of cluster sizes is [c1, c2, ..., cR]. Let denote ui ∈ {1, ..., R}, the cluster
observation xi is assigned to, ch =

∑n
i=1 δ(ui = h) the number of observations in cluster h, and

mv =
∑R

h=1 δ(ch = v) the number of clusters of size v, where here δ(x) = 1 if condition x is satisfied,
and δ(x) = 0 otherwise. Thus by definition (Zhou et al., 2017), we have:

R =
n∑

i=1

mi and n =
n∑

i=1

imi

For example, if n = 14, (u1, ..., u14) = (1, 2, 3, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7) as (c1, ..., c7) = (1, 1, 1, 1, 2, 4, 4),
we have {m1,m2,m4} = {4, 1, 2} and mi = 0 for i 6∈ {1, 2, 4}.

As a reminder, R is a random variable. We refer the count vector M = ({mv})v as the frequency
of frequencies (FoF) vector, the distribution of which is commonly referred to as the FoF distribution
(Good, 1953).

2.6.2 Objective

Our objective is to find the FoF distribution of clusters count vector given the bonds probabilities.
Knowing the graph G and its edges set E(G), with δij = 1 if i and j are connected, this is express
as :

FoF ({mv}|{δij};E(G))

And then derive the conditional distribution of bonds given the constraint cluster size condition Sc =
{mv = 0, for v ≤ Sc}, where Sc is the minimum cluster size we want.

This is express as :

p(bij|{zsi}, Sc)

Remark
As highlighted above, q influences the clustering. One may be interested in :

1. The FoF distribution W = ({ωv})v for the count vector of all subsets (of data) of unique label
after the first step of label assignment when q is given. This will provide a way to condition the

2.6. EXTENDED RESEARCH ON THE COMPONENTS SIZE DISTRIBUTION 61

label assignment process with constraint subset size condition Sd = {ωv = 0, for v ≤ Sd}, where
Sd is the minimum subset size we want. Let {ẑsi} be the conditioned label assignment.

2. And then search for the conditional distribution of bonds given the constraint subset size condition
Sd and the constraint cluster size condition Sc. This is expressed as :

p(bij|Sd, Sc) = p(bij|{ẑsi}, Sc)

3. Finally, one can insert a prior p(σ, T) as done by Murua & Wicker (2014a) and access the MAP
for the model [but not required].

2.6.3 Methodology and combinatorial approach to the count vector
We present a mathematical framework to compute the distribution of the count vector W = ({ωv})v.

The FoF distribution for all subsets (of data) of unique label (at initial labelling)

Initial labelling may have a great influence on the clustering process. To find the FoF distribution for
all subsets (of data) of unique label (at initial labelling) when q is given, the Potts Model can be related
to many-body quantum systems problem, and describe in terms of a probability distribution over the
quantum states (Tong (2012) and Tong (2006)).

Knowing the probability of a given labelling configuration {zsi} as p({zsi}|σ,X, β, q), one can infer
p({ωv}|σ,X, β, q). Each state configuration induces a sequence of subsets (of data) of unique label. Let
[L1, L2, ..., Le], and [l1, l2, ..., le] the sequence of subsets of data (of unique label) and their #-cardinal
respectively. zi ∈ {1, ..., e} represents the subset of observation i, such that :

p({zsi}|σ,X, β, q) = p({zi}|σ,X, β, q)

Let denote V the index set of {ωv} we have necessarily #V ≤ n.

p({ωv}|σ,X, β, q) = p(ω1, ω2, ..., ωv, ..., ωn,
∑

v

ωv = e|σ,X, β, q) (2.2)

=
∑

Hotw(ii,i2,...,ie)=1

p(l1 = i1, l2 = i2, ..., le = ie|σ,X, β, q)

=
∑

Hotw(ii, i2, ..., ie) = 1
Hatw(z1, z2, ..., zn) = 1

p(z1, z2, ..., zn|σ,X, β, q))

with

Hotwv =
{

(i1, i2, ..., ik, ..., ie) ∈ N∗, 1 ≤ ik ≤ n, and
∑

δ(ik = v) = ωv for all ωv ∈ (ω1, ω2, ..., ωv)
}

62 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

,

Hatwv =
{

(z1, z2, ..., zk, ..., zn) ∈ N∗, 1 ≤ zk ≤ e and
∑

δ(zk = j) = ij, for all ij ∈ (ii, i2, ..., ie)
}

and

Hotw(ii, i2, ..., ie) =

{
1 if (ii, i2, ..., ie) ∈ Hotwv
0 otherwise

Hatw(z1, z2, ..., zk, ..., zn) =

{
1 if (z1, z2, ..., zk, ..., zn) ∈ Hatwv
0 otherwise

Based on previous computation, it is easy to get the conditioned label assignment distribution including
the subset size constraint Sd :

p({zsi}|σ,X, β, q, Sd) = p({zi}|σ,X, β, q, Sd) (2.3)

=
p({zi}, Sd|σ,X, β, q)
p(Sd|σ,X, β, q)

=
p({zi}, Sd|σ,X, β, q)

p({ωv = 0, for v ≤ Sd}|σ,X, β, q)

The advantage of this conditioned distribution is that even if q is larger, subsets of significant size
(size larger than in Sd constraint) can be generated at first iteration. As we know how to compute
p({zi}|σ,X, β, q) [by coming back to p({zsi}|σ,X, β, q, Sd)] with the Hamiltonian quantity, it is easy to
deduce also p({zi}, Sd|σ,X, β, q). Because {zi} induced by {zsi} give a subsets sequence configuration,
it is simple to understand the combination :

{
{zi}, Sd

}
, which is equal to

{
{zsi}, {ωv = 0, for v ≤

Sd}
}

and evaluate the expression above. Of course, the condition
{
{zsi}, {ωv = 0, for v ≤ Sd}

}
can

be fitted by combinatorial search on computer if the dataset is not too large.

FoF distribution for the Potts clusters

The following calculations are based on section 2.6.1 notations. Given the symmetric matrix Mb of
bonds probabilities {pij}, one can infer a combinatorial approach to get the FoF distribution of clusters
count vector. For example, if n = 3 and Mb defined as follows :

Mb =




0 p12 p13

p12 0 p23

p13 p23 0




2.6. EXTENDED RESEARCH ON THE COMPONENTS SIZE DISTRIBUTION 63

we can see that
p(u1 = 1, u2 = 1, u3 = 2) = p12(1− p23)(1− p13)

So clearly, for R clusters, the configuration (u1, ..., un) with ui ∈ {1, 2, ..., R} defines a set Pf of
disjoints frozen paths configurations for which (respective) probabilities can be easily computed.

p({mv}|σ,X, β, q) = p(m1,m2, ...,mv, ...,mn,
∑

v

mv = R|σ,X, β, q) (2.4)

=
∑

Hotm(ii,i2,...,iR)=1

p(n1 = i1, n2 = i2, ..., nR = iR|σ,X, β, q)

=
∑

Hotm(ii, i2, ..., iR) = 1
Hatm(u1, u2, ..., un) = 1

p(u1, u2, ..., un|σ,X, β, q))

with

Hotmv =
{

(i1, i2, ..., ik, ..., iR) ∈ N∗, 1 ≤ ik ≤ n, and
∑

δ(ik = v) = mv for all mv ∈ (m1,m2, ...,mv)
}

,

Hatmv =
{

(u1, u2, ..., uk, ..., un) ∈ N∗, 1 ≤ uk ≤ R and
∑

δ(uk = j) = ij, for all ij ∈ (ii, i2, ..., iR)
}

and

Hotw(ii, i2, ..., ie) =

{
1 if (ii, i2, ..., ie) ∈ Hotwv
0 otherwise

Hatw(z1, z2, ..., zk, ..., zn) =

{
1 if (z1, z2, ..., zk, ..., zn) ∈ Hatwv
0 otherwise

Here, p(u1, u2, ..., un|σ,X, β, q)) is evaluated among the set Pf of all disjoints frozen paths configura-
tions induced by (u1, ..., un) with ui ∈ {1, 2, ..., R}.

We can then simply update the bonds distribution :

p({bij}|σ,X, β, q, Sc) =
p({bij}, Sc|σ,X, β, q)
p(Sc|σ,X, β, q)

(2.5)

=
p({bij}, Sc|σ,X, β, q)

p({mv = 0, for v ≤ Sc}|σ,X, β, q)

64 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

Remark

1. The probability p({bij}|σ,X, β, q, Sc) is implicitly given by the matrix of bonds probabilities Mb,
and its exact expression can also be obtained analytically.

2. The matrix of bonds probabilities Mb is mainly influenced by the label assignment, because of δij
in expression of pij (pij = p(bij|δij) = δij

(
1 − exp{−βkij(σ)}

)
). kij(σ) is always the same for

any i and j.

From previous remark, we will describe in next section how to compute p({bij}, Sc|σ,X, β, q), to find a
fully explicit expression of p({bij}|σ,X, β, q, Sc), which is here the conditional bonds distribution.

2.6.4 The conditional bonds distribution (given the size constraint)
Computation method

In previous bonds evaluation approach, we start with all pij evaluation and comparison to a given thresh-
old (let say 0.5 for example). In this approach, we automatically select the most probable {bij} config-
uration. For our context of conditional bonds, evaluation of all single pij is not useful to access the right
frozen state that fit the cluster size constraint for all bonds.

To access p({bij}, Sc|σ,X, β, q), the best method here is to build a list of all {bij} configurations (w.r.t
bij = 0 if xi and xj are not neighbors) that satisfy the cluster size constraint Sc = {mv = 0, for v ≤ Sc}
(by a combinatorial search), and choose the most highly probable configuration among those selected
given a label assignement.

1. There is a fast computation algorithm to find the list of all bonds {bij} configurations (w.r.t bij = 0
if xi and xj are not neighbors) that meet the cluster size constraint Sc. This list will be called the
Sc−list, and the list of all bonds {bij} configurations (w.r.t bij = 0 if xi and xj are not neighbors)
will be called the G−list (where notation G is set to signify : general or global).

2. The Sc−list should be built at the beginning, and the respective probability of each of its element
evaluate for each label assignment (as a reminder matrix Mb changes for each label assignment).

2.6.5 Fast-Algorithm to find Sc−list
1. For each {bij} configuration, we use the Hoshen-Kopelman (HK) algorithm (Li, 2011) to connect

frozen spin pairs into a path of frozen bonds. This step helps in finding all clusters given the bonds
configuration.

2. All frozen paths have many extended-version, and shrunk-version. The frozen path is said to
be extended if it is augmented with other vertices. When the path is reduced to less number of
vertices (contains fewer vertices), it is said to be shrunk. When the frozen path is simultaneously
shrunk and extended (i.e some old vertices are replaced with newer vertices), it is said to be mixed.

3. Let denote G−-List[i] the ith element from the G-list. To avoid searching for all frozen paths
for all {bij} configurations, here is an algorithm to go through the list and search for all {bij}

2.6. EXTENDED RESEARCH ON THE COMPONENTS SIZE DISTRIBUTION 65

configurations that fit the clusters size condition:

Sc−algorithm

1 Starting at G−list[1], Go through G-list and find with HK algorithm the first configuration
G−list[ik] for which the small frozen path SPf [ik] has a length upper than in condition Sc;
add G−list[ik] to Sc−list.

2 In the next step, use SPf [ik] to make a selection of good candidates:

• Add to Sc−list all configurations that contain either a shrunk, extended or mixed version
of SPf [ik] that fit the cluster size condition Sc. Remove those one from G-list.

• Delete from G-list all configurations that contains either a shrunk or mixed version of
SPf [ik] that don’t fit the cluster size condition Sc.

3 Move to the next G−list[ik+1] that fit the condition, and repeat step [2] by using SPf [ik+1].

4 Repeat steps [1], [2] and [3] for any other element of G−list that fit the clusters size condi-
tion, until done!

2.6.6 Finding the most probable configuration among Sc−list given a label as-
signment

Here we describe a computation method to select the most probable configuration (in Sc−list) given a
label assignment.

1. Most importantly, given a label assignment, we need to delete from Sc−list all configurations
for which there exist any δij = 0, and

(
1− exp{−βkij(σ)}

)
suggest bij = 1. In fact, we generate

in practice the bonds with
(
1− exp{−βkij(σ)}

)
, and check for the state of δij to confirm that the

label assignment is the same.

Let call S̃c-list the adjusted Sc-list which includes this modification.

2. The Bonds matrix probabilities Mb = (pij) with pij = p(bij|δij) = δij
(
1− exp{−βkij(σ)}

)
, can

be seen as a upper triangular matrix re-written as an element by element product of two upper
triangular matrix with diagonal elements set to zero :

Mb = P̃ ◦ δ̃

with P̃ = (p̃ij), p̃ij = 1 − exp{−βkij(σ)}, and δ̃ = (δij). Only matrix δ̃ change after each label
assignment.

The upper triangular bonds matrix B = (bij) with diagonal elements set to zero can also be
introduced for a given configuration {bij} in S̃c-list.

66 CHAPTER 2. THE POTTS MODEL WITH COMPLETE SHRINKAGE

The probability of a given configuration in S̃c-list is the product of all elements in upper right-
corner of the following triangular matrix (excluding diagonal elements):

[P̃ ◦ δ̃]B + [(1− P̃) ◦ δ̃]1−B

for which each non-null element is computed as :

(
p̃ij · δij

)bij +
(
{1− p̃ij} · δij

)1−bij

We have then :

p({bij}, {bij} ∈ S̃c − list|σ,X, β, q, Sc) = (2.6)

PRODi∈{1,...,n−1},j>i

(
[P̃ ◦ δ̃]B + [(1− P̃) ◦ δ̃]1−B

)

p({mv = 0, for v ≤ Sc}|σ,X, β, q)

where PRODi∈{1,...,n−1},j>i describe the product of all elements in the upper right-corner of the
matrix.

3. The most probable configuration can then be selected based on this computation. This proba-
bility in 2.6 is computationally intractable for large datasets but remains a contribution of this
research, as it can be used for further calculus, or mathematics developments.

Chapter 3

Deep learning and the Classical Neural
Networks

3.1 The General Multi-Layer FeedForward Neural Network:
Definitions & Concepts

Definition 3.1.1 (Multilayer Neural Network Model)
We consider first a general case where the space for all observations Dn consists of n points:

Dn =
(
x,y

)
=
{

(x1,y1), . . . , (xn−1,yn−1), (xn,yn);xi ∈ Rp1×p2 ;yi ∈ Rq1×q2 ; p1, p2, q1, q2 ∈ N
}

For a k-layers network (with multiple hidden layers), neural network model is called multi-layer net-
work, and the architecture of the network is designed as follows:

x = h0 : the input layer,x ∈ Mn×q

hk = bk + gk(hk−1)Wk (3.1)

Equation (4.1) defines the feed-forward function; and h1 = b1 + h0W1 is the first layer, where the
symbol + has to be seen here as ⊕ the Kronecker sum, or a broadcast sum in a proper term. In other
words, the estimated output ŷ obtained on from the neurons (O)1:lk (illustrated in figure 3.1) from the
model is given by :

ŷ = ĥk = b̂k + gk(ĥk−1)Ŵk = gk(b̂k−1 + gk(ĥk−2)Ŵk−1)Ŵk (3.2)
= fψ(x)

67

68 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

...

...
...
...

...
...

x1

x2

x3

xq

H1

Hl1

H1

Hl2

H1

Hlk−1

O1

Olk

Input
layer

Hidden
layer

(l1 neurones)

Hidden
layer

(l2 neurones)

Hidden
layer

(lk−1 neurones)

Output
layer

(lk neurones)

. . .

Figure 3.1: Multi-layer feed-forward neural network

where gk(x) represents the activation function of the kth layer, fψ is the whole network function, with
ψ = (W, b), W = (W1,W2, ...,Wk) the weights matrix, and b = (b1, b2, ..., bk) the biases of the
model. Wk ∈ Rlk−1×lk may be a random matrix in a Bayesian configuration, and finally, lk is the
number of neurons of the kth layer (l0 = q).

This model that we introduce can learn a non-linear function approximator for either classification or
regression (Hassoun et al. (1995)). In terms of composition, it is different from many known models,
because, between the input and the output layer, there can be one or more non-linear layers, called
hidden layers (figure 3.1). The main difference with a Shallow-Neural Network is that it is built up
with k-layers (with multiple hidden layers, (k > 2)), hence the name Multi-layer-FeedForward Neural
Network Model.

For further purpose, we will also define an error function, J(W, b), which represents the error between
the desired output y and the calculated output ŷ of the neural network on input x for a set of input-output
pairs (x,y) ∈ Dn and a particular value of the parameters (W, b).

Any hidden layer of a neural network is thus simply a stack of models to the previous layer. The
individual neuron acts like its own model in the layer, whose outputs feed additional neurons into
another model stack (each successive hidden layer may have many more neurons in the neural
network).

3.1.1 The Hold on Neural networks and the WHY
Deep learning (DL) is a new area and little is understood about an optimal representations of data, loss
functions, and the techniques for data preparation. Binary signals, for example, may be interpreted as
binary or one-hot vectors, modulated (complex) symbols or integers, and the optimal representation can
depend on the architecture of the Neural Network, learning purpose, and loss function, among other
variables (O’Shea & Hoydis, 2017). For this reason, researches are growing in this direction and many

3.2. CLASSIFICATION OF NEURAL NETWORKS 69

novices are increasing their interest.

One appeal of neural networks is their ability to derive high-level, dynamic abstractions and represen-
tations in the face of vast quantities of data via a suitable procedure (Najafabadi et al., 2015). Neural
networks can be quickly built, due to the rapid development and wide availability of data, and have
become an appropriate predictive platform for national intelligence, cyber protection, fraud prevention,
marketing, and medical knowledge issues (Chen & Lin, 2014).

In particular, in neural network architectures, the explicit nonlinear relationship is very useful in con-
structing a general mapping model without defining any functional types in advance (Chang & Su,
1995). Chang & Su (1995) showed that while the statistical regression approach involves careful model
selection to perform well by statistical testing methods, many neural network architectures perform well
while carefully gathering training data.

Bansal et al. (1993) have demonstrated a distinction of regression analysis and neural network analysis,
discussed a real-world example from the field of finance. They observed that, as data quality deterio-
rated, neural net-based predictions appeared to be more stable than linear regression estimates. They
are not only capable of capturing non-linear phenomena, but have demonstrated strong success in their
application in finance. (see Chen et al. (2003) and Zhang et al. (2007)).

Neural networks may have many benefits over traditional models of regression. Without the need for
a complete definition of the model, they are claimed to own the property to learn information from
a collection of data; they are also claimed to be able to see beyond noise and distortion (Marquez
et al., 1991). In theory, a sufficiently large neural network can learn any function (see the Universal
Approximation Theorem with paper).

Hornik (1991) paper ”Approximation Capabilities of Multilayer Feedforward Networks” demonstrates
that ”standard multilayer feedforward networks with as few as a single hidden layer and arbitrary
bounded and nonconstant activation function are universal approximators with respect to LP (µ) perfor-
mance criteria, for arbitrary finite input environment measures µ, provided only that sufficiently many
hidden units are available.” In other words, the assumption that the activation function is bounded and
non-constant is enough to approximate almost any function, provided that we can use as many hidden
units in the neural network as we want.

Neural network models are then an opportunity to explore: their conjunction with statistical modelling
gives classical model families a strong extension, as the later offer a systematic way of obtaining good
initializations (Ciampi & Lechevallier, 1997).

3.2 Classification of neural networks

1. Multilayer Perceptron – It is simply a feedforward artificial neural network model, the original
name for the one we introduced at the beginning of this chapter, it maps sets of input data onto
a set of appropriate outputs with multiple referenced applications : Noriega (2005); Gardner &
Dorling (1998); Pal & Mitra (1992); Ramchoun et al. (2016); Attali & Pagès (1997); Attali &
Pagès (1997); Chaudhuri & Bhattacharya (2000); Murtagh (1991); Parlos et al. (1994); Suykens
& Vandewalle (1999); Suykens & Vandewalle (1999); Sivaram & Hermansky (2011).

70 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

2. Memory network: networks with context memory. Memory Networks combine inference com-
ponents with a memory component. Recurrent Neural Networks or network with memory are
referenced here : Dyer et al. (2016); Mikolov et al. (2011); Zaremba et al. (2014); Medsker &
Jain (2001)), Long Short Term Memory Network are such an example (Malhotra et al. (2015); Tai
et al. (2015); Fischer & Krauss (2018); Sak et al. (2014); Zhu et al. (2015); Bakker (2001); Kalch-
brenner et al. (2015); Graves (2012); Hochreiter & Schmidhuber (1997). These networks have
many favourable features, including better features, Memory power, high noise robustness, in-
creased memory overloading robustness, and enhanced memory retention during learning. (Fuster
(1997); Cheng et al. (2016); Wang et al. (2018); Sukhbaatar et al. (2015); Kumar et al. (2016);
Pan et al. (2017); Soda et al. (2004); Weston et al. (2014); Chunseong Park et al. (2017)).

3. Dynamic neural network:

It is important to split these complex networks into two categories: those with only feed-forward
connections and those with feedback or recurring connections. This separation may intercept the
previous category as well. A dynamic neural network, in practice, consists of a series of inter-
connected neurons that communicate continuously. Applications and examples are numerous:
Tayarani-Bathaie et al. (2014); Yang & Ni (2005); Shaw et al. (1997); Sanchez & Perez (1999);
Ito et al. (2006); Ishak et al. (2003); Ishak et al. (2003); Mordjaoui et al. (2017); Hatti & Tioursi
(2009); Yu & Li (2001); Yu & Li (2001); Jiang & Adeli (2005); Shoaib et al. (2016); Hosoda
et al. (2013); Leven & Levine (1996); Sholahudin & Han (2016); Ghiassi et al. (2005). Dynamic
networks are generally more powerful than static networks (although somewhat more difficult to
train). Because dynamic networks have memory, they can be trained to learn sequential or time-
varying patterns. This has applications in such disparate areas as prediction in financial markets
(Roman & Jameel, 1996), channel equalization in communication systems (Feng et al., 2003),
phase detection in power systems (Kamwa et al., 1996), sorting (Rahman et al., 2004), fault de-
tection (Gan & Danai, 1999), speech recognition (Robinson, 1994), and even the prediction of
protein structure in genetics (Pollastri et al., 2002). You can find a discussion of many more
dynamic network applications in (Medsker & Jain, 1999).

4. Radial Basis Network – A radial basis function network is an artificial neural network. It uses
radial basis functions as activation functions. References and applications are available as well:
Yeung et al. (2007); Yeung et al. (2007); Chen et al. (1991); Venkatesan & Anitha (2006); Orr
et al. (1996); Jang & Sun (1993); Sudheer & Jain (2003); Bishop (1991); Leung et al. (2001);
Dash et al. (2000); Hwang & Bang (1997); Vt & Shin (1994); Vt & Shin (1994); Yingwei et al.
(1998); Bors & Pitas (1996). One example of Radial Basis Function (RBF) is as follow:

activation (ζ) = exp (s∗ log(altitude) − ζ)

Where s is here the fan-in of each unit in the layer, that is the number of other units feeding into
that unit, excluding bias, and the altitude is a positive number stored in Neuron or NeuralLayer
or NeuralNetwork. The default is altitude=1 with the activation function decreasing to a basic
exp(−ζ) for that amount.

5. Other types of networks: networks that operate similar to neuronal (mathematical functions) and
synaptic states (linking neurons) with the additional feature that these networks also incorporate
the concept of time into their operating model (Liu & Perez (2017)). Such networks impose

3.3. ACTIVATION FUNCTION AND LOSS FUNCTION TYPES 71

synaptic controls with specific gates. One example is the Gate Recurrent Units Network (Costa
et al. (2017); Yao et al. (2015); Xu et al. (2017); Dey & Salemt (2017); Chung et al. (2015); Tang
et al. (2015); Chung et al. (2014)).

For the scope of this research, we will limit our presentation to the Multilayer Perceptron type, com-
monly known as the feedforward artificial neural network model as introduced and presented here with
his multilayer feature version.

3.3 Activation function and Loss function types

We want to find the set of weights (remember that a weight is found in each connecting line
between any two components in a neural network) and biases (each neuron has a bias) that reduce
our cost function - where the cost function is an estimate of how incorrect our predictions are
relative to the target result.

As a reminder :

Definition 3.3.1 (Activation functions)
The activation function is a mathematical “gate”, a logical ”gate” based on a law or threshold, it may
be as basic as a phase function that turns the neuron output on and off.

Here is a following list of some activation functions you may find in the literature (Agostinelli et al.
(2014); Agostinelli et al. (2014)):

1. Rectified Linear Units (ReLU) : φ(v) = max (0, b+ v′W). This function (figure 3.2) is com-
putationally efficient—allows the network to converge very quickly [Jin et al. (2015); Hussain &
Jeong (2016); Wu et al. (2014); Jiang et al. (2018b); Le et al. (2015); Arora et al. (2016); Agarap
(2018); Hara et al. (2015)]. But, ReLU is Non-linear—although it looks like a linear function,
and has a derivative function and allows for backpropagation (Baldassi et al. (2019); Dolezel et al.
(2019); Wagner & McComb (2019); Sigtia & Dixon (2014); Xiong et al. (2014)).

Figure 3.2: ReLU Activation function

72 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

2. Sigmoid Function called S-shaped functions: φ(v) = 1

1+e−(b+v′W) . It is one of the most widely
used non-linear activation function. The main reason why we use sigmoid function is because
it exists between 0 to 1 (figure 3.3). It is also particularly used for models where the likelihood
has to be predicted as an output. This function is distinguishable, and it is often referred to as a
logistic function and its graph curve appears S-shaped. It is used in situations like making the final
decision in a network with the binary classification layer (Sutskever & Hinton (2008); Panicker &
Babu (2012); Han & Moraga (1995); Ngah et al. (2016); Uykan (2013); Kondo (2006); Tommiska
(2003); Kros et al. (2006); Lin & Wang (2008); Menon et al. (1996); Kilian & Siegelmann (1993);
Tsai et al. (2015); Yamanashi et al. (2012); Shibata & Ito (1999); Wanto et al. (2017); Elfwing
et al. (2018); Ito (1991)).

Figure 3.3: Sigmoid Activation function

3. Tangent Hyperbolic activation: φ(v) = e(b+v′W)−e−(b+v′W)

e(b+v′W)+e−(b+v′W) . Tanh can be thought of as a scaled
sigmoid (it is a Bipolar Sigmoid logistic function), and is right to model inputs that have strongly
negative, neutral, and strongly positive values (Shamsi et al. (2015); Namin et al. (2009); Za-
manlooy & Mirhassani (2013); Roy et al. (2019); Lin & Wang (2008); Mathias & Rech (2012);
Anastassiou (2011b); Anastassiou (2011a)). He is plotted in figure 3.4.

Figure 3.4: Tanh Activation function

3.3. ACTIVATION FUNCTION AND LOSS FUNCTION TYPES 73

4. Softmax output activation:

softmax(x) =

{
esx1

∑n
k=1 e

sxk
,

esx2

∑n
k=1 e

sxk
, . . . ,

esxn∑n
k=1 e

sxk

}

Softmax (x) is only defined for vector operations, it cannot take a scalar input. Softmax (x) con-
verts an input vector x with n elements into a probability distribution with n elements. Softmax
guarantees each term to be positive by exponentiating any term in the input vector. By summing
all exponentiated elements and dividing by that sum, and by assigning each element in the output
vector to be the percentage that the input element added to the sum, softmax calculates a probabil-
ity distribution. The scalar s is just a stretch parameter, it controls the variance of the distribution,
or how ”spread out” the distribution is (Kanai et al. (2018); de Brébisson & Vincent (2015); Chen
et al. (2018); Qin et al. (2019); Su & Xu (2015); Tüske et al. (2015); Rimer & Martinez (2004);
Liu et al. (2016); Yuan (2016); Wu et al. (2016); Gold et al. (1996)).

A Multilayer Perceptron can support multi-class classification by applying Softmax as the output
function (Ranjan et al. (2017); Memisevic et al. (2010); Jiang et al. (2018a); Liang et al. (2017)).
The raw output passes through the softmax function and determines each class probability. The
most higher value is rounded to 1, the other values are rounded to 0. The index where the value is
1 represent the allocated class of that sample for the expected output class of the sample.

Some functions are, as you will read above, devoted only to the output layer. Output neurons are simply
dependent on basic activation functions in parallel to input and hidden neurons, depending on the type
of models required. The activation of one neuron determines the value of the corresponding input field,
and the activation of the output neuron is determined by the model purpose (classification, regression,
multi-classification, etc.). In networks with supervised learning, the normalised values of the respective
reference fields are correlated with the computed activity of the output neurons. The difference between
the neuron’s activation and the normalized target field determines what is known as the prediction error
(Hastie et al., 2009).

The activation functions play a crucial role in the preparation of Neural Networks Models. For this
purpose, to develop effective and performing training, these roles represent a key subject in the deep
learning environment. The trick of these techniques is to allow a stable activation feature to be learned,
preventing the absence of gradient problems (Maguolo et al., 2019).

Table 3.1: Frequently used activation functions

Name [σ(ζ)]i Range
linear ζi (−∞,∞)
ReLU max (0, ζi) [0,∞)
tanh tanh (ζi) (-1,1)

sigmoid 1

1+e
−ζi
i

(0,1)

softmax eζi∑
j e
ζj

(0,1)

Small non-linearities in activation functions create bad local minima in neural networks (Yun et al.,
2018). Specifically, Yun et al. (2018) have shown that for ReLU(-like) networks, and for almost all

74 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

practical datasets, there exist infinitely many local minima. But also, the choice of the right loss function,
is a true matter of practice.

The loss function in Neural Networks Models

The most famous loss function in neural network is the Mean Squared Error (MSE), or L2 loss (table
3.2). It is more often used as regression loss that is computed by taking the average squared difference
between actual (w) and predicted observations (z) (Zainuddin & Pauline (2008); Guresen et al. (2011);
Cheng et al. (2005); Arsad et al. (2013); Xu (1993)).

Cross-Entropy: Cross-entropy loss, or log-loss, measures the performance of a classification model
whose output is a probability value between 0 and 1 (Zhang et al. (2018c); Aurelio et al. (2019); Wiesler
et al. (2013); Cao et al. (2018); Li et al. (2019b); Martinez & Stiefelhagen (2018); Semenov et al.
(2019); Szita & Lörincz (2006); Nasr et al. (2002); Amos & Yarats (2020); Shan & Fang (2020); Xie
et al. (2019); Fu et al. (2019); Panchapagesan et al. (2016); Golik et al. (2013); Li et al. (2019c); Zhang
& Sabuncu (2018); Bosman et al. (2020); Hu et al. (2018b); Kline & Berardi (2005)). As the expected
probability diverges from the real mark, cross-entropy loss increases. A perfect model would have a
log-loss of 0. If Ξ > 2 (i.e. multiclass classification), we calculate a separate loss for each class label
per observation and sum the result as follows1:

−
Ξ∑

ξ=1

eζ,ξ log
(
pζ,ξ

)

• Ξ is the number of classes;

• eζ,ξ is a binary indicator (0 or 1) if class label ξ is the correct classification for observation ζ

• pζ,ξ is the predicted probability that observation ζ is of class ξ

In binary classification, where the number of classes Ξ equals 2 , cross-entropy can be calculated as:

−(e log(p) + (1− e) log(1− p))

Table 3.2: List of loss functions

Name l(w, z)
MSE ‖w − z‖2

2

Categorical cross-entropy −∑j wj log (zj)

3.4 Notes on The Geometry of the loss function
Training on the neural network depends on our ability to find ”good” minimizers or a loss function
which is strongly non-convex. It is well known that some network architectures require simpler training

1We took this definition from the Python PyPy Manual as it is well illustrative of how to compute the cross-entropy.

3.4. NOTES ON THE GEOMETRY OF THE LOSS FUNCTION 75

loss functions, and well-chosen training parameters (batch size, learning rate, optimizer) generate better
generalising minimizers.

However, the reasons for these variations, and their effect on the underlying loss surface, are not well
known. Using a variety of findings from research papers, we discuss the convexity nature of neural loss
functions and the impacts of the loss surface on generalisation in this section.

3.4.1 The non-convexity problem
It is important to understand the loss surface of deep Neural Network (DNNs) under practical conditions
to provide principled ways of modelling proper models (Falas & Stafylopatis, 1999). Non-convexity is
one of the key problems in the analysis of neural networks, because of the loss function that may have
multiple poor local minimums. As an example of neural networks for binary classification tasks, Liang
et al. (2018) have shown that any local minimum becomes a global minimum per area (called region)
after adding one special neuron with a skip relation to the output, or one special neuron per layer.

It is then necessary for the development of improved optimization algorithms to understand the geome-
try of neural network loss function surfaces, to create a theoretical understanding of why deep learning
works. Using the distribution of the Hessian matrix eigenvalues, Pennington & Bahri (2017) have stud-
ied the geometry of the loss function at critical points of varying energy. They present an analytical
structure and a collection of random matrix theory methods that allow, under a set of simplifying as-
sumptions, to compute an approximation of this distribution. The parameter domain of the loss surface
can be decomposed into regions in which activation values are consistent.

They found that the loss surface has similar properties to that of linear neural networks when decom-
posed into sub-region, where any local minimum is a global minimum. This means that every differen-
tiable local minimum is the global minimum of the corresponding region. When all hidden layers are
wider than the input or output layers, Laurent & Brecht (2018) prove that any local minimum of a deep
linear network under differentiable convex loss is global.

3.4.2 Level Sets
The loss surface J = F (Θ) of a given model can be expressed in terms of its level sets Ωζ, which
contain for each energy level ζ all parameters Θ yielding a loss smaller or equal than ζ.

The loss feature involves weak local solutions very often (minima or maxima). It is connected to the
form or geometry of the level sets, or their topology essentially. By approximating the geodesics of
each level set beginning at two random boundary points, Freeman & Bruna (2016) has implemented an
effective algorithm to estimate the geometric regularity of these level sets. His goal was to verify this
intuition about, as their properties were so rich to understand all irregularities in the loss function.

The local conditioning of the loss surface and the model architecture that prevents the existence of
bad local minima is the immediate follow-up query that then decides the convergence of algorithms in
operation. A first question Freeman & Bruna (2016) have addressed concerns the topology of these
level sets, i.e. under which conditions they are connected. Connected level sets mean that a descent
path can always be found at each energy level, and therefore there can be no poor (weak) local minima.
In absence of nonlinearities, deep (linear) networks have connected level sets (Kawaguchi, 2016). In

76 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

presence of non-linearity, this connection is not a guarantee.

This result justifies the research for the right loss function for a given model, and the use of gradients
and backpropagation optimisation methods in neural networks.

3.5 The Science of Gradients and Backpropagation in Deep learn-
ing

The training process of a neural network, at a high level, is like that of many other data science
models - define a cost function and use gradient descent optimization to minimize ita.

aThis is a quote from Tony Yiu, in a web-blog titled : ”Understanding Neural Networks” in 2019.

Generally, if we try to find the minimum of a function, the derivative is set to zero and the parameters are
solved. However, it turns out that it is difficult sometimes to get a closed-form solution for the functions
of neural network loss gradients, especially for all W and b. Instead, we search for a minimum using the
iterative method called gradient descent. When attempting to find the minimum of a function, gradient
descent works: it begins at a random position in the parameter space and then iteratively decreases the
J error until it reaches a local minimum. It defines the direction of the steepest descent at each step of
the iteration and takes a step in that direction. This process is depicted as the backpropagation principle
(Rumelhart et al. (1986); Hecht-Nielsen (1992)) in the following graph in which there is a set of 5 five
neural network nodes wi, wi+1, wi+2, wi+3, wi+4, all set in forward pass as in figure :

wi wi+1 wi+2 wi+3 wi+4

Figure 3.5: A simple graph

By the chain rule, we have

∂wi+4

∂wi
=
∂wi+4

∂wi+1

· ∂wi+1

∂wi
=
∂wi+4

∂wi+2

· ∂wi+2

∂wi+1

· ∂wi+1

∂wi
=
∂wi+4

∂wi+3

· ∂wi+3

∂wi+2

· ∂wi+2

∂wi+1

· ∂wi+1

∂wi

As we can see, in order to compute the gradient of wi+4 with respect to wi, we can start at wi+4 a go
backwards towards wi, computing the gradient of every node’s output with respect to its input along the
way until we reach wi. Then, we multiply them all together.

Now consider the following scenario in figure 3.6. In this case, wi contributes to wi+4 along two paths:
The path wi, wi+1, wi+3, wi+4 and the path wi, wi+2, wi+3, wi+4. Hence, we have:

Proposition 3.5.1
The total derivative of wi+4 with respect to wi in figure 3.6 is given by:

3.5. THE SCIENCE OF GRADIENTS AND BACKPROPAGATION IN DEEP LEARNING 77

wi

wi+1

wi+2

wi+3 wi+4

Figure 3.6: A simple graph

∂wi+4

∂wi
=
∂wi+4

∂wi+3

· ∂wi+3

∂wi
=

∂wi+4

∂wi+3

·
(
∂wi+3

∂wi+1

· ∂wi+1

∂wi
+
∂wi+3

∂wi+2

· ∂wi+2

∂wi

)
(3.3)

=
∂wi+4

∂wi+3

· ∂wi+3

∂wi+1

· ∂wi+1

∂wi
+
∂wi+4

∂wi+3

· ∂wi+3

∂wi+2

· ∂wi+2

∂wi

This gives us an intuition for the general algorithm that computes the gradient of the loss function
of neural network with respect to any node: we perform what is known as a backwards breadth-first
search starting from the loss node itself (Beamer et al. (2012); Bundy & Wallen (1984); Zhou & Hansen
(2006)). At each node wi that we visit, we compute the gradient of the loss with respect to wi itself and
all his connected nodes.

Application to neural network optimization: the victory of backpropagation

The goal of the training process is to minimize the loss L(Θ) with respect to the parameters in Θ. The
most popular algorithm to find good sets of parameters Θ is stochastic gradient descent (SGD) which
starts with some random initial values of Θ = Θ0 and then updates Θ iteratively as:

Θt+1 = Θt − η∇ΘL̃ (Θt) (3.4)

where η > 0 is the learning rate and L̃(Θ) is an approximation of the loss function which is computed
for a random minibatch of training examples St ⊂ {1, 2, . . . , S} of size Bt at each iteration. By choosing
|St| = Bt small compared to S, the gradient computation complexity is significantly reduced while still
reducing weight update variance. By applying this to our neural network defined in [3.1.1], and using
the partial derivative on the cost function J(W, b), one can compute the gradient in which the weight
and bias have to descent to minimize it.

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b)

78 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

Where α determine the amount of the gradient to be used, called learning rate, and discussed more
formally further [3.6.2]. The backpropagation principle allows us to compute ∂

∂b
(l)
i

J(W, b) at every

layer of the neural network using proposition 3.5.1. We then have a rough idea how to minimize J the
loss function of our model (Yu et al. (2002); Wilamowski et al. (2001); Abid et al. (2001)):

Theorem 3.5.1 (Neural Network Error Function Derivatives)
The derivation of the backpropagation algorithm begins by applying the chain rule in equation 3.3 to
the error function J(W, b) partial derivatives:

∂J(W, b)

∂Wk

=
∂J(W, b)

∂ak

∂ak
∂Wk

where ak is the activation (product-sum plus bias) of node j in layer k before it is passed to generate
the next layer output.

Proposition 3.5.2 (Backpropagation algorithm & Convergence, Wu et al. (2008))
The following Backpropagation algorithm :

1. Start with some values for W and b taken at random;

2. Compute the gradients of J with respect to W and b

3. Take a small step along the direction of the negative gradient of J using equation 3.4 update.

4. Go back to 2

is convergent under the conditions of proposition 1.2.1.

3.6 Talks on Deep Learning common regularization methods
One thing to remember is that while we demonstrated the presence of spurious local minima in the entire
parameter space, things will vary in small parameter space sets, for example, by adding regularizers (Yun
et al., 2018).

In a machine learning algorithm, a common approach to minimise overfitting is to use a regularisation
concept that penalises large weights (L2) or non-sparse weights (L1), etc. There are three other methods
much more with the same objective that should be known:

1. Cross-Validation: it is a multiple-round validation in its simplest form, where we leave a sample
as in-time for validation and rest the other parts for model training. A higher fold cross-validation
is favoured to ensure a lower variance.

2. Early Stopping: Early stopping guidelines offer instructions about how many iterations can be
carried out before the model starts to over-fit.

3. Pruning: When building Classification And Regression Trees (CART) model templates, pruning
is used extensively. It essentially excludes the nodes that give no predictive strength to the output

3.6. TALKS ON DEEP LEARNING COMMON REGULARIZATION METHODS 79

at hand. (Ghasemain et al. (2020); Pham et al. (2019); Martı́nez-Muñoz et al. (2008); Cui & Feng
(2019); Frank (2000)).

A Couple of Hyper-parameters that needs to be tuned

A number of hyperparameters, such as the number of hidden neurons or layers (Yuan et al. (2003)), and
training iterations (called epochs) and the batch size, need to be tuned with the MultiLayer Perceptron.
The batch size parameter B is one of the main ones of the hyper-parameters that will be tuned as
you train a Stochastic Gradient Descent mini-batch neural network (SGD)[see Section 1.2.3]. The
most simple hyper-parameter search approach is to do a grid search to find a pair that lets the network
converge w.r.t the learning rate and batch size. (Neelakantan et al. (2015); Shang & Wah (1996); Hinton
et al. (2012b); Fukumizu (1998); Liang et al. (2006); Masters & Luschi (2018); Bottou & Cun (2003);
Sahoo et al. (2017); Murata (1998)).

Definition 3.6.1 (The Batch Size)
The batch size B defines how many examples you are looking at before updating the weight. The smaller
it is, the noisier the training signal will be, the greater it will be, the longer it will take for each step to
measure the gradient.

Another major parameter for the SGD described above is the learning rate:

Definition 3.6.2 (The learning rate schedule)
This function ε(s) : N→ R is called the learning rate schedule.

The parameter ε(s) can be interpreted as a function of the count of epochs s and is the learning rate
(Darken & Moody (1991); Darken et al. (1992)). If you want to fix the learning rate, just take epsilon
as a constant function. One famous application of the learning rate schedule is the Adam Optimizer
(Kingma & Ba (2014)).

It’s important to see the relationship between batch gradient descent, online SGD, and mini-batch SGD
to understand what the batch size should be. Here is the general formula for the mini-batch SGD weight
update step, which is a generalisation of all three kinds of it (Tsoi (1997); Bengio (2012); Ventresca &
Tizhoosh (2009); Bottou (1991); Du et al. (2019); Andrychowicz et al. (2016); Hochreiter et al. (2001)
).

Θs+1 ← Θs − ε(s)
1

B

B−1∑

b=0

∂L (Θ,mb)

∂Θ

where mb is a subset of the training data. More details follow:

1. Batch gradient descent, B = |mb|; In this case, The batch size B is just the cardinality of mb :
B = |mb|. SGD converges faster than standard Batch gradient descent, because after looking at a
randomly chosen subset of the training set, it changes the weights. (Lin & Zhou (2017); Li et al.
(2014a); Li & Orabona (2019)).

2. For online stochastic gradient descent: B = 1, For Mini-batch stochastic gradient descent: B > 1
and B < Nb (Nb is set for the size of the whole training data),

80 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

Using the gradients of the whole dataset x, batch gradient descent updates the weights Θ; while SGD
updates the weights using the gradient average for the mini-batch mb. The predicted value of this
stochastic gradient approximation used in Online SGD refers to the deterministic gradient used in the
descent of the batch gradient.

Theorem 3.6.1 (Expected Online SGD)
In Online SGD, we have :

Em∼U [∇LSGD(Θ,m)] = ∇L(Θ,x)

where m ∼ U means m is taken uniformly over the data set.

Proof 3.6.1
We show this as follows:

Em∼U [∇LSGD(Θ,m)] = ∇En∼U [LSGD(Θ,m)]

= ∇
N∑

i=1

P (m = i)LSGD(Θ, i)

= ∇ 1

N

N∑

i=1

LSGD(Θ, i)

= ∇L(Θ,x)

because LSGD(Θ, i) is the log-likelihood evaluated at the data point i. This ends the proof.

Each time we take a sample and update our weights it is called a mini-batch. Each time we run
through the entire dataset, it’s called an epoch.

Let’s assume we have a data vector called x ∈ RD, an initial weight vector that represents the parameters
of our neural network, Θ0 ∈ RS , and a loss function called L(Θ,x) that we use to optimize the network.
If we have Ξ training examples and a batch size of B, then we can split those training examples into ι
mini-batches:

ι = dΞ/Be

We should say, for convenience, that Ξ is uniformly divisible by the B. But, where this is not the
case, because sometimes it is not, as a function of its scale, proper weight should be allocated to each
mini-batch.

Proposition 3.6.1 (Iterative SGD with O epochs)

3.6. TALKS ON DEEP LEARNING COMMON REGULARIZATION METHODS 81

An iterative algorithm for SGD with O epochs is given below:

s← 0

while s < O

Θs+1 ← Θs − ε(s)
1

B

B−1∑

b=0

∂L (Θ,mb)

∂Θ

s← s+ 1

Note: The dataset is shuffled by most SGD implementations and then the examples get loaded
into memory in order to be interpreted.

This iterative algorithm is improved in Adam optimizer (Kingma & Ba (2014)) presented as follows:

1. Initialization : Θ0 : Initial parameter vector, b0 ← 0 (Initialize 1st moment vector), a0 ← 0
(Initialize 2nd moment vector), s← 0 (Initialize timestep);

2. s← s+ 1

3. Get gradients w.r.t. stochastic objective at timestep s: gs ← ∇Θ; L̃ (Θs−1)

4. Update biased first moment estimate: bs ← e1 · bs−1 + (1− e1) · gs
5. Update biased second raw moment estimate: as ← e2 · as−1 + (1− e2) · g2

s ;

6. Compute bias-corrected first moment estimate: b̂s ← bs/ (1− es1);

7. Compute bias-corrected second raw moment estimate: âs ← as/ (1− es2);

8. Update parameters: Θs ← Θs−1 − ζ · b̂s/
(√

âs + ε
)
;

where e1, e2 ∈ [0, 1) are the exponential decay rates for the moment estimates. They recommand a
good default settings for the tested machine learning problems are ζ = 0.001 (ζ is the stepsize here),
e1 = 0.9, e2 = 0.999 and ε = 10−8.

Hold-out and Cross-validation

Hold-out is when the dataset is broken into a series of ’train’ and ’test.’ When the dataset is arbitrarily
broken up into ’k’ classes, cross-validation or ’k-fold cross-validation’ is. As the evaluation set, one
of the classes is used and the others are used as the testing set. On the training package, the model is
conditioned and graded on the test set. Then, before each particular category is used as the test set, the
procedure is replicated (Cooil et al. (1987), Berrar (2019), Hawkins et al. (2003)).

Cross-validation is typically the chosen approach because it eliminates the bias in model estimation
and allows it the ability to practice on several splits of train evaluations. (Bengio & Grandvalet (2004),
Jung & Hu (2015), Blum et al. (1999), Yadav & Shukla (2016)). This gives you a clearer idea of how
well on unseen data the model can do. Hold-out, on the other hand, depends on only one split train
test, which makes the score of the hold-out system based on how the knowledge is separated into train

82 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

and test sets. A web-blogger on machine learning topics 2 once said: Bear in mind that it takes more
processing resources and time to run than using the holdout process, as cross-validation requires many
train-test breaks. You will get more into it by reading this book titled Note on Free Lunches and
Cross-Validation written by Goutte (1997) which introduces The “no-free-lunch” theorems, and share
knowledge of matter on the cross-validation method.

3.7 A short example: The How it works
This short illustrative example comes from Scikit Learn Python Library User Guide3.

Given a set of training examples (u1,v1) , (u2,v2) , . . . , (un,vn) where ui ∈ Rn and vi ∈ {0, 1}, a
one hidden layer one hidden neuron MLP learns the function f(u) = W2g

(
WT

1u+ b1

)
+ b2 where

W1 ∈ Rm and W2, b1, b2 ∈ R are model parameters. W1,W2 Represents the weights, respectively,
of the input layer and hidden layer; and b1, b2 represent the bias applied to the hidden layer and output
layer, respectively. g(·) : R→ R is the activation function set as the hyperbolic tan . It is given as,

g(z) =
ez − e−z
ez + e−z

For binary classification, f(u) passes through the logistic function g(z) = 1/ (1 + e−z) to receive
values of output between zero and one. A 0.5 threshold will allocate samples of outputs greater than or
equal to 0.5 to the positive class, and the remainder to the negative class.

If there are more than two classes, f(u), instead of passing through the logistic feature, it passes through
the softmax function, which is written as a vector of size n classes [see 3.3]:

softmax(z)i =
exp (zi)∑k
l=1 exp (zl)

where zi represents the i-th element of the input to softmax, which corresponds to class i, and K is the
number of classes. The consequence is a vector representing the probabilities of each class having the
sample u. The class with the highest likelihood is the output. The output stays as f(u) in regression;
thus, the output activation function is just the identity function. Depending on the problem form, MLP
uses various loss functions. In regression, the output remains as f(u); therefore, output activation
function is just the identity function. MLP uses different loss functions depending on the problem type.
Cross-Entropy is the loss function for classification, which in binary cases is given as:

Loss(v̂,v,W) = −v ln v̂ − (1− v) ln(1− v̂) + α‖W‖2
2

Where α‖W‖2
2 is an L2-regularization (aka punishment) word that penalises complex models, and α >

0 is a non-negative penalty magnitude regulation hyperparameter. MLP uses the Square Error loss
function to regress; written as:

2Eijaz Allibhai.
3https://scikit-learn.org/stable/modules/neural networks supervised.html

3.8. EXTENDED NOTES ON PRUNING METHOD 83

Loss(v̂,v,W) =
1

2
‖v̂ − v‖2

2 +
α

2
‖W‖2

2

The multi-layer perceptron (MLP) minimises the loss function by continuously updating these weights
starting from initial random weights. A backward pass propagates it from the output layer to the previous
layers after calculating the loss, supplying each weight parameter with an update value intended to
reduce the loss. The gradient ∇LossW of the weight loss is determined in the gradient descent and
removed from W. This is, more formally, expressed as:

Wi+1 = Wi − ε∇LossiW

where i is the iteration step, and ε is the learning rate with a value larger than 0. The algorithm stops
when the full number of iterations is reached by a preset; or when the loss improvement is below a fixed,
limited number.

3.8 Extended Notes on Pruning Method
Pruning is a strategy guided by a pruning saliency, which heuristically approximates the change in
the loss related with the removal of explicit weights. Many pruning signals have been proposed, but
the performance of each heuristic relies upon each specific neural network. Pruning was achieved
specifically by using magnitude as a saliency approximation to assess the weights that are less useful,
the intuition is that lower weights magnitude has a smaller performance effect, and thus if pruned, they
are less likely to have an effect on the model predictions. In Optimal Brain Damage, LeCun et al.
(1990) suggested that various metrics could be a better estimate of saliency, and has proposed to use the
second derivative of the objective function as a pruning measure with respect to the parameters.

A widely cited paper has been released suggesting a three-step procedure to prune neural networks (Han
et al. (2015)):

1. Train a dense network;

2. Using magnitude as a surrogate for saliency, prune the less meaningful weights;

3. Retrain the network to fine-tune the remaining weights links.

Surprisingly, they showed that not only was this approach equal to standard deep learning models, but
it was able to achieve much greater precision.

Weight pruning techniques: The Case of the Optimal Brain Damage (OBD) Method

In the OBD process, pruning is based on the network weights saliency measure as introduced above.
Let J be the cost function that is used for network learning process, Wi be a generic network weight.
The saliency of Wi defined by the OBD method is

S (Wi) ≈
∂2J

∂W2
i

W2
i

84 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

Note that ∂2J/∂W2
i is a diagonal element of the Hessian matrix. The OBD system pruning procedure

is as follows: first, the network is trained and the saliency of all the weights are determined using
3.8; then the weights with the smallest saliency are removed and the network with reduced size is
retrained. Before having a final pruned network model, the process may have to be repeated several
times (Cornelius, 1997).

Pruning with Graphical Models

We will be dealing with binary random variables throughout this part. As Johnson et al. (2015), we
write P (y) denoting the distribution of probability of a set of random variables y = (y1, . . . ,yn) We
work with undirected graphs, unless specified otherwise, G = (�,�) with vertex (or node) set � and

edges {i, j} ∈ � ⊂
(

�
2

)
. For vertices i, j ∈ � we write G + ij to denote the graph (�,� ∪ {i, j}). A

pairwise graphical model is a probability distribution P (y) = P (y1, . . . ,yn) that is defined on a graph
G = (�,�) with vertices � = {1, . . . , n} as:

P (y) ∝
∏

i∈V

ψi (yi)
∏

{i,j}∈E

ψij
(
yi,yj

)
∝ exp




∑

i∈V

fi (yi) +
∑

{i,j}∈E

fij
(
yi,yj

)


 (3.5)

where ψi, ψij ≥ 0 are non-negative node and edge compatibility functions. For positive ψ′s, we may
also represent P (y) as a Gibbs distribution with potentials fi = logψi and fij = logψij .

Using this graphical model to prune neural network weights (Wij)ij means that you set :

Ŵij =

{
Wij, with P (Wij)
0, otherwise

where Ŵij is a pruned weight, Wij is a real weight before pruning, and P (Wij) the probability of keep-
ing a weight, which follows a binary graphical model on the set Ni of all Wij neighbors in the network.
It means that Wij is pruned if the restricted graph generated with {Wij} ∪Ni is in a certain state. One
particular example of interest would be the Ising model case. As a reminder, an Ising model on binary
random variables y = (y1, . . . ,yn) and graph G = (�,�) is the probability distribution defined by

P (y) = 1
Z(θ)

exp
{∑

i∈V θiyi +
∑
{i,j}∈E θijyiyj

}

Z(θ) =
∑
y exp

{∑
i∈V θiyi +

∑
{i,j}∈E θijyiyj

}

where yi ∈ {−1, 1}. The partition function Z(θ) serves to normalize the probability distribution.

3.9 Effective Python Implementation of the model
The full Python Valid Code of the Multilayer Feed Forward Neural Network is available with comments
on our github repository under GNU General Public license v3.0. Please Send a request of access
on the link : https://github.com/kgalahassa/MultilayerFeedFeedForward-NN/
upload/main or write directly to alahassan@dms.umontreal.ca for more details. In the following
algorithm description, the symbol (\) is a line break.

https://github.com/kgalahassa/MultilayerFeedFeedForward-NN/upload/main
https://github.com/kgalahassa/MultilayerFeedFeedForward-NN/upload/main

3.9. EFFECTIVE PYTHON IMPLEMENTATION OF THE MODEL 85

Algorithm 1 Efficient Nk H-layer FeedForward Neural Network Architecture
1: procedure HLAYERFFNN(x, y,Decay,LearningRate,Epochs,BatchSize) . The Nk H-layer

FFNN
2: . Using Cross-Validation heuristic, split (x, y) in training and testing data.
3:
4: Create xtraindata & ytraindata ; Create xtestdata & ytestdata
5: . Prepare the placeholders for tensorflow

6:

Xfill = Placeholder(Float32, shape= [None, xtraindata.shape[1]])
Predictions will go here
Yfill = Placeholder(Float32, shape=[None, ytraindata.shape[1]])

7: Create a pruning variable pkeep; p← xtraindata.shape[1]; Set layers size (l1, l2, ..., lk).
8: for i← 1 to NHLayer do
9: L1 ← l1;W1 ← V ar([p, L1]);B1 = V ar([L1]) ;

10: Y1 = Relu(Matmul(Xfill, W1) + B1); Y1d = Pruning(Y1, pkeep)
11: L2 ← l2;W2 ← V ar([L1, L2]);B2 = V ar([L2]) ;
12: Y2 = Relu(Matmul(Y1d, W2) + B2); Y2d = Pruning(Y2, pkeep) . Continue up to Lk layers
13:
14: Lk ← lk;Wk ← V ar([Lk−1, Lk]);Bk = V ar([Lk]) ;
15: Yk = Relu(Matmul(Y(k−1)d, Wk) + Bk); Ykd = Pruning(Yk, pkeep)
16: end for
17: if Decay ==Constant then
18: LR = LearningRate
19: else
20: Set MinLR = max learning rate (0.003); Set MaxLR =min learning rate (0.0001);
21: Set DS = decay speed (100.0)
22: LR = MinLR + (MaxLR - MinLR) * Exp(-i/DS)
23: end if
Require: Set the final layer Y = Matmul(Ykd,Wk+1) +Bk+1; Set Error =MSE(Y fill, Y); Set Adam

Stochastic Optimizer
24: Train step = Train.AdamOptimizer(lr).minimize(Error)
25: lr is a Placeholder for your learning rate.

26: for i← 1 to Epochs do
27: Shuffle the data to select random minibatch
28: j = 1

. You may shuffle using a shuffling function.
29: X datasf, Y datasf = Shuffle(X datatrain, Y datatrain)
30: for BatchIndex in MiniBatches do . There come the batch learning
31: X batch,Y batch = X datasf[BatchIndex],Y datasf[BatchIndex];
32: j+ = 1

,TrainLoss = RunFFNN([Train step, MSE], feed dict= { Xfill: X batch, Yfill: Y batch,
pkeep: 0.75, lr: LR }) . You may evaluate test error at each step. . You can add Stoploss,
StoppingCriteria.

33: end for
34: end for
35: end procedure

86 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

3.10 Performance and Comparison with Random Forest
We have performed experiments with five (5) multivariate multiple regression datasets taken from the
multiple-output benchmark datasets available in the Mulan project website (Tsoumakas et al., 2020).

Mulan Project DataSets

The Mulan project dataset (Tsoumakas et al., 2020) is shown in Table 2.1. We benchmark our results in
terms of Mean Squared Error (MSE) with Random Forest (RF) (Pal, 2005) in two scenarios:

• RandF1 : number estimators = 10,maximum depth = 30;

• RandF2 : number estimators = 5,maximum depth = 10.

Random Forest max depth represents the depth of each tree in the forest. The deeper the tree, the
more splits it has and it captures more information about the data.

Random Forest number estimators represents the number of trees in the forest. Usually the higher
the number of trees the better to learn the data.

In this experiments, the test set always represents 20% of the whole data. To compare our models in
terms of the performance of the feedforward neural network (FFNN), we build two architectures: a one-
hidden-layer FFNN, and a four-hidden-layer FFNN. We will refer to these networks as 1 H-layer FFNN
(20 hidden neurons maximum) and 4 H-layer FFNN, respectively. We set the size of the four hidden
layers as follows: l1 = 200, l2 = 160, l3 = 100, and l4 = 30.. For both models, epoch times was fixed
to 3500, and learning rate ε = learning rate = 0.0001001329829992624. The results are presented in
table 3.3 and 3.4.

Table 3.3: Summary of Train MSE statistics for five (5) Mulan Project Dataset

FFNN Benchmark Models
Dataset 1-H-layer FFNN 4 H-layer FFNN RandF1 RandF2

Slump 253.523 103.492 20.329 16.407
EDM 0.184 0.124 0.043 0.032
Jura 35.784 20.846 5.873 5.713

Water quality 1.158 1.085 0.517 0.225
SCPF 13701.031 194.873 1745.208 836.529

Table 3.4 is just a confirmation of how powerful neural network can be at work. The result for EDM
dataset can be updated using a more powerful architecture: simply imagine what we could get with
hundred layers more added to the system, and a training time (epochs) well adapted using suitable
hyper-parameters heuristics and validation methods... Finally, to beat random forest on EDM, we have
simply augmented the four hidden layers as follows with one supplementary layer as follow: l1 =
500, l2 = 260, l3 = 150, l4 = 40, l5 = 40, with a training time (epochs) equal to 7240. The learning rate

3.11. THE ODDS AND THE EVEN OF NEURAL NETWORKS 87

Table 3.4: Summary of Test MSE statistics for five (5) Mulan Project Dataset

FFNN Benchmark Models
Dataset 1-H-layer FFNN 4 H-layer FFNN RandF1 RandF2

Slump 116.125 269.500 137.809 137.296
EDM 0.225 0.202 0.185 0.140
Jura 20.204 22.592 87.179 79.277

Water quality 1.391 1.313 1.444 1.388
SCPF 407.353 453.266 1087.353 1198.551

stays the same. We get with this final architecture: Train MSE = 0.033, and Test MSE = 0.133. Our
results have been cross-validated, and this model (with Nk H-layer FFNN) is universally unbeatable.
The Nk H-layer FFNN model is the one-of-a-kind model that will transform neural networks statistical
learning forever.

3.11 The odds and the Even of neural networks
Neural networks are more stable and can be used for problems of regression as well as grouping. With
a huge number of inputs such as photos for example, neural networks are also good for the nonlinear
predictors (Howard (2013); Kanellopoulos & Wilkinson (1997); Li et al. (2014b); Park et al. (2004)).
With any number of inputs and layers, neural networks can operate. A well-known researcher in neural
networks once said that: ”A neural network is the second fastest way to solve any problem. The best
way is to really consider the problem”.

88 CHAPTER 3. DEEP LEARNING AND THE CLASSICAL NEURAL NETWORKS

Chapter 4

Shallow Potts Neural Network Mixture
Models

We introduce a novel ensemble learning approach which combines random partitions models with a
non-parametric predictor such as Multilayer feedforward networks. Neural networks are known as
universal approximators (Hornik et al. (1989) and Cybenko (1989)), and are very well suited to explore
other learning methods. We combine them with Potts clustering models to create a bagging-boosting-
averaging-like learning framework where several estimates from each random partition are aggregated
into one prediction. Our approach carries out the balance between overfitting and model stability in
presence of higher dimensional data. More precisely, our model merges Potts model in a multivariate
multiple regression task with Bayesian deep learning models to produce the ensemble learning method.
Potts model clustering has been introduced to the statistical community by Murua et al. (2008b). The
model is applied to the set of covariate values, formalizing a proximity co-clustering. The method has
been used and proven to be effective (see Murua & Wicker (2014b); Murua & Quintana (2017c)).

The model called Structured Potts Shallow Gibbs Neural Network will be a hierarchical Bayesian model
where we train individual neural nets to specialize on sub-groups (latent clusters components) while still
being informed about representations of the overall population. Our Potts neural network model differs
from those of Kanter (1988) and Philipsen & Cluitmans (1993), which is a generalization of the Ising
neural network. We call it a structured one, because we integrate the structured correlations among
the weights (and offsets) of the network (Sun et al., 2017) through a Markov Random Fields (MRF)
process. Bayesian learning allows the opportunity to quantify posterior uncertainty on neural networks
(NNs) model parameters. We can specify priors to inform and constrain our models and get structured
uncertainty estimation.

4.0.1 Efficiency of regression clustering

Regression clustering is a learning algorithm that allows multiple regression settings to be clustered
where you have a dependent Y vector. And one or two autonomous (independent) variables, the X’s.
Recovering the implicit partitioning of observations is the problem of regression clustering: the algo-
rithm then divides the data into two or more clusters and performs an independent multiple regression
within each cluster on the data. Many algorithms have emerged to run this approach in the past (see

89

90 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

Späth (1979) and H.-J. (1985)). The ultimate aim is to discover classes without oversight before regres-
sion is implemented in each class. Nowadays, many variations have been proposed in machine learning;
clustered linear regression1 (CLR) is an example (Ari & Güvenir, 2002).

Regression clustering has shown a significant predictive advantage in several tasks: clustered regression
trees (Torgo & da Costa, 2000), ridge regression clustering (Nagpal et al., 2013), and non-parametric
Bayesian clustering regression (see Müller et al. (2008), Yang et al. (2014), and Murua & Quintana
(2017c)). The combination of clustering and regression approaches will potentially minimise the possi-
ble problems of predictive performance efficacy due to data heterogeneity (Chen et al., 2013). Using a
clustered method, the data subsets are created with a degree of homogeneity that improves the accuracy
of prediction.

4.0.2 Combination of neural network regression and Potts clustering model
Potts clustering has the ability to integrate multiple partitions from different cluster solutions to improve
the robustness, stability, scalability of the clustering algorithms (Murua et al., 2008c). As shown by
Murua & Quintana (2017c), Potts clustering can be a good prior for statistical models such as regression.
Our model is a multivariate multiple regression clustering one, aiming at combining the Potts clustering
model with a non-linear multivariate multiple regression tool: neural networks. The first main advantage
of the combination of neural networks regression and Potts clustering models, is that a few of the
drawbacks of linear regression can be overcome by using artificial neural network (ANN), and clustered
models can improve prediction accuracy. Their combination presents other key advantages that make
them most suitable for certain problems and situations:

1. An artificial neural network is capable of fitting and modelling non-linear and complicated rela-
tionships, which is really important since many of the relationships between inputs and outputs
are both non-linear and complex in real life.

2. An artificial neural network is a good predictor: it can also infer unseen relations on unseen data
after the necessary fitting step from the initial inputs and their relationships, thereby allowing the
model to predict on unseen data.

3. Extension of Potts model to various forecasting problems: in addition to exploring a graph-based
consensus clustering2 (GCC) to find cluster structures from heterogeneous data, the model pro-
posed here offer a novel opportunity to couple neural network model with random partition models
in diverse machine learning tasks, such as multivariate multiple regression (precisely: when Y re-
sponse is a vector). In fact, Potts clustering as used here, is a random partition model, explicitly,
a clustering model with prior distribution on partitions (Müller & Quintana, 2010a). Section 4.2
describes Potts clustering in detail.

However, ANN is a black box learning technique that can not interpret input-output relationships and
can not cope with uncertainties. Using the Bayesian framework as done by Murua & Quintana (2017c)
can overcome uncertainties issue, and the results can be easily compared. The Bayesian technique is
highly important, as traditional neural network training involves a lot of labelled data to monitor the

1Clustered linear regression (CLR) is a modern machine learning algorithm that, by partitioning training space into
subspaces, increases the precision of classical linear regression.

2Potts clustering is based on a consensus clustering approach (Blatt et al., 1996a).

4.1. SHALLOW GIBBS NETWORKS 91

possibility of overfitting. And when it comes to real-world regression assignments, the task gets more
complicated. Such exercises (regression) also have less training data to use, which also makes it easy
for neural networks to get stuck in overfitting.

A principled approach for solving this problem is Bayesian Neural Networks (see Vehtari & Lampinen
(1999), Bishop (1997)). Prior distributions are placed on the neural network weights in Bayesian Neural
Networks to consider the model uncertainty. One can fit a predictor by doing Bayesian inference on the
weights, which both matches the training data and knows about the volatility of its own estimation on
the test data (Blundell et al., 2015).

4.1 Shallow Gibbs networks
Let D = {(yi, xi) : i = 1, . . . , n} denote the complete data, where xn = {x1, . . . , xn} ⊂ Rq is the
set of input vectors or covariables, and yn = {y1, . . . , yn} ⊂ Rp , the set of associated responses. The
matrix of covariables will be denote by X = (x1|x2|· · · |xn)T ∈ Mn×q (here and throghout the chapter,
the symbol T will indicate matrix transposition). Our shallow network is, as in the general case, a
feedforward network given by the equations

h(k) = b(k) + gk−1(h(k−1))W (k), k = 0, 1, 2, (4.1)

where the layer 0 corresponds to the input data h0 = x, b(0) = 0, g0(x) = x, the first layer corresponds
to the hidden layer with vector output h(1), and the output layer corresponds to the network’s predicted
values h(2) = ŷ. The parameters {(b(k),W (k)) : k = 1, 2} are, respectively, the matrices of offsets,
also known as biases, and weights. The vector gk−1(h(k−1)) denotes a linear (k=2) or non-linear (k=1)
function, such as the identity or a logistic sigmoid, that is applied element-wise. The top layer output
h(2) is used for making a prediction and is combined with the supervised target y into a loss function
L(h(2), y), which is typically convex in h(2) = b(2) + g1(h(1))W (2). As in any regression model, the
network’s predicted value h(2) is an estimate of f(y) = E(y|x). Our model may be seen as a simplified
feedforward network where the weight matrices are constrained to obey a Gibbs distribution whose
neighborhood structure is explained below. Figure 4.1 sketches our network architecture.

Let ψ = (b(1),W (1), b(2),W (2)) be the parameters of the network. Suppose that the hidden layer contains
l1 nodes. Then the parameter dimensions are as follows: b(1) ∈ Rl1 , W (1) ∈ Mq×l1 , b(2) ∈ Rp, and
W (2) ∈ Ml1×p. To ease the exposure of our model, we will use the notation, l0 = q, l2 = p. Let Σ ∈
Mp×p be the variance-covariance matrix of y. We suppose that y|x, ψ,Σ is distributed as a multivariate
normal distribution with mean f(y) = fψ(y) = E(y|x, ψ), and variance Σ. That is, p(y|x, ψ,Σ) =
(2π)−p/2|Σ|−1/2 exp{−1/2(y − fψ(x))′Σ−1(y − fψ(x))}.

Let w(1) = vec(W (1)) be the q × l1-dimensional vector of stacked columns of the weight matrix W (1).
The vector w(2) = vec(W (2)) ∈ Rl1×p is defined similarly. Let w = (w(1), w(2)) be the vectorized
version of the weight matrices (W (1),W (2)). Our model is set into a Bayesian framework by setting a
Gaussian Markov random field prior for ψ. The complete model is the similar to the one described in
(Sun et al., 2017). But ours presents significant differences in the actual architecture, because we set
up two independent fields: one on all the network weights w = (w(1), w(2)), and another one on all the
network biases b = (b(1), b(2)). We assume that both random fields are zero-mean Gaussian fields.

Let Ω ∈ M(q+p)l1×(q+p)l1 and Γ ∈ M(l1+p)×(l1+p) be the precision matrices associated with the random
field of the weights, and the biases, respectively. Here we assume that the biases are independent, so

92 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

...

...
...

x1

x2

x3

xq

h1

hl1

y1

yl2

Input
layer

Hidden
layer

(l1 neurones)

Output
layer

(l2 neurones)

Figure 4.1: Shallow feedforward neural network.

that Γ is a block-diagonal matrix with blocks Γ1 ∈ Ml1×l1 , and Γ2 ∈ Mp×p. The corresponding prior
densities are given by:

p(w|Ω) = (2π)−
l1(p+q)

2 det(Ω)
1
2 exp

(
−1

2
wTΩw

)
, for the weights, and (4.2)

p(b|Γ) = (2π)−
l1+p

2 det(Γ1)
1
2 det(Γ2)

1
2 exp

(
−1

2

{
(b(1))TΓ1b

(1) + (b(2))TΓ2b
(2)
})
, (4.3)

for the biases. Our framework for this part is completed by assuming an Inverse-Wishart(Λ, ν) prior for
the covariance matrix Σ. Here Λ ∈ Mp×p is the prior scale matrix, and ν > 0 is the prior degrees of
freedom.

4.1.1 The sparse-Gibbs network

We define the neighborhood of the random field based on the nodes of the hidden layer. All weights
coming or going out of the same node are considered neighbor weights. That is, weights W (1)

ij and
W

(2)
st are neighbors if and only if j = s, j, s ∈ {1, . . . , l1}, and weights W (1)

ij and W (1)
st are neighbors

if and only if j = t, j, t ∈ {1, . . . , l1}, and weights W (2)
ij and W (2)

st are neighbors if and only if j = t,
j, t ∈ {1, . . . , p}. The matrix Ω is sparse, and composed of l1 blocks of size q × q, p blocks of size
l1 × l1, and l1 blocks of size q × p as well as the associated transposed blocks of size p × q. Note that
the total number of non-zero elements in Ω is l1(q2 + p2 + 2pq) = l1(q + p)2, which corresponds to a
sparsity ratio of l1(p + q)2/(l1(q + p))2 = 1/l1. This rate is very significative even for small values of
l1.

Let Vi• ∈ Mq×q be the block of the precision matrix associated with column i of W (1), i = 1, . . . , l1,
V•j ∈ Ml1×l1 be the block of the precision matrix associated with column j of W (2), j = 1, . . . , p, and
Vii ∈ Mq×p be the block of the precision matrix associated with column i of W (1), and row i of W (2),

4.1. SHALLOW GIBBS NETWORKS 93

i = 1, . . . , l1. Let also ei;l1 ∈ M1×l1 be the ith row of the l1 × l1 identity matrix. Then

Ω =




V1• 0 · · · 0
0 V2• · · · 0
...

...
0 0 0 Vl1•

V11 ⊗ e1;l1

V22 ⊗ e2;l1
...

Vl1l1 ⊗ el1;l1

V T
11 ⊗ eT1;l1

· · · V T
l1l1
⊗ eTl1;l1

V•1 0 · · · 0
0 V•2 · · · 0
...

...
0 0 · · · V•p




(4.4)

where the symbol ⊗ stands for the Kronecker product. We will refer to this simplified network as the
sparse-Gibbs network, as opposed to the full Gibbs network that imposed no constraints on Ω.

4.1.2 Compound symmetry Gibbs network

Note that the above matrix consists of four blocks, that is Ω =

(
Ω1 Ω12

ΩT
12 Ω2

)
, with Ω1 ∈ Mql1×ql1 , Ω2 ∈

Mpl1×pl1 , and Ω12 ∈ Mql1×pl1 . Also, if all matrices Vi• were equal, then we could write Ω1 = Il1 ⊗ V1•,
where Ir denotes the identity matrix in Mr×r. Similarly, if all matrices V•j were the same, we could write
Ω2 = Ip ⊗ V•1. We could also suppose that all matrices Vii are equal. These simplifications would
greatly reduce the number of parameters defining the network.

A less stringent Gaussian random field model consists of replacing Il1 and Ip in the above Kronecker
products for more general matrices U1 ∈ Ml1×l1 , U2 ∈ Mp×p. This is the second model we consider.
However, we simplify it by constraining the inverse matrices of U1, U2, V1•, and V•1 to have compound
symmetry. That is, the inverse matrices of these matrices have to be of the form κ1(1−κ2)Il1 +κ1κ211T ,
for κ1 > 0, and κ2 ∈ [−1, 1], where 1 stands for the column matrix of all elements equal to 1. It can
easily be shown that this constraint implies matrices of the form aIl1 + b11T , with (a, b) ∈ R+ × R.
The matrices Vii are not constrained. We will refer to this network architecture as sparse compound
symmetry Gibbs network or sparse-CS-Gibbs network for short.

Two less structured models. More complex models can be conceived by (a) changing the neighbor-
hood in the Gibbs network, and by allowing the diagonal blocks Ω11 and Ω22 to be unconstrained. In the
Gibbs network this corresponds to consider that all weights coming from the same layer are neighbors,
while still keeping the neighborhood restriction on weights coming to and going out of the same node.
We will refer to this model as the between-layer sparse-Gibbs network. The second extended model
correspond to the compound symmetry network in which the off-diagonal block Ω12 is set to be of the
form U⊗V , for matrices U ∈ Ml1×l1 , and V ∈ Mq×p, or, as we have actually implemented in our model,
for matrices U ∈ Ml1×p, and V ∈ Mq×l1 . Note that the latter matrix structure is always sparser than
the former one when l1 ∈ [0,min{p, q}) ∪ (max{p, q},+∞). We will refer to this architecture as the
compound-symmetry Gibbs network or CS-Gibbs for short.

94 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

4.2 The random-Potts partition model
The purpose of creating the sparse networks of the preceding section is to be able to train the networks
with a fraction of the data used by a classical network, As mentioned earlier, our prediction model is a
finite but very large mixture of shallow and sparse networks. This is the result of using a non-parametric
Bayesian model for prediction. The networks are trained on a subset of data that share similar char-
acteristics in their features. Classical Bayesian non-parametric models rely on the Dirichlet process.
However, these processes do not necessarily look at the data features to create clusters or partitions of
the data. Recent work has overcome this limitation Müller & Quintana (2010b); Müller et al. (2011b).
In particular, the random-Potts partition model introduced in Murua & Quintana (2017c) stresses the im-
portance of data similarities in the resulting partitions by guiding the random partition process through
feature characteristics. These are incorporated in the model through a kernel which in turns induces
the partition probabilities. The random-Potts partition model may be seen as a stochastic version of the
label propagation3 approach (Tibély & Kertész, 2008).

The random-Potts partition model is a probabilistic model defined on a graph. Keeping the notation
introduced before, each data point xi defines a vertex in a graph whose edges are pre-specified. For
example, Murua & Quintana (2017c) consider a k-nearest-neighbor graph. That is, a graph for which
there is an edge between data points xi and xj if and only if either xj is one of the k most similar data
points to xi, or xi is one of the k most similar data points to xj . Associated with any data point in the
graph there is a color label zi ∈ {1, . . . , r}. Usually r is chosen to be between 10 and 30 (Blatt et al.,
1996c; Stanberry et al., 2008b). The set of color labels zn = (z1, . . . , zn) follows a Potts model, and
thus it has probability mass function (pmf)

p(zn|xn, β, σ) ∝ exp{−β
∑

i∼j

Jij(σ)(1− I[zi = zj])},

where Jij(σ) = J(xi, xj;σ) is the kernel evaluated at (xi, xj), I[·] = 1 is the condition between brackets
is satisfied, and is zero otherwise, and where the notation i ∼ j means that xi and xj are neighbors. In
the Physics literature the parameter β is referred to as the inverse-temperature. In practice, one chooses
the kernel so as to penalize color labelings that do not assign the same color to very similar data points.
For example, one can work with Jij = Jij(σ) = J(‖xi − xj‖/σ), where ‖ · ‖ denotes the distance (e.g.,
Euclidean), and σ > 0 is a bandwidth parameter. The partitions are generated by iteratively deleting
edges and inserting deleted edges at random. This is done through a set of random binary variables
b = {bij} named the bonds. Let pij = 1− exp(−βJij(σ)I[zi = zj, i ∼ j]). Each bond bij is generated
independently of the other bonds as a Bernoulli(pij). If i ∼ j, the edge between xi and xj remains in
the graph with probability pij (i.e., bij = 1), and it is deleted from the graph with probability 1 − pij
(i.e., bij = 0). A random partition ρn is generated as the (randomly generated) connected components
ρn = {S1, ..., Skn} of this new random graph. In what follows, we will refer to the components of a

3A fast algorithm for finding communities in a graph is the Mark Propagation Algorithm (LPA). It defines certain com-
munities as its guide using the network structure alone, and does not require a predefined objective feature or prior group
knowledge. LPA is a relatively new algorithm, and was only proposed by Raghavan et al. (2007), in ”Near linear time
algorithm to detect community structures in large-scale networks”. It functions by distributing labels across the network and
building communities focused on this label dissemination mechanism. There are some references online : Xie & Szymanski
(2011), Xie & Szymanski (2013), Gregory (2010). The paper of Tibely and Kertesz (2008) demonstrates an equivalence of
the label propagation method of community detection and Potts model approach.

4.3. THE SHALLOW POTTS GIBBS-NETWORK MIXTURE MODEL 95

partition as clusters. It can be shown that this procedure is governed by the random cluster pmf (Sokal,
1997b)

p(b|xn) = [
∏

bij=1,i∼j

pij][
∏

bij=0,i∼j

(1− pij)]rkn .

Colors are also randomly assigned once the bonds have been chosen. Each connected component is
assigned a color uniformly at random. This process of sampling bonds and colors alternatively is known
as the Swendsen-Wang algorithm. It is a special case of the Markov chain Monte Carlo (MCMC)
stochastic algorithm. Its goal is to generate samples from the random-Potts partition model. This is
achieved when the two sampling steps, bonds and colors, have been applied a sufficiently large number
of times. The distribution of the random-Potts partitions is given by

p(ρn|xn) =
∑

b⇒ρn

p(b|xn) (4.5)

where the notation b ⇒ ρn means that the partition ρn arises from the connected components of the
associated graph with edges given by the bonds b (see (Murua & Quintana, 2017c) for more in-depth
overview). The calculation in the above equation 4.5 might be intractable. Fortunately, we can sample
partitions with MCMC methods without knowing these quantities exactly. These will be detailed below
in Section 4.5.

4.2.1 Some practical considerations
For our experiments of Section 4.6, we use the Gaussian kernel Jij(σ) = exp(− 1

2σ2‖xi − xj‖2), which
is the most popular kernel choice for the Potts or super-paramagnetic clustering model (Blatt et al.,
1996a,c; Murua et al., 2008b). Although the scale parameter σ may be estimated through a Bayesian
stochastic procedure (Murua & Wicker, 2014b), we prefer to use its common estimator which is given by
the average distances σ̂2 =

∑
i<j‖xi−xj‖2/

(
n
2

)
. Murua & Wicker (2014b) show that the optimal scale is

close to this simple estimator. To simplify the computations involved with the Potts model, we restricted
the data neighborhood to a k-nearest-neighbors graph; that is, only the k-nearest-neighbors of a given
point xi are considered as neighbors of xi. This implies that we set Jij(σ) = exp(− 1

2σ2‖xi − xj‖2),
if xj is one of the k-nearest-neighbors of xi, or if xi is one of the k-nearest-neighbors of xj , and set
Jij(σ) = 0, otherwise.

One of the main issues encountered with the Potts model is the choice of the inverse temperature pa-
rameter β. This parameter controls the cluster sizes in the partitions. A value too low of β produces too
many small clusters, while a value too high produces very few and large clusters. Because a shallow
Gibbs network is going to be fitted for each cluster of the partition, we would rather not have too small
size clusters. Therefore, a small value of β is preferred. In our experiments, for each dataset, we selected
a value of β that produced large enough clusters. In general, Murua & Wicker (2014b) gave a simple
procedure to find a nearly optimal value of β. In our case, we just chose a value slightly smaller than
the value suggested so as to ensure large cluster sizes.

4.3 The shallow Potts Gibbs-network mixture model
Combining the shallow Gibbs networks introduced in Section 4.1 with the random-Potts partition model
described in the previous section we obtained the shallow Potts Gibbs-network mixture model. This

96 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

model will be referred to as Potts Gibbs-network for short, since “Potts” already conveys the idea of
mixture.

Keeping the notation introduced in the previous section, ρn denotes a partition of the data, ψσ =
(w, b,Σ) denotes the parameters of a shallow network, and (Ω,Γ,Λ, ν) denotes the parameters defining
the prior on ψσ. For a given partition ρn = (S1, . . . , Skn), the variables s1, . . . , sn will denote the cluster
membership of the data points. That is, si = ` if and only if xi ∈ S`, i = 1, . . . , n, ` = 1, . . . , kn. Note
that kn, the number of clusters or connected components of ρn, is a random variable. Proceeding as in
(Murua & Quintana, 2017c), we assume a hierarchical random partition model for the data

y1, ..., yn|xn, ρn, ψ∗σ1, ..., ψ
∗
σkn

ind∼ p(yi|xi, ψ∗σsi) (4.6)

ψ∗σ1, ..., ψ
∗
σkn

ind∼ p(ψσ|Ω,Γ,Λ, ν), and ρn|xn ∼ p(ρn|xn), (4.7)

where (ψ∗σ1, . . . , ψ
∗
σkn

) denote the unique values of (ψσ1, . . . , ψσn) given the kn-cluster partition ρn.
Thus, ψ∗σi are the parameters of the shallow Gibbs network associated with the i-th data cluster Si of ρn.
The notation ind∼ indicates that the variables are independent.

As suggested in (Murua & Quintana, 2017c, Section 2.2), avoiding reversible jumps moves (Green,
1995), and following Besag (2004), we can sample from the posterior of ψσ by MCMC using these two
moves:
(A) Sample a proposed partition ρ′n ∼ p(ρ′n|xn), and evaluate

α = p(yn|ρ′n,xn)/p(yn|ρn,xn); (4.8)

if α ≥ 1, accept the proposed partition; otherwise, accept the proposed partition with probability α.
(B) If the proposed partition is accepted, sample (and accept) a new set of parametersψ∗

′

σ = (ψ′σ1, . . . , ψ
′
σk′n

)
from the posterior given the partition p(ψσ|yn,xn, ρ′n), where ρ′n = (S ′1, . . . , S

′
k′n

). If the proposed
partition is not accepted, then keep the current partition ρn and the corresponding parameters ψ∗σ =
(ψσ1, . . . , ψσkn).

We will refer to the above steps as Besag’s algorithm. To use this scheme, we need to be able (i) to
sample from the posteriors p(ψσ|yn,xn, ρn), and (ii) to compute the ratio α. In general, the probabilities
p(yn|ρ′n,xn) are intractable. In fact, computing α is equivalent to computing Bayes factors. This
algorithm works exactly only for certain problems such as the multivariate multiple regression with
conjugate priors used in (Murua & Quintana, 2017c). In fact, if p(ψσ|yn,xn, ρn) is known, we can
compute the marginal probabilities using the identity

p(yn|ρn,xn) = p(yn|ψσ, ρn,x
n)p(ψσ|ρn)/p(ψσ|yn,xn, ρn). (4.9)

In our case, the posteriors p(ψσj|yn,xn, ρn) are proportional to

p(Tj|Sj, ψσj) p(wj, bj,Σj|Ω,Γ,Λ, ν) =
∏

xi∈Sj

p(yi|Sj, ψσj) p(wj, bj,Σj|Ω,Γ,Λ, ν),

where Tj = {yi : xi ∈ Sj}. The normalizing constants of these posteriors are not known because of
the non-linearity in the neural network likelihood p(yi|Sj, ψσj). To avoid integrating over the posterior
distribution so as to compute the normalizing constants, it is common to use Markov Chain Monte Carlo
(MCMC) methods (Neal, 1996; Rasmussen, 1995). Another line of research for posterior inference uses

4.4. BAYESIAN VARIATIONAL INFERENCE 97

stochastic gradient Markov Chain Monte Carlo (Chen et al., 2015a). However, one major drawback of
sampling, is that it is often very slow, especially for high-dimensional models (Robert & Casella, 2005).
Faster and easy to parallelize methods may be drawn from Bayesian variational inference algorithms.
These have been developed to be as flexible as MCMC (Zhai et al., 2012). Therefore, this is the route
we follow to overcome the computational burden of posterior and Bayes factors calculation.

4.4 Bayesian variational inference
In this section we explain how we find a Bayesian variational approximation of the posterior distri-
butions. We choose a family of distributions of the model parameters ψσ = (w, b,Σ) indexed by a
hyper-parameter λ, Q(ψσ;λ). The idea is to approximate the posterior of ψσ with its closest distribu-
tion from this family. This corresponds to an optimization over the hyper-parameter λ. In this section,
we suppose that we work with a given cluster S of the partition ρn, and its associated set of response
variables T . The core idea is to minimize over λ the Kullback-Leibler divergence (KL) between the
posterior and Q(ψσ;λ). That is, we need to minimize

KL(Q||p) =

∫
Q(ψσ;λ) log{Q(ψσ;λ)/p(ψσ|T, S, ρn)}.

The optimal value λopt gives rise to the approximating variational posterior distribution Q(ψσ;λopt).

Approximated Bayes factors and Besag’s algorithm. In practice, one obtains kn such variational
posteriors Q(ψσj;λj), j = 1, . . . , kn for a given partition ρn. These are the distributions that we use to
replaced the intractable posteriors p(ψσ|yn,xn, ρn) in:
(i) STEP B of Besag’s algorithm (see previous section) to sample the parameters ψσ; and
(ii) STEP A, to estimate the Bayes factor α. More specifically, let, respectively, ψ̂σ = (ψ̂σ1, . . . , ψ̂σkn)

and ψ̂
′
σ = (ψ̂′σ1, . . . , ψ̂σk′n) be the maximum a posteriori (MAP) estimators of ψσ and ψ′σ. We use the

estimate

α̂ =
p(yn|ψ̂′σ, ρ′n,xn)p(ψ̂

′
σ|ρ′n)

p(yn|ψ̂σ, ρn,x
n)p(ψ̂σ|ρn)

∏kn
j=1 Q(ψ̂σj|λj)∏k′n
j=1 Q(ψ̂′σ,j|λ′j)

.

The ELBO. Note that the optimal value is the solution of the optimization problem

λopt = arg min
λ

KL(Q(ψσ;λ)‖p(ψσ|T, S, ρn)
)

(4.10)

= arg min
λ

∫
Q(ψσ;λ) log

Q(ψσ;λ)

p(ψσ|ρn)p(T |ψσ, S, ρn)
dψσ

= arg max
λ

EQ(ψσ ;λ)

(
log p(T |ψσ, S, ρn)

)
−KL

(
Q(ψσ;λ)‖p(ψσ|ρn)

)
.

where the term to be maximized is known as the evidence lower bound or ELBO:

ELBO(λ) = EQ(ψσ ;λ)

(
log p(T |ψσ, S, ρn)

)
,−KL

(
Q(ψσ;λ)‖p(ψσ|ρn)

)
(4.11)

The negative of this quantity is also known as the description length cost, or the variational free energy
(see, for example, Friston et al. (2007)). The direct optimisation of this quantity instead of the Kullback-
Leibler divergence was introduced by Hinton & van Camp (1993) (see also, Graves (2011)). In general,

98 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

the ELBO cannot be computed exactly. The expectations are usually approximated through Monte Carlo
methods (Blundell et al., 2015).

Choice of variational family. If the likelihood p(T |ψσ, S, ρn) were linear in the weight and bias
parameters, the posterior of the parameters would be conjugate to the prior (Murua & Quintana, 2017c).
Inspired by this observation, we consider λ = (λw, λb, λσ) and the family of conjugate distributions to
the prior

Q(ψσ;λ) = Q(w;λw)Q(b;λb)Q(Σ;λσ).

More specifically, we suppose that Q(w;λw) is of the same form as the prior p(w|Ω). That is, Q(w;λw)
is a zero-mean Gaussian random field with covariance structure dictated by the Gibbs network induced
by Ω. Thus, if the Gibbs field given by the prior is a compound symmetry Gibbs network, then so
it is Q(w;λw), etc. Similarly, Q(b;λb) is a zero-mean Gaussian field with block diagonal covariance
λb = diag(λb1, λb2) just as Γ. Also, just as the prior, the variational posterior approximation Q(Σ;λσ)
is assumed to be an Inverse-Wishart(νσ,Λσ). With this family of distributions, the ELBO becomes

ELBO(λ) = EQ(ψσ ;λ)

(
log p(T |ψσ, S, ρn)

)
−KL

(
Q(w;λw)‖p(w|ρn)

)

−KL
(
Q(b;λb)‖p(b|ρn)

)
−KL

(
Q(Σ;λσ)‖p(Σ|ρn)

)
(4.12)

It is not difficult to show that the Kullback-Leibler divergences between the two sets of Gaussian distri-
butions are

KL
(
Q(w;λw)‖p(w|ρn)

)
=

1

2

{
trace

(
Ω−1λw

)
− (q + p)l1 + log

(
det(Ω)/ det(λw)

)}
,

KL
(
Q(b;λb)‖p(b|ρn)

)
=

1

2

{
trace

(
Γ−1λb

)
− (l1 + p) + log

(
det(Γ)/ det(λb)

)}
.

For the last divergence we have the following result.

Proposition 4.4.1
The Kullback-Leibler divergence KL

(
Q(Σ;λσ)‖p(Σ|ρn)

)
between the two inverse-Wisharts Q(Σ;λσ)

and p(Σ|ρn), is given by

ν

2
log

(
det(Λσ)

det(Λ)

)
+

νσ
2

trace
(
ΛΛ−1

σ

)
− (ν − νσ)

ψp(νσ/2)

2
− νσ

p

2
+ log

(
Γp(ν/2)

Γp(νσ/2)

)
, (4.13)

where Γp(·) stands for the p-multivariate gamma function, and ψp(·) denotes the derivative of the p-
multivariate gamma function (i.e., the multivariate digamma function).

4.4. BAYESIAN VARIATIONAL INFERENCE 99

Proof: By definition KL
(
Q(Σ;λσ)‖p(Σ|ρn)

)
is equal to

− (νσ + p+ 1)

2
EQ(Σ;λσ)

(
log det(X)

)
− 1

2
trace

(
ΛσEQ(Σ;λσ)(X

−1)
)

+
νσ
2

log det(Λσ)

− νσp

2
log(2)− log(Γp(νσ/2)

)
+

(ν + p+ 1)

2
EQ(Σ;λσ)

(
log det(X)

)

+
1

2
trace

(
ΛEQ(Σ;λσ)(X

−1)
)
− ν

2
log det(Λ) +

νp

2
log(2) + log

(
Γp(ν/2)

)

=
(ν − νσ)

2
EQ(Σ;λσ)

(
log det(X)

)
+

1

2
trace

(
[Λ− Λσ]EQ(Σ;λσ)(X

−1)
)

+
νσ
2

log det(Λσ)− ν

2
log det(Λ) + (ν − νσ)

p log(2)

2
+ log

(
Γp(ν/2)

Γp(νσ/2)

)
,

where X denotes a positive definite matrix. Note that when X ∼ Inverse-Wishart(νσ,Λσ), its inverse
X−1 ∼Wishart(νσ,Λ−1

σ). Therefore,

EQ(Σ;λσ)(X
−1) = νσΛ−1

σ , and (Bishop, 2006b, pp. 693)

EQ(Σ;λσ)

(
log det(X)

)
= −ψp

(
p/2
)
− p log(2)− log det(Λ−1

σ).

Putting all together, we obtain the desired result (4.13).

The optimal solution is found using the stochastic gradient ascent variational Bayes algorithm (Paisley
et al., 2012; Kucukelbir et al., 2014; Ye et al., 2020; Duchi et al., 2011). To obtain the gradient of
ELBO(λ), the gradients of the Kullback-Leibler divergence terms are needed. In practice, these deriva-
tives are usually computed through automatic differentiation. That is, calculating numerically the value
of the derivatives (e.g., using Chebyshev polynomial approximation (Press et al., 1996, Ch. 5.7)). These
methods achieve very good accuracies (Bartholomew-Biggs et al., 2000).

The integrated log-likelihood, the first term in (4.12), is intractable. We use Monte Carlo sampling to
estimate it. However, we only need to estimate the score (Kingma et al., 2015; Mohamed et al., 2019),

∂

∂λ

(
EQ(ψσ ;λ)

(
log p(T |ψσ, S, ρn)

))
= EQ(ψσ ;λ)

(
log p(T |ψσ, S, ρn)

∂Q(ψσ;λ)

∂λ

)
.

The integral in the right-hand-side of the above equation is estimated by Monte Carlo sampling of ψσ
from Q(ψσ;λ), which is a multivariate Gaussian-inverse-Wishart distribution.

4.4.1 Regularization on the CS-Gibbs model
For the compound symmetry Gibbs network model described at the end of in Section 4.1.2, the off-
diagonal block Ω12 = U ⊗ V , for U ∈ Ml1×p, and V ∈ Mq×l1 . These matrices are unconstrained. For
the variational approximation, we suppose that the corresponding block of the precision matrix has the
same structure. Let U12 ∈ Ml1×p, and V12 ∈ Mq×l1 be the corresponding matrices in the variational
approximation.

Note that the our prior for the weights correspond to a Gaussian graphical model (Giudici & Green,
1999; Rajaratnam et al., 2008). The usual procedure to find sparse covariance models for Gaussian
random fields is the so-called graphical lasso (Friedman et al., 2008). This method is a penalized

100 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

log-likelihood in which the size of the entries of Ω are penalized, so as to render this matrix sparse.
Translating this method to our already sparse model leads to the penalization of the L1-norm of the
matrices U12 and V12. That is, we consider the maximization of the penalized log-likelihood

log p(T |ψσ, S, ρn)− βu‖U12‖1 − βv‖V12‖1,

where βu and βv are the regularization constants. Introducing the variational approximation, we have

EQ(ψσ ;λ)

(
log p(T |ψσ, S, ρn)− βu‖U12‖1 − βv‖V12‖1

)

= ELBO(λ) + KL (Q (ψσ;λ) ‖p (ψσ | T, S, ρn))− βu‖U12‖1 − βv‖V12‖1.

Because KL (Q (ψσ;λ) ‖p (ψσ | T, S, ρn)) ≥ 0, we have

ELBO(λ)− βu‖U12‖1 − βv‖V12‖1 ≤ EQ(ψσ ;λ)

(
log p(T‖ψσ, S, ρn)

)
− βu‖U12‖1 − βv‖V12‖1,

and we can think of the right-hand-side of this expression as a lower bound for the expected graphical-
lasso log-likelihood function. The goal is then to solve the maximizition problem

λ∗ = arg max
λ

{
ELBO(λ)− βu‖U12‖1 − βv‖V12‖1.

}

This result may also be embedded in a special case of sparse variational inference (Campbell & Beronov,
2019) or Generalized ELBO with Constrained Optimization (Rezende & Viola, 2018), where we build a
regularized framework for our compound symmetry Gibbs network in other to set sparsity constraints.

The optimization problem is not straightforward to solve. First, the L1-norm is non differentiable. And
more importantly, the solution for the covariance matrix must still be a positive definite matrix. There
are several algorithms designed specially to solve the usual graphical lasso model (Mazumder & Hastie,
2015). But, they are not directly applicable to our model. We have addressed these two issues. In this
section, we only explain how we have modified the maximization problem for this special case of our
model. The problem dealing with the positive-definiteness of the matrix applies to all our models. It is
addressed in the next section.

To deal with the non-differentiability of the L1 norm, we have implemented two modifications to the
original problem. The first one consists of replacing the absolute values of the elements of the two
matrices |u| by a smooth version of them. These are given by a smooth approximation (Schmidt et al.,
2007) of the absolute value |u|α= (1/α){log(1 + exp(−αu)) + log(1 + exp(αu))}, for a given constant
α. It can be easily seen that as the value of α increases |u|α approaches |u|. In fact, Schmidt et al.
(2007) show that | |u|−|u|α |≤ 2 log(2)

α
. Therefore, the constant α must be fixed to a large enough value

(a value of about 106 is large enough as suggested in (Schmidt et al., 2007), but smaller values also give
good approximations). Our second modification is to replace the L1-norm by the Frobenius (that is,
Euclidean) norm ‖·‖ of the matrices U12 and V12. This modification can be thought of as a group-lasso
version of the graphical lasso. Unfortunately, the Frobenius norm is also non-differentiable. Instead, we
consider the squared of the Frobenius norm, which is a smooth function. In particular, it is easily seen
that its derivative is given by∇‖U‖2

F = ∂
∂U

trace
(
UTU

)
= 2U.

The parameters βu and βv must be chosen adequately. We perform K-fold cross-validation to establish
appropriate values for them. We stress that this is done during the fitting (training) stage of the model
for each cluster of the partitions ρn. Because it is not possible to do cross-validation over the entire

4.4. BAYESIAN VARIATIONAL INFERENCE 101

space of possible values, we set a sequence of possible values for β = (βu, βv). Let {β(m) : m =
1, . . . ,M} be this sequence. The procedure is as follows: Divide the training data (T, S) into K disjoint
approximately equal size subsets D`, ` = 1, . . . , K. For each m ∈ {1, . . . ,M}, and ` ∈ {1, . . . , K},
set D−` = ∪j 6=`Dj , and fit the model with the data in D−` and parameters β(m). Let {ŷ(`,m)

i : yi ∈ T}
be the adjusted values of the model. Compute CV(β(m)) =

∑K
`=1

∑
yi∈D`‖yi − ŷ

(`,m)
i ‖2. Let β̂ ∈

{β(m) : m = 1, . . . ,M} be the parameter values that minimizes CV(β(m)). Fit the model with all
data (T, S) and parameters β̂. In our implementation we have use M ≥ 100. The β values of the
sequence were chosen automatically by the two-dimensional Golden-Section Search (GSS) algorithm
(Chang, 2009). To initialize the search, several random values for each component of the vector β were
drawn. Each draw is a value chosen uniformly at random from one of the intervals in the collection
{
[
ε + 100`, ε + 100(` + 1)

]
: ` = 0, 1, . . . , `max}, where, in practice, `max ≤ 100, and ε ≤ 1/10000.

For each draw, the interval was also chosen uniformly at random. Technically, the GSS is based on the
fact that the minimum lies within the interval defined by the two points adjacent to the last observed
value. The method operates by successively narrowing the range of values on the specified search space,
which makes it relatively slow, but very robust. It finds the best extrema (βoptu , βoptv) after going through
all the regions. GSS presents an oracle complexity which converges to an ε-accurate solution at a linear
rate, also known as geometric or exponential convergence in the numerical literature (Bertolazzi, 2008;
Sebastien, 2013). In fact, GSS makesO(log(1/ε)) calls to an Oracle Query Optimizer (Wijesiriwardana
& Firdhous, 2019) to compute the optimum.

4.4.2 Keeping positive definiteness on the precision Matrix
Let λw be the precision matrix associated with the variational density approximation to the posterior
of the weight parameters w. The gradient of the ELBO with respect to the variational precision matrix
λw, denoted ∇ELBO(λw), is computed component-wise or block-wise in all sparse structures. For
example, in the Sparse-Gibbs network where the precison matrix λw has the form given by (4.4), we
compute each gradient∇ELBO(Vi•),∇ELBO(V•j), and∇ELBO(Vii) separately in order to build the
full update of λw. The same differentiation principle is applied for the sparse compound symmetry
Gibbs model (sparse-CS-Gibbs network) where we constrain U1, U2, V1•, and V•1 to have compound
symmetry.

One of the issues that arised on the estimation of λw is how to ensure in practice that the matrix is kept
positive definite during the gradient updates. Contrary to graphical lasso (Mazumder & Hastie, 2015),
the positive definiteness property can be lost. There is no known algorithm that can ensure this property
for our models while optimizing the matrix. To find a very good or optimal solution might require heavy
exploration of the matrix space at each gradient update. Hence, it might be impractical to optimize the
ELBO over λw with simultaneous constraints on both the sparse structure, and the positive definiteness
property. Given the complexity of the model, and from a statistical viewpoint, it might be sufficient to
obtain an approximate solution for λw that is both sparse as imposed, and positive definite. Therefore,
betting on this observation, we based our matrix updates on the search for the nearest positive definite
matrix (Higham, 1988). An simple procedure to find the nearest positive definite matrix λ̂w, where
proximity is measure by the Frobenius norm, is based on the spectral decomposition of the matrix
(Jewbali & Ore, 2009). We first determine the spectral decomposition of λw = QDQT , where Q is
an unitary matrix, and D is a diagonal matrix with the eigenvalues of λw. An estimate of the nearest-
positive definite matrix to λw is given by λ̌w = QĎQT , where Ď is the diagonal matrixD modified with
all negative eigenvalues set to a small positive constant. However, λ̌w might not be the nearest positive

102 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

definite matrix. The optimal small constant needs to be searched. One algorithm that does this search
is the Iterative Spectral Method (Marée, 2012). Unfortunately, this and variants of this algorithm are
costly, taking order O(d3) operations for a d× d matrix.

Two practical ways to verify if the above approximation is necessary, are, first to try a Cholesky decom-
position of λw after each update, or to apply the well-known Sylvester’s criterion (Gilbert, 1991) to each
update. The latter verifies if all leading principal minors of λw are positive. This criterion is doubly use-
full, since it also helps to build the nearest symmetric positive definite matrix, with the imposed model
structure. The minors can be used for non-positive definiteness correction. In fact, the kth principal
minor is computed based on the (k − 1)th principal minor augmented with the corresponding reduced
kth column and row. If the (k − 1)th principal minor is positive, and the kth principal minor is not,
then one can make this latter positive with some slight modifications to the kth column and/or row. This
can be done sequentially until all principal minors has been computed. However, one drawback of this
method, besides its computational cost, is that it does not always guarantee to get the nearest positive
definite matrix in terms of the Frobenius norm.

In our implementation, we use the nearest Positive Definite Matrix computation, which is mathemat-
ically equivalent to the gradient projection method known as Projected gradient updates (Cruz et al.,
2011; Hassani et al., 2017). The combination of the gradient updates and the projection into the nearest
positive definite matrix space is called Iterative projected gradient (IPG). This iterates between cal-
culating the gradient and calculating the projection into the positive definite matrix space S+ . More
explicitly, at iteration k, the IPG computes

λ(k)
w = PS+

(
λ(k−1)
w + αk∇ELBO

(
λ(k−1)
w

))
(4.14)

where, αk is the step size, and PS+ denotes the Euclidean projection into the positive definite matrix
space, that is,

PS+(λw) = argminA∈S+ ‖A− λw‖F

where, ‖ · ‖F stands for the Frobenius norm. To compute PS+(λw), we have applied an approximation
by matrices positive semi-definite on the subspace S+ as detailed in (Hayden & Wells, 1988). From
properties of the Frobenius norm, we have that:

‖A− λw‖2
F = ‖B − A+ C‖2

F = ‖B − λw‖2
F + ‖C‖2

F

with :

B =
λw + λw

T

2
and C =

λw − λwT
2

Thus we minimize ‖A− λw‖F by minimizing ‖B−A‖F . Now, our approximation in the subspace S+,
goes as it follows:

• Take A ←− B = λw+λw
T

2
. This is a transformation technique to force A to have the same

properties as the symmetric matrix B.

• Compute the spectrale decomposition of A, let say A = UΛUT where U is orthogonal and Λ =
diag [λ1, λ2, . . . , λn] . Then the unique best approximation A+ to A is given by:

A+ = UΛ+U
T

4.5. PREDICTIVE POSTERIOR 103

where Λ+ is obtained from Λ by replacing each negative eigenvalue by a number a > 0. We
denote the new matrix as A(a). So if there are no negative eigenvalues, A is taken as our approx-
imation.

• If A as negative eigenvalues, we generate multiple values4 of a, to find aopt, the optimal value of
a.

PS+(λw) = argminA∈S+ ‖A− λw‖F = A(aopt)

However, we have also found that this projection was not robust. Our algorithm has then been re-
inforced with the mbend package from Nilforooshan (2020), which increase robustness by adding a
weight matrix to A+ (Jorjani et al., 2003), or by replacing each of the m negative eigenvalues (λi) with
ρ (s− λi)2 / (100s2 + 1) , where ρ is the smallest positive eigenvalue and s = 2

∑m
i=1 λi. This is called

methode LRS14 in their R package Nilforooshan & Nilforooshan (2020). To obtain the (ultimate) best
solution PS+(λw), those procedures are repeated until convergence is reached.

4.5 Predictive Posterior
In this section we describe how we estimate the predictive posterior distribution. That is, the estimation
of p(y(n+1)|x(n+1),yn,xn) for a new data item x(n+1), which is the goal of our Potts Gibbs-network.
Since the mixture is over all possible partitions ρn+1 of the data xn ∪ {x(n+1)}, we have

p(y(n+1)|x(n+1),yn,xn) =
∑

ρn+1

p(y(n+1)|x(n+1),yn,xn, ρn+1)p(ρn+1|x(n+1),yn,xn).

As in (Murua & Quintana, 2017c), we consider the collection A(ρn+1) of all partitions ρn of xn giving
rise to the partition ρn+1 of xn ∪ {x(n+1)} by generating appropriate bonds bn+1 in the extended graph
with vertices xn and x(n+1). The extended graph includes all edges of the the original graph plus the
edges added to link the new data point. (e.g., if the graph is a k-nearest-neighbors graph, then all edges
between x(n+1) and its k nearest neighbors are added). Elements in the collection A(ρn+1) will be
denoted as [ρn, bn+1] to make clear that ρn+1 can be generated from ρn and the bonds bn+1. Then, we
can write

p(ρn+1|x(n+1),yn,xn) =
∑

[ρn,bn+1]

p(ρn|yn,xn)p(bn+1|ρn, x(n+1),xn).

Therefore, the predictive posterior p(y(n+1)|x(n+1),yn,xn) is the mixture:

∑

[ρn,bn+1]

p(y(n+1)|x(n+1),yn,xn, [ρn, bn+1])p(ρn|yn,xn)p(bn+1|ρn, x(n+1),xn). (4.15)

This expression is intractable since the number of possible partitions of xn is the well-known Bell
number Bn. Fortunately, having sampled partitions and parameters from the posterior of ρn and ψσ, we
can use these samples to estimate the predictive posterior as follows. Let {(ρn,`,ψσ,`) : ` = 1, ...,M} be

4In Python, it is implemented in Scipy library as the Golden Section Search technique.

104 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

a sample from the posterior distribution. Also, let {bn+1,` : ` = 1, ...,M} be a sample of bonds linking
the sampled partitions ρn to x(n+1). The estimate is

p̂(y(n+1)|x(n+1),yn,xn) =
1

M

M∑

`=1

p(y(n+1)|x(n+1),yn,xn, [ρn,`, bn+1,`]). (4.16)

The terms in the sum are

p(y(n+1)|x(n+1),yn,xn, [ρn, bn+1]) =
p(y(n+1),yn|x(n+1),xn, [ρn, bn+1])

p(yn|x(n+1),xn, [ρn, bn+1])
(4.17)

=
p(y(n+1),yn|x(n+1),xn, [ρn, bn+1])∫
t
p(t,yn|x(n+1),xn, [ρn, bn+1]) dt

. (4.18)

Let ̄ be the cluster in which x(n+1) falls in the partition ρn+1, and suppose that this cluster is S̄ =
S̄ ∪ {x(n+1)}, with S̄ ⊂ ρn. Let T̄ = T̄ ∪ {y(n+1)}. Note that

p(y(n+1),yn|x(n+1),xn, [ρn, bn+1]) = p(T̄ |S̄, ρn+1)
∏

j 6=̄

p(Tj|Sj, ρn),

and similarly
∫

t

p(t,yn|x(n+1),xn, [ρn, bn+1]) =

(∫

t

p({T̄ ∪ {t}|S̄, ρn+1) dt

)(∏

j 6=̄

p(Tj|Sj, ρn)

)
.

Hence all the terms cancel in (4.17) except for the term associated with x(n+1). Therefore

p(y(n+1)|x(n+1),yn,xn, [ρn,j, bn+1,j]) =
p(T̄ |S̄, ρn+1)∫

t
p({T̄ ∪ {t}|S̄, ρn+1) dt

.

Using any value of ψσ̄ in expression (4.9), we get

p̂(y(n+1)|x(n+1),yn,xn, [ρn, bn+1]) ≈ p(T̄ |ψσ̄, S̄, ρn+1)p(ψσ̄|ρn+1)

p(ψσ̄|T̄ , S̄, ρn+1)
∫
t

p(T̄∪{t}|ψσ̄,S̄,ρn+1)p(ψσ̄|ρn+1)

p(ψσ̄|T̄∪{t},S̄,ρn+1)
dt

=
p(T̄ |ψσ̄, S̄, ρn+1)

p(ψσ̄|T̄ , S̄, ρn+1)
∫
t

p(T̄∪{t}|ψσ̄,S̄,ρn+1)

p(ψσ̄|T̄∪{t},S̄,ρn+1)
dt
.

Remark
In particular,

p̂(y(n+1)|x(n+1),yn,xn, [ρn, bn+1]) = Ep(ψσ̄|T̄ ,S̄,ρn+1)

{
p(T̄ |ψσ̄, S̄, ρn+1)p(ψσ̄|ρn+1)

p(ψσ̄|T̄ , S̄, ρn+1)

}
×

(∫

t

Ep(ψσ̄|T̄ ,S̄,ρn+1)

[
p(T̄ ∪ {t}|ψσ̄, S̄, ρn+1)p(ψσ̄|ρn+1)

p(ψσ̄|T̄ ∪ {t}, S̄, ρn+1)
dt

])−1

.

In practice, we suppose that we can approximate p(ψσ̄|T̄∪{t}, S̄, ρn+1) by p(ψσ,̄|T̄, S̄, ρn), and that,
in turn, this last posterior is well approximated by the variational posterior approximation Q(ψσ̄;λ̄).

4.5. PREDICTIVE POSTERIOR 105

Then each one of the expectations can be approximated by Monte Carlo, using our samples {ψσ̄`,`}M`=1

from the variational posterior, where ̄` denotes the cluster in ρn+1,` in which x(n+1) falls, ` = 1, . . . ,M .
This yields

p̂(y(n+1)|x(n+1),yn,xn, [ρn, bn+1]) =

(M∑

`=1

p(T̄`|ψσ̄`,`, S̄`, ρn+1,`)p(ψσ̄`,`|ρn+1,`)

Q(ψσ̄`,`;λ̄`,`)

)
×

(∫

t

[M∑

`=1

p(T̄` ∪ {t}|ψσ̄`,`, S̄`, ρn+1,`)p(ψσ̄`,`|ρn+1,`)

Q(ψσ̄`,`;λ̄`,`)
dt

])−1

,

with S̄` = S̄`,`∪{x(n+1)}, and T̄` = T̄`,`∪{y(n+1)}. The integral over t, which is a univariate integral,
may be computed numerically, for example, using Romberg’s algorithm (Li & Hu, 2017).

In particular, the value of the prediction E(y|x(n+1),yn,xn) may be estimated by the quantity:

1

M

M∑

`=1

E(y|ψσ̄` , x(n+1)) =
1

M

M∑

`=1

[
b

(2)
` +W

(2)
` g1

(
b

(1)
` +W

(1)
` x(n+1)

)]
.

The Shallow Potts as Random Gibbs Network Forest. There is an intuitive mathematical equiv-
alence between Random Forest and the Shallow Gibbs. Random Forest is an ensemble learning : a
machine learning method that combines many simple learners – base models– to construct an optimized
predictive model (powerful model).

Random-forest does both row sampling and column sampling with Decision tree as a base learner (Liu
et al. (2012); Ali et al. (2012); Rigatti (2017); Liu (2014); Schonlau & Zou (2020); Probst et al. (2019);
Svetnik et al. (2003)). Analogically, the Shallow Gibbs does random clusters and rather than column
sampling, it projects the data x into a fewer dimensional space on the shallow layer (one hidden layer
with very few reduced number of neurons).

The variance will decrease in Random Forests, as you increase the number of base learners τ .
When you reduce τ , there is a rise in variance. For the whole process, however, bias remains
unchanged. It is commonly said: Random forest= Decision Trees (as a base learner)+ bagging
(Row sampling with replacement)+ feature bagging (column sampling) + aggregation (mean/me-
dian, majority vote) [Skurichina & Duin (2001); Munson & Caruana (2009); Biau & Devroye
(2010); Sutton et al. (2005); Strobl et al. (2009); Kotsiantis (2011); Panov & Džeroski (2007)].
In the Shallow Potts, when you increase the number of base learners (the number neurons one
the hidden layer), the train and test errors increase. To reduce the erros in Shallow Gibbs, we
double backpropagate it accross the hyper-parameters and parameters of the model [See 4.5.1],
it becomes then powerful as the Nk Multilayer feedforward neural network, described in section
3.10.

The Shallow Potts as a Mixture Model (As a reminder of some practical computations) Com-
puting expectation E(y(n+1)|x(n+1),yn,xn) in a proper way would require an exact probability for each
partition in 4.15. The value of the prediction E(y(n+1)|x(n+1),yn,xn) need to adjusted with an estimate
of p(ρn|yn,xn)p(bn+1|ρn, x(n+1),xn) : it simply means that each partition has a probability that need

106 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

to be taken into account in the final estimation, plus an estimation of the conditional probability of the
new bonds (bn+1). To solve this problem, we have approximated p̂(ρn|yn,xn) ≈ 1/M , and have intro-
duced a smoothing parameter 0 ≤ δ ≤ 1 (δ = p̂(bn+1|ρn, x(n+1),xn)) that will represent an estimate of
this probability. This is not the optimal way, in a sense that p̂(bn+1|ρn, x(n+1),xn) is different from a
partition to another one. But, il will help out to transform the final prediction to:

ŷ ≈ δ

M
E(y(n+1)|, x(n+1),yn,xn)

where M is the number of partitions generated during the training step.

4.5.1 On Double backpropagation
Double backpropagation has various used cases. Under the name double backpropagation, the concept
of penalizing the output gradient with respect to the input was introduced (Ross & Doshi-Velez, 2018),
and later used to locate large connected areas of the error function called flat minima. The ultimate
aim was the development of their models generalization, which is our goal here. It has effectively
improved generalization performance [Drucker & Le Cun (1992), Drucker & Le Cun (1991)], and has
also been applied to other adversarial models ((Seck et al., 2019), (Sun et al., 2020)), in character
recognition (Kamruzzaman & Syed (1998), Kamruzzaman et al. (1997)), in robustness and saliency
map interpretability (Etmann, 2019). We present in the following line our novel double backpropagation
scheme (DBS).

Our Proposed Double backpropagation scheme Similarly to our Iterative projected gradient (IPG)
applied to our model variational parameter λw, we found that the Mean Squared Error (MSE) of our
regression model can also be back-propagated [section 3.5] w.r.t to each of the model parameter, i.e ψ =
(b(1),W (1), b(2),W (2)), the main parameters of the network, with b(1) ∈ Rl1 , W (1) ∈ Mq×l1 , b(2) ∈ Rp,
and W (2) ∈ Ml1×p, l0 = q, l2 = p, Σ ∈ Mp×p being the variance-covariance matrix of y. First, we know
that y|x, ψ,Σ is distributed as a multivariate normal distribution with mean f(x) = fψ(x) = E(y|x, ψ),
and variance Σ. That is, p(y|x, ψ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1/2(y − fψ(x))′Σ−1(y − fψ(x))}. Then,
by applying the sampling method described in the Cholesky decomposition section 1.2.1, we have :

ŷest = fψ(x) + L · u = [b(2) + g1(b(1) + xW (1))W (2)] + L · u (4.19)

such that L ∈ Md(R) is a lower triangular matrix such that Σ = LLT , and u ∼ N(0, I). The double
backpropagation scheme for the Shallow Gibbs – which is another main contribution of this research
– goes as follows:

1. Using the IPG (in 4.14), apply backpropagation method on hyper-parameter λw to reduce its
Kullback-Leibler (KL) estimation error. Once done, generate an estimate ψ̂0 ofψ = (b(1),W (1), b(2),W (2)),
using Monte Carlo sampling method from the variational distribution of the parameters.

2. Use equation 4.19 to backpropagate the MSE(yi − ŷi) = ‖yi − ŷest,i‖2 to update ψ̂0 in the Potts
cluster and per observation as follows:

ψ̂1,i ←− ψ̂0 − εψ,0
∂MSE(yi − ŷest,i)

∂ψ
(4.20)

4.6. EXPERIMENTAL EVALUATION 107

ψ̂t,i ←− ψ̂t−1,i − εψ,t−1
∂MSE(yi − ŷest,i)

∂ψ
(4.21)

where εψ,t is the learning rate schedule [See 3.6.2] for this gradient update of ψ at step t, and ψ̂t,i

is the value of ψ at iteration t for observation i. Equivalently, for the i-th data xi in the training
data, it corresponds to the changes:

b
(1)
i,t = b

(1)
i,t−1 − εb(1)

i,t−1
· 2I il1×l1g

′

1(b
(1)
i,t−1 + xiW

(1)
i,t−1)W

(2)
i,t−1?[fψi,t−1

(xi)− yi]T

b
(2)
i,t = b

(2)
i,t−1 − εb(2)

i,t−1
· 2I ip×p[fψi,t−1

(xi)− yi]T (4.22)

W
(1)
i,t = W

(1)
i,t−1 − εW (1)

i,t−1
· 2xTi [g

′

1(b
(1)
i,t−1 + xiW

(1)
i,t−1)]W

(2)
i,t−1[fψi,t−1

(xi)− yi]T (4.23)

W
(2)
i,t = W

(2)
i,t−1 − εW (2)

i,t−1
· 2[g1(b

(1)
i,t−1 + xiW

(1)
i,t−1)]T [fψi,t−1

(xi)− yi]T (4.24)

Σi,t = Σi,t−1 − εΣi,t−1
· 2[(LT + L)−1ui,t][fψi,t−1

(xi)− yi]T (4.25)

ŷest,(i,t) = fψi,t(x) + Li,t · ui,t = [b
(2)
i,t + g1(b

(1)
i,t + xW

(1)
i,t)W

(2)
i,t] + Li,t · ui,t (4.26)

where [z]T means the translate of z, g′1 the derivative of g1, ψi,t = (W
(1)
i,t ,W

(2)
i,t , b

(1)
i,t , b

(2)
i,t ,Σi,t) rep-

resent the change forψ for the i−th training observation at step t; εψi,t = (ε
W

(1)
i,t
, ε
W

(2)
i,t
, ε
b
(1)
i,t
, ε
b
(2)
i,t
, εΣi,t)

is the learning rate of those gradients updates; Li,t the Choleski factor at step t from Σi,t; and fi-
nally ui,t ∼ N(0, I). The changes for the i−th data in the testing set, is the change of its nearest
neighbor in the current cluster w.r.t to the Euclidean distance 5.

The product symbol ? means that the vector [fψi,t−1
(xi)− yi]T will multiply each line of the final com-

putation on his left. We will be calling the optimization scheme above as the Double Backpropagation
Scheme – DBS optimizer. The DBD is an universal Bayesian neural network optimizer: given an ini-
tial ψi,0) = (W

(1)
i,0 ,W

(2)
i,0 , b

(1)
i,0 , b

(2)
i,0 ,Σi,0), and ŷest,(i,0), it can make ŷest,(i,t) converge to the right response

value yi with appropriate learning rate schedule. To find this appropriate learning schedule is an open
work, and one can look for its convergence properties using the stochastic gradient learning convergence
theorems, to show how ŷest,(i,t) converges, and his speed of convergence. We present a Generalized DBS
in our concluding remarks in the last chapter.

4.6 Experimental evaluation
In this section, we study the performance of the Potts Gibbs-network mixture model, Potts-Gibbs-NM
for short, on real datasets. As a baseline, we compare the performance of Potts-Gibbs-NM with that of
the classical feed-forward neural network, and to the multi-layer multi-target regression (MMR) model
of Zhen et al. (2017). The performance of the models is measured on datasets from the Mulan Project
(Tsoumakas et al., 2011).

5We have updated this choice during our experiments.

108 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

As described above, there are four variants of the Potss-Gibbs-NM model: the fully-connected Gibbs
network or full Gibbs network (Full-Gibbs, for short), the between-layer sparse Gibbs network (B-
Sparse-Gibbs), the sparse shallow Gibbs network (Sparse-Gibbs), the sparse compound symmetry Gibbs
network (CS-Sparse-Gibbs), and the compound symmetry Gibbs network (CS-Gibbs). The activation
function used for all the neural networks in this study is a smooth version of the Rectified Linear Unit or
ReLU, namely, log(exp(x) + 1) ≈ max{0, x} (Lee et al., 2019). All the code used in the experiments
can be downloaded from the first author’s github site (Alahassa, 2020).

To appreciate how we tweak each of our model, you need to pay attention on at least 13 important
factors:

• NumberPartitions (NP): an integer for the number of Potts model partitions generated;

• Minimum Potts Cluster Size (MPCS): an integer for the minimum size of each cluster in all
partitions generated;

• NHLayer (NH): an integer for the number of neurons on the hidden layer (l1);

• epoch times (ET): an integer for the number of epochs training times;

• learning rate (LR): an integer for the learning rate of parameters

• Number EpLogLike (NE): Number of times we simulate λw to estimate the Expected-loglikelihood
Score inside the KL to optimize.

• batch psize (BS): an integer for the proportion of batch training data;

• Simulate W b Pred (SWbP): After estimation of variational λw, Number of times We simulate W
and b from to get a sample of (W,b) ready to be used for sampling the predicted test data from the
model.

• Pred Simulate Ytest (PSY): Number of times we simulate Ytest given [each] W and b from our
previous sample of (W, b). It means, for each W,b, we sample ”Pred Simulate Ytest” times the
Ytest predicted response data from the model.

• Simulate Proba Partition (SPP): After estimation of variational λw, Number of times We simulate
W and b from to get a sample of (W, b) ready to be used to estimate the probability of acceptation
each partition from the model.

• The smooth δ applied to smooth slightly every prediction [see 4.5]

• The number of times we backpropagate for the updates ψi,t = (W
(1)
i,t ,W

(2)
i,t , b

(1)
i,t , b

(2)
i,t ,Σi,t) for all

the model parameters [see 4.5.1].

• All the DBS parameters (learning rate, number of DBS updates).

The experiments were performed on 5 multivariate multiple regression datasets (Slump, EDM, Jura,
Water Quality, and SCPF) taken from the multiple-output benchmark datasets available in the Mulan
project website (Tsoumakas et al., 2020). The datasets are shown in Table 2.1.

4.6. EXPERIMENTAL EVALUATION 109

Evaluation metrics. To directly benchmark with state-of-the-art algorithms, we measure the perfor-
mance of our Potts neural Gibbs networks with the Mean Squared Error (MSE), and the commonly-used
Relative Root Mean Squared Error (RRMSE)

RRMSE =

√√√√
∑

(xi,yi)∈D(ŷi − yi)2

∑
(xi,yi)∈D(Ŷ − yi)2

where (xi, yi), the i-th sample in the testing-set D, is composed of features xi and ground truth yi; ŷi
is the model prediction of yi; and Ŷ is the average of the adjusted values ŷ over the training-set. We
take the average RRMSE across all the response dimensions (target variables) within the testing-set
Dtest. A lower aRRMSE indicates better performance. The MMR model has already substantially
outperformed the best results from state-of-the-art algorithms on most of these eleven datasets. But, one
counterfactual thing we have noticed is that the Relative Root Mean Squared Error (RRMSE) is not a
measure of goodness of fit.

THE SIZES OF THE TESTING DATA IS 20% OF THE WHOLE DATASET EACH TIME.

The Shallow Gibbs Model is also comparable in section 3.10.

4.6.1 The Results
The MMR Relative Root Mean Squared Error (RRMSE) is beatable, but RRMSE is still not the
best... Table 4.1 displays our multi-target prediction performance results on the 3 datasets from the
Mulan project (Slump, EDM and SCPF). In the last column of the table you can compare our results
with the multi-layer multi-target regression (MMR) RRMSE of Zhen et al. (2017). As you can see,
when running the B-Sparse Gibbs model on Slump dataset, we have achieved a better RRMSE of 45.64
in comparison to the MMR model (58.70). This is true for the SCPF dataset, with a better RRMSE of
48.07 in comparison to the MMR model (81.20). Our goal with table 4.1 is to exhibit some datasets
for which the RRMSE was low in comparison to the MMR model, but the MSE for the test data was
not attractive in comparison to table 3.4. In other words, we have achieved better Relative Root Mean
Squared Error predictions, but the Mean Squared Error of our predictions need more work or fine tuning
to be competitive.

Table 4.1: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks

Shallow Gibbs settings Measure of good fit S-Gibbs MMR
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE RRMSE

Train Test - -
Slump (FG) 1 1 10e(−3) 5 0.8 5 5 5 1433.99 482.73 45.64 58.70

EDM 1 1 10e(−4) 5 0.8 5 5 5 7.24 1.27 87.93 71.6
SCPF (BG) 1 1 10e(−4) 5 0.8 5 5 5 470.14 147.33 48.07 81.20
*We have generated 5 Potts partitions with a shrinkage constraint of 5 for each of the dataset, RMSE=Root

Mean Squared Error, RRMSE=Relative Root Mean Squared Error, FG= Full Gibbs, BG = B-Sparse Gibbs, No
DBS optimization and no δ-smoothing is applied to the data

110 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

A broad view of the Model in terms of Mean Squared Error. We have performed many experiments
before adapting and fixing our model parameters and hyper-parameters initialization included. You
can check for some tables in appendix chapter [A] for some other results that may bring information
about how the model behaves. As a reminder, our goal is to keep the model as simple as possible
and propose an efficient estimation that can compete the Classical Nk Hidden Layer Multifeedforward
Model in [3.10], which has much more parameters, up to 100 per layer sometimes. The proposed Potts-
Gibbs-NM models has not achieved attractive Mean Squared Error compare to the Nk Hidden Layer
Multi-feedforward until we have added the DBS optimizer [See 4.6.2].

Some Comments about the model structures. We have designed the sparse and B-sparse Gibbs
network for training with a small number of observations. As a side-effect, our sparse networks are also
computationally fast to train. In fact, we observed in practice that in general, and in a relative comparison
to the fully-connected Gibbs network (given the machine used), the sparse network structures speed up
training to 2.5x≥ (for sparse-Gibbs) and 1.5x≥ (for B-sparse-Gibbs), all while doing a single training
(epochs) at a time, specially for Slump dataset [see 4.3, 4.6, 4.4].

When we look at the sparse network structures, we also observe that the gradients oscillate or vanish
less than in the fully-connected and compound symmetry Gibbs Networks. Moreover, we can argue
(generally saying) that the sparse structured networks is the most effective at reducing the RRMSE
than the fully-connected Gibbs Network, more effective than the compound symmetry Gibbs Network
variants [4.3, 4.6, 4.4]. Of course, it depends on the dataset, and this finding is not consistent. However,
it is impressive that sparse models can match and beat the performance of more dense networks with
fewer weight parameters. Probably, one of the reasons for this behavior is that sparse neural network
models are known to capture features useful to uncover broader and more general aspects of the data,
resulting in better (learning) prediction (Liu, 2020). As many other works have shown (Srinivas et al.,
2017), our work shows that sparse learning in a very complex structures is possible.

The compound symmetry structure imposed on the precision matrix Ω is conceived so as to simplify
the model in terms of parsimony. As opposed to the fully-connected Gibbs network for which the
unstructured precision matrix specifies no patterns in the weight spatial connection (that is, the precision
matrix is completely general), the compound symmetry structure specifies that weights on the same
layer have homogeneous (or nearly equal) covariances, and homogeneous (or nearly equal) variances.
In practice, this saves a lot in terms of number of parameters, leading to training times up to more faster
than the fully-connected network in some cases. Obviously, these results cannot be over-generalized too.
There is an open door for research about conceiving a good Bayesian tests (Mulder & Fox, 2013), or
other model selection mechanisms, to choose the best suitable model among the shallow Gibbs networks
for a given dataset.

4.6. EXPERIMENTAL EVALUATION 111

Table 4.2: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks: Sparse-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−3) 5 0.8 5 5 5 67.36 67.36 99.34 116.12
Jura 1 3 10e(−3) 2 0.3 5 5 5 32.94 35.99 100.0 1385.67

SCPF 1 1 10e(−4) 5 0.8 5 5 5 111.82 41.30 116.57 633.94
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, DBS learning rate = 10e− 3, and no

smoother δ is applied

Table 4.3: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks: B-Sparse Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−3) 2 0.8 5 5 5 66.32 67.23 99.65 825.62
Jura 1 3 10e(−2) 2 0.3 5 5 5 32.57 35.69 103.05 2133.79

SCPF 1 1 10e(−4) 5 0.8 5 5 5 111.82 40.25 136.69 950.19
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, DBS learning rate = 10e− 5, and no

smoother δ is applied

Table 4.4: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks: Full-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−5) 2 0.8 5 5 5 70.06 70.68 98.46 2156.10
Jura 1 3 10e(−2) 5 0.8 5 5 5 32.70 35.70 110.26 5349.34

SCPF 1 1 10e(−4) 5 0.8 5 5 5 111.82 31.30 186.87 428.97
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, DBS learning rate = 10e− 5, and no

smoother δ is applied

112 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

Table 4.5: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks: Sparse-CS-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−5) 2 0.8 5 5 5 66.90 68.21 100.64 1102.48
Jura 1 3 10e(−2) 5 0.8 5 5 5 32.94 38.39 190.26 2929.34

SCPF 1 1 10e(−4) 5 0.8 5 5 5 111.82 51.89 171.82 430.84
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, DBS learning rate = 10e− 5, and no

smoother δ is applied

Table 4.6: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks: CS-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−5) 2 0.8 5 5 5 70.06 70.68 98.46 456.10
Jura 1 3 10e(−2) 5 0.8 5 5 5 32.70 45.70 110.26 1349.34

SCPF 1 1 10e(−4) 5 0.8 5 5 5 111.82 41.30 116.57 798.09
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, DBS learning rate = 10e− 5, and no

smoother δ is applied

4.6. EXPERIMENTAL EVALUATION 113

4.6.2 Convergence of the DBS optmizer.
We have found experimentally that the DBS optimizer is convergent. We have choosen Slump dataset
to illustrate this finding, look for table [4.7] to be convainced.

To reach this convergence, we have identify the need to modify this optimizer with a slight correction.
Mainly ∂MSE(yi−ŷest,i)

∂ŷest,i
has to integrate the updates system as follows:

ŷest,(i,t) ←− fψi,t(x) + Li,t · ui,t − εŷest,(i,t)
∂MSE(yi − ŷest,i)

∂ŷest,i
(4.27)

where ∂MSE(yi−ŷest,(i,t))
∂ŷest,i

= 2 ∗ (yi − ŷest,(i,t)).

But, at step t in the implementation, 2 ∗ (yi − ŷest,(i,t)) is replaced by 2 ∗ (yi − ŷest,(i,t−1)). At initial
step, ŷest,(i,0) is computed using the model equation and ψ̂0.

So each training data has its own learning rate which is here set as εŷest,(i,t) . This is valuable for each
test data as follows:

ŷtest
est,(i,t) ←− fψi,t(x

test) + Li,t · ui,t − εtest
ŷest,(i,t)

∂MSE(yi − ŷest,i)
∂ŷest,i

(4.28)

where for the k-th test data xtest
k the changes fψi,t , Li,t, ui,t are taken from the j-th training data yj which

verify:

jchoosen = arg min
xj∈ Training Set

Mean(xj − xtestk) (4.29)

where the operation Mean(u) for vector u is taken upon all dimension of u. In our experiments with
Slump dataset, we have choosen εtest

ŷest,(i,t)
and εŷest,(i,t) to be double time larger than:

εψi,t = (ε
W

(1)
i,t
, ε
W

(2)
i,t
, ε
b
(1)
i,t
, ε
b
(2)
i,t
, εΣi,t)

In equation [4.31], ∂MSE(yi−ŷest,i)
∂ŷest,i

has to be approximated as :

∂MSE(yi − ŷest,i)
∂ŷest,i

≈ 2 ∗ (ytrain
jchoosen − ŷ

train
est,(jchoosen,t)). (4.30)

When the training error was getting lower, with a not decreasing test error, we double again εtest
ŷest,(i,t)

compared to εtrain
ŷest,(i,t)

specifically. The convergence property of the DBS optimizer in equation [4.31]

114 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

for the training data is not surprising due to the convergence of gradient descent [Lee et al. (2016); Ruder
(2016)] and Stochastic Gradient Descent properties for the Mean Squared Error MSE(yi − ŷest,i) =
‖yi− ŷest,i‖2

F which is convex in ŷest,i. However, because of the approximation [4.30], this convergence
is not reached with the same speed for the test data, but the model still do converge. In their case,
to reduce test errors to (zero), a last ingredient needs to be applied, called Universal Approximation
Theorem:

Proposition 4.6.1 (Guilhoto (2018))
A Neural Network with a single hidden layer and sufficiently many nodes is capable of approximating
any continuous function.

Intuitively, it means that we need to increase the number of neurons within the hidden layer, to reach
a good prediction for the test data. This is also valid if the model was multi-layer architecture. To
understand this intuition, look for equation [4.31], and beware that when convergence is reached for the
training data, we have :

∂MSE(y − ŷest,(i,t))
∂ŷest

= 2 ∗ (yi − ŷest,(i,t)) = 0

and equation [4.31] for the test data xtest becomes:

ŷtest
est,(i,t) ←− fψi,t(x

test) + Li,t · ui,t (4.31)

We simply need then to find the right (neural) machine that will associate with perfection xtest to ytest,
as:

ŷtest
est,(i) = fψi(x) + Li · ui = [b

(2)
i + g1(b

(1)
i + xtest

i W
(1)
i)W

(2)
i] + Li · ui

Or simply, very like an encoder or neural cryptography machine [Ruttor et al. (2007), Ruttor et al.
(2004), Volná (2000), Kanter & Kinzel (2003), Pattanayak & Ludwig (2017), Hadke & Kale (2016),
Sharma et al. (2019), Kinzel & Kanter (2002a), Kinzel & Kanter (2002b), Dong & Huang (2019), Volna
et al. (2012), Klimov et al. (2002), Godhavari et al. (2005), Blackledge et al. (2015), Baird et al. (2005),
Behrmann et al. (2019)]:

xtest
i ←→

ytest
i

ψtest
i = (W

(1)
i ,W

(2)
i , b

(1)
i , b

(2)
i ,Σi) (4.32)

To obtain this machine ψtest
i which has to encode as much as information to be efficient, we need to

extract it from its associate training data in equation6 [4.29], and to make it robust, the Universal Ap-
proximation Theorem [see 4.6.1] requires [W

(1)
i ,W

(2)
i , b

(1)
i] to be high dimensional7, i.e. an appropriate

number of neurons on the hidden layer. This last requirement transforms the DBS optimizer into another
DBS optimizer [the combination of Universal Approximation Theorem and DBS optimization] with an

6This equation can be improved too for better Train-Test association.
7Where the model can also be multi-layer as well.

4.6. EXPERIMENTAL EVALUATION 115

optimal number l1 of neurons on the hidden layer [see 4.1] of the Shallow net, an adapted number ζ of
DBS optimization, an optimal DBS learning rate εdbs, called the (l1, ζ, εdbs)−DBS, and which, combined
with findings of chapter [5], i.e, the (dist)-Nearest Neighbor-(h)-Taylor Series-Perfect Multivariate
Interpolation (dist-NN-(h)-TS-PMI) presented in [5.3], is the Perfect fit8 (or the Perfect learning) for
the Shallow Gibbs Network, summarized in equation [4.33]:

lim
l
1,opt,ζopt,εdbs,opt,distopt,hopt

(MSETrain,MSETest) = (0, 0) (4.33)

where MSETrain, MSETest are the Mean Squared Error of the train and test data respectively, distopt
is the optimal distance for the research of the nearest neighbor in the training dataset for each test data
xtest
i , hopt is the optimal order of the Taylor approximation for the Perfect Multivariate Interpolation

(dist-NN-(h)-TS-PMI) model once the (l1, ζ, εdbs)−DBS has overfitted the training dataset. l1,opt, ζopt
are respectively the optimal number of hidden neurons, and the optimal number of DBS updates. εdbs
integrates simultaneously the DBS learning rate vector for all the model parameters, the DBS learning
rate for the training data, and the DBS learning rate for the test data. εdbs,opt is the optimal one. We
have performed two more experiments to confirm this fact, summarized in table [4.8]. Table [4.8] may
be treated as over-fitting, but the advantage of this finding is a confirmation of the convergence (

y0)
of the with (l1, ζ, εdbs) − DBS, where we may applied a simple optimization –[Grid Search or Golden
Section Search method]– to find the perfect parametrization of (l1, ζ) and the required learning rate εdbs.

We have also found in practice, that when l1 and ζ are too large, the model may diverge. So, it is
important to find the right ratio ζ/l1 (with appropriate DBS learning rate).

When there is enough training data available, another way to increase the convergence speed for the test
data is to modify the criteria used in optimization [4.29], and use a distance dist for which each test data
xtest
k is ensured to find an associate xtrain

i in the training data with :

dist(xtest
k , xtrain

i) ≤ ε (4.34)

where ε is a very small number.

Model Execution Time. The results we have presented above are relatively comparable in terms of
execution times, simply because during all the simulations and model trials, we have used different
machines with different capacities, sometimes not comparable in terms of computation and degree of
availability to run large or huge multiple simulations at a time [look in table 4.9]. Simply to say, our
time comparison should be taken as relative for it require precaution and regards about the machine used
to run the model, not absolute. Also, whatever the machine being used, increasing the training times
(ET==epoch times) for the neural networks in each cluster of the Shallow Gibbs model is costly in
CPUs [Figure 4.2]. The CPUs available are overfull in less than 20 minutes of execution. To solve this
problem, we have applied Reusable Process Pool Executor which is a novel framework that combines
threading and multiprocessing primitives for robust concurrent futures (McCullagh (2017)).

8Chapter [5] is added to reinforce the (l1, ζ, εdbs)− DBS model.

116 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

Table 4.7: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks on Slump dataset with DBS optimization

Shallow Gibbs settings with DBS applied on Slump dataset
Measure of fitness
Sparse-Gibbs with Slump
dataset

Time (sec.)

NH ET LR DBS DBS learning rate RMSE RMSE RRMSE Time
Train Test -

1 1 10e(−5) 3 10e(−3) 66.60 67.36 99.34 116.12
1 1 10e(−5) 10 10e(−3) 46.35 50.06 99.15 100.02
1 1 10e(−5) 30 10e(−3) 43.56 49.13 102.85 4239.41
1 1 10e(−5) 30 10e(−3) 43.56 49.13 102.85 4239.41
1 1 10e(−5) 30 10e(−6) 47.66 53.13 102.51 4300.36
1 1 10e(−5) 50 10e(−3) 14.20 30.24 130.59 9358.63
1 1 10e(−5) 70 10e(−3) 9.20 27.19(*) 128.11 10609.91

*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, NE = 2, BS = 0.8 ,

SWbP = PSY = SPP = 5, DBS learning rate = 10e− 2, and no smoother δ is applied; test data DBS
learning rate = 2 ∗ (10e− 2), (*) the DBS learning rate of the test data is twice the learning rate of the training

data

Table 4.8: Average root mean squared errors RRMSE (%) and and mean squared error MSE Results
with the shallow Gibbs Networks on Slump dataset with DBS optimization

Shallow Gibbs settings with DBS applied on Slump dataset
Measure of fitness
Sparse-Gibbs with Slump
dataset

Time (sec.)

NH ET LR DBS DBS learning rate RMSE RMSE RRMSE Time
Train Test -

6 1 10e(−5) 3 10e(−2) 2.05 26.30(*) 126.20 6814.34
10 1 10e(−5) 40 10e(−2) 3.11 25.89(*) 127.26 5894.04

*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,
RRMSE=Relative Root Mean Squared Error; DBS epoch times =3, NE = 2, BS = 0.8 ,

SWbP = PSY = SPP = 5, DBS learning rate = 10e− 2, and no smoother δ is applied; test data DBS
learning rate = 2 ∗ (10e− 2), (*) the DBS learning rate of the test data is twice the learning rate of the training

data

4.6. EXPERIMENTAL EVALUATION 117

Table 4.9: Machines used during our simulation and their main characteristics

Machine Host Cpus C.L. Mem Mem L GPU G. Nom CPU S CPU M
simulation7 24 10 251 133 - - 13030 312720
simulation8 24 12 251 111 - - 13030 312720

venice 12 8 15 8 0 GTX 1050 15971 191652
jupiter 8 5 11 6 - - 5200 41600

fox 12 7 15 5 0 GTX 1050 15971 191652
acapulco 12 3 15 2 0 GTX 1050 15971 191652
panthere 12 8 15 2 0 GTX 1050 15971 191652

lion 12 0 15 1 0 GTX 1050 15971 191652
jaguar 12 7 15 1 0 GTX 1050 15971 191652

Cpus => Cores C.L. => Free Cpu
Mem => Total Memory Mem L => Available Memory (Go)
GPU => GPUs used G. Nom => GPU model

CPU S => Cpu Mark single thread CPU M => Cpu Mark total multi threads

Figure 4.2: Percentage of CPUs charged by the Shallow Gibbs during execution for a training times
≥ 10. The right axis is RAM memory in Mo.

118 CHAPTER 4. SHALLOW POTTS NEURAL NETWORK MIXTURE MODELS

Chapter 5

Nearest Neighbor Multivariate Interpolation
(NNMI)

In chapter [4], equations [4.29] and [4.34] indicate the need for an adapted Train-test association func-
tion [4.29] for the prediction of ytest when we know xtest. This form of data closest neighborhood
association is one limitation of the DBS optimizer, since it simply implies that we are still searching for
the right learner.

5.1 Interpolation as a Machine learner

You can notice with table [4.8], that in few iterations, the DBS can overfit the training data. The main
question then is: knowing a perfect relation [4.32] for any train data, as (xtrain

j , ψtrain
j) :

xtrain
j

ι←→ ψtrain
j = (W

(1)
j ,W

(2)
j , b

(1)
j , b

(2)
j ,Σj), y

train
j (5.1)

where ι is our denoted gate function, how can we find the perfect ψtest
i for the test data as:

xtest
i

ι←→ ψtest
i = (W

(1)
i ,W

(2)
i , b

(1)
i , b

(2)
i ,Σi), y

test
i (5.2)

Or simply said, is Nearest Neighborhood enough to find ψtest
i , ytest

i , for a given xtest
i ?

This is where Multivariate Interpolation come into action, as the later can be taken also as a machine
learner, because it can refine Nearest Neighborhood Train-Test association [4.29]. To perceive this, we
present another perspective of machine learning problems with the following described properties about
interpolation.

119

120 CHAPTER 5. NEAREST NEIGHBOR MULTIVARIATE INTERPOLATION (NNMI)

Linear interpolation usually requires two data points (ua, va) and (vb, vb) , and at the point (u, v),
the interpolation equation is given by:

v = va + (vb − va)
u− ua
ub − ua

(5.3)

Equation [5.3] specifies that the current line slope between (ua, va) and (u, v) is equivalent to the
line slope between (ua, va) and (ub, vb). The method have been used since a while in the literature
[Joarder (2001), Dressler (2009), Otsuki et al. (2004), Guo-qiang et al. (2004), Kay (1983), Bourke
(1999)]. When we know u, interpolation is useful to estimate v. But, it may be a poor estimator
sometimes [Maeland (1988), Dumitru et al. (2013)].

To generalize equation [5.3] to a learning problem, remember the Taylor’s theorem for a multivariate
function ι in functions analysis theory [Giaquinta & Modica (2010), Browder (2012), Zorich (2016),
Choquet-Bruhat et al. (1982), Pettersson (1992), Barbarossa & Manzonetto (2019), Cheney & Kincaid
(2012), Canuto & Tabacco (2015)]. We already know the best linear approximation to ι. It involves the
derivativeDι(a) such as:

ι(x) ≈ ι(a) +Dι(a) ◦ (x− a) (5.4)

where Dι(a) is the matrix of partial derivatives of ι evaluated in the neighborhood of a, and ◦ is the
dot product between both vectors Dι(a) and (x − a). This approximation is linear and represents the
first-order Taylor polynomial [Reimer (2012), Guessab et al. (2006), Phillips (2003), Dikusar (2016),
Neumaier (2003), Cohen & Tan (2012), Smyth (2014)]. Proposition [5.2.1] is the generalization of
approximation [5.4].

5.2 Multivariate Interpolation
Proposition 5.2.1 (Multivariate version of Taylor theorem (Qian (2011)))
Let ι : Rn → R be a m ≥ Ξ ≥ 2 -times-differentiable function in a certain vicinity D of the point
u0 = (u01, ..., u0n) ∈ Rn. Then, for any v = (v1, ..., vn), we have :

ι (v1, . . . , vn) = ι (u01, . . . , u0n) +
∑n

i=1
∂ι
∂ui

∣∣∣
(u01,...,u0n)

(vi − u0i)

+ 1
2!

∑n
i=1

∑n
j=1

∂2ι
∂ui∂uj

∣∣∣
(u01,...,u0n)

(vi − u0i) (uj − v0j)

+ · · ·+Rm (v − u0)

where Rm (v − u0) is a reminder function of v − u0.

Remark
It is not a coincidence that Taylor Approximation theorem is only defined in a certain vicinity or a given
neighborhood set! One of the main contribution of this chapter is to understand that : Multivariate
Interpolation using Taylor theorem is the refined generalization of simple Neighborhood Train-Test
association. Notice in equation [5.4], if a = xtrain and x = xtest, we have ι(xtest) ≈ ι(xtrain),

5.2. MULTIVARIATE INTERPOLATION 121

when we suppose xtrain ≈ xtest. To avoid that simple approximation, we add more differential terms,
as exposed in Proposition [5.2.1].

Can we overfit with proud? It is important to also understand the case ι : Rq → Rm in [5.1],
and how we expand Dι(ζ) at ζ = xtrain

0 . When ι is multivariate, we will use Proposition [5.2.1], or
in a one order [5.4], to find [5.2] per component using the assumption (Fd) that :

There is an approximable differentiable function ι such as: ι(xtest
i) = (ψtest

i , ytest
i), where we already

know in a perfect overfitting DBS configuration (xtrain
j1

, ψtrain
j1

, ytrain
j1

) [i.e
ι(xtrain

j1
) = (ψtrain

j1
, ytrain
j1

)] and (xtrain
j2

, ψtrain
j2

, ytrain
j2

) [i.e ι(xtrain
j2

) = (ψtrain
j2

, ytrain
j2

)] for two
training data j1 and j2, With the precision that the training data point j2 and the test data i are taken in

a very closed neighborhood of j1.

In each Potts partition ρn clusters, this is applicable. Suppose xtrain
j1

= (xtrain
j1

(1), ..., xtrain
j1

(q)), and

xtrain
j2

= (xtrain
j2

(1), ..., xtrain
j2

(q)), with the precision that the training data point j2 is a taken in a very
closed neighborhood of j2 (potential example is: the associate Potts cluster of j1 given a partition ρn).
In practice, for x = xtest

j and a = xtrain
j1

, we computeDι(a) ◦ (x− a) in approximation [5.4] as:

DCιj (xtrain
j1

) ◦(xtest
j − xtrain

j1
) = (5.5)

∑q
k=1

I(xtrain
j1

(k) 6= xtrain
j2

(k))(xtest
j (k)− xtrain

j2
)(k)

xtrain
j1

(k)− xtrain
j2

(k) + I(xtrain
j1

(k) = xtrain
j2

(k))
[Cι

(1)
j1
− Cι

(1)
j2

]

where Cι ∈ {W (1),W (2), b(1), b(2),Σ, ytrain}, I(A) equal 1 if condition A is verified. Those
constraints I(xtrain

j1
(k)! = xtrain

j2
(k)) and I(xtrain

j1
(k) = xtrain

j2
(k)) are useful to indicate that we do

not want the partial derivatives to be computed if there are no differentiation available for the k th
dimension. Further, we shall reduced the Taylor series in [5.2.1] to integrate all those constraints, and
the final computation will be called reduced derivative.

To use this technique of Reduced Taylor Series Multivariate Interpolation in [5.5] with the research of
the nearest neighbor in the train dataset for a new xtest, is what we call the (dist)-Nearest Neighbor-(h)-
Taylor Series-Reduced Multivariate Interpolation (dist-NN-(h)-TS-RMI) in reference to previous
existent work [Rukundo & Cao (2012)], and it can reduce (possibly) test error, specially when we
overfit sometimes. In dist-NN-(h)-TS-RMI, dist is set for the Nearest Neighbor distance applied [e.g
4.29], and h is the order of computed Taylor approximation in [5.5]. Assumption [5.2] denoted (Fd)
may not be valid, but the method may be effective for some datasets; or another situation that could arise
is that the closest data point j2 to j1 in a very small neighborhood set may not exist in the training data.
Some experiments are required to confirm in which case the proposed dist-NN-(h)-TS-RMI model is a
good learner.

Taylor Theorem can approximate any (differentiable) function. Two questions of interest may arise
then:

Q1 What is the statistical distribution of any dist-Nearest Neighbor-(h)-Interpolated-Reduced

122 CHAPTER 5. NEAREST NEIGHBOR MULTIVARIATE INTERPOLATION (NNMI)

response variable y, as the parameters of the model are shifted (by interpolation and reduc-
tion) ?

Q2 Analogious to the Universal Approximation Theorem [see 4.6.1], can higher order Taylor
Theorem solve any machine learining problem?

Taylor Approximation is the future of Machine learning.

We can use Taylor Theorem [5.2.1] to develop higher order (h ≥ 2) Multivariate Interpolation. In fact,
Taylor Series can also be used to approximate any function. Formula [5.5] also opens the door to empiri-
cal derivatives computation. Empirical differentiation reduces or deletes the terms where differentiation
is not applicable. This is done to signify that the higher-order differentiated parts represent a small cor-
rection of the Nearest Neighbor associated values. This technique is valid because the reminder terms
in proposition [5.2.1] get smaller when the differentiation order increases.

This is a great revolution in Statistical Learning Theory, as we can sufficiently (i.e h ≥ 2) interpolate
any machine learning regression problem, with the reduced differentiation form when we know the
perfect parameters that fit the training data. By then, the famous overfitting problem will not appear to
be an hindrance anymore, but an extraordinary gateway to another type of learning method, which is
therefore the research of the perfect fit for both the training and the test data, using as e.g the proposed
dist-NN-(h)-TS-RMI model.

5.3 Data Augmentation for Empirical Differentiation (DAED)
This section is a trial to answer question Q2, as Taylor Approximation can truly solve any machine
learning problem. We illustrate this fact using data augmentation. To make the assumption (Fd) valid,
we need to create more samples from existent training data.

To understand this intuition, remember that the partial derivative of a function ι (x1, . . . , xn) in the
direction xi at the point (e1, . . . , en) is defined by:

∂ι

∂xi
(e1, . . . , en) = lim

δ→0

ι (e1, . . . , ei + δ, . . . , en)− ι (e1, . . . , ei, . . . , en)

δ
(5.6)

with δ ∈ R has to be a very small real number. Because the closed neighborhood training data j2 for
j1 in the differentiation computation [5.5] is not available in practice in the training data, we can create
more data as follows, to compute derivative [5.6] and [5.5] with almost exact precision:

xtrain
j1

= (xtrain
j1

(1), ..., xtrain
j1

(q))−→





(xtrain
j1

(1) + δ, ..., xtrain
j1

(q))

(xtrain
j1

(1), xtrain
j1

(2) + δ, ..., xtrain
j1

(q))
.

(xtrain
j1

(1), xtrain
j1

(2), ..., xtrain
j1

(q) + δ)

(5.7)

where in [5.7], δ is added on each component of xtrain
j1

in each of his augmented version. When we

5.3. DATA AUGMENTATION FOR EMPIRICAL DIFFERENTIATION (DAED) 123

have the model ι that overfit [e.g the DBS optimizer], we have to re-train the model with the augmented
data [5.7] to find [5.8]:





ι(xtrain
j1

(1), ..., xtrain
j1

(q))

ι(xtrain
j1

(1) + δ, ..., xtrain
j1

(q))

ι(xtrain
j1

(1), xtrain
j1

(2) + δ, ..., xtrain
j1

(q))
.

ι(xtrain
j1

(1), xtrain
j1

(2), ..., xtrain
j1

(q) + δ)

(5.8)

This data augmentation framework, the DAED, transforms the dist-NN-(h)-TS-RMI model in [5.2] into
another one, which is the : (dist)-Nearest Neighbor-(h)-Taylor Series-Perfect Multivariate Interpo-
lation (dist-NN-(h)-TS-PMI). We have also find out that in practice, the reduced model dist-NN-(h)-
TS-RMI was not precised, and not effective differentiation approach. We have run some experiments
with Slump dataset, we still found the DBS as a model that overfit the training data, but the reduced dist-
NN-(h)-TS-RMI model can not generalize very well. The Perfect Multivariate Interpolation method, let
say the dist-NN-(h)-TS-PMI) model, is recommended.

Using limit [5.6], and a re-trained model where we know [5.8], we can compute:

∂ι

∂xj(k)

(
xtrain
j (1), . . . , xtrain

j (q)
)
≈ (5.9)

ι

(
xtrain
j (1),...,xtrain

j (k)+δ,...,xtrain
j (q)

)
−ι
(
xtrain
j (1),...,xtrain

j (k),...,xtrain
j (q)

)
δ

with a very small δ [e.g 10−10, 10−50], to get :

Dι(xtrain
j) = (

∂ι

∂xj(1)

(
xtrain
j (1), . . . , xtrain

j (q)
)
, (5.10)

. . . ,
∂ι

∂xj(k)

(
xtrain
j (1), . . . , xtrain

j (q)
)
, . . . ,

∂ι

∂xj(q)

(
xtrain
j (1), . . . , xtrain

j (q)
)

)

Dι(xtrain
j) presented above is the best mathematical and empirical Multivariate function Derivative that

you can compute for ι and evaluate at xtrain
j .

We suppose that the augmented training data in [5.7], being denoted xaug-train
j , are taken in very

close neighborhood of xtrain
j1

= (xtrain
j1

(1), ..., xtrain
j1

(q)). So, before the re-training step, to

compute the associated yaug-train
j for each xaug-train

j , we may use ψtrain
j1

, as illustrated in [5.1].

124 CHAPTER 5. NEAREST NEIGHBOR MULTIVARIATE INTERPOLATION (NNMI)

Iterative Multivariate Interpolation Method. We want to highlight a strong link between Gradient
descent and Taylor Approximation [HAMMER (2017)]. There is then possibility to refine the Perfect
Multivariate Interpolation in [5.3], so that it can be iterated, most likely in a Gradient Descent Optimiza-
tion Scheme, e.g illustrated by Lydia & Francis (2019).

5.4 Generalization Method
In the previous section, we see how data can be augmented. Now, it is time to reveal how we generalize
the model in order to make any test data to have its associate neighbor in the training data. The secret is
to understand that every augmented data can also be sufficiently differentiated, as much as we want to
overlap all the possible data Space domain:

x
aug-train
j1

= (xtrain
j1

(1) + δ, ..., xtrain
j1

(q))−→





(xtrain
j1

(1) + s1 · δ, ..., xtrain
j1

(q))

(xtrain
j1

(1), xtrain
j1

(2) + s2 · δ, ..., xtrain
j1

(q))
.

(xtrain
j1

(1), xtrain
j1

(2), ..., xtrain
j1

(q) + sq · δ)
(5.11)

with (s1, s2, ..., sq) is a q-tuple of integers or rationals. The re-training process has to be done pro-
gressively to obtain their perfect associated parameters. The last, but not the least, is that each novel
augmented data can again be differentiated as done in [5.11], (again and again) with no end.

We also found that in practice, this generalisation method is effective for slump dataset, but it takes
many data augmentation iterations over the training data to reach convergence for the test data.

Chapter 6

Generalization of similarity measure using
Metric Learning

We will end this dissertation with a short introduction to an idea that has come to us during this thesis:
to generalize the Potts Models similarity measure using any type of metric learning framework. Yet,
it is truly possible, and I will dedicate some lines to explain this research possibility for the need to
highlight an open work or an open research problem of interest.

In general, Metric Learning refers to algorithms that learn an acceptable function of similarity in
the feature space that ensures that large values (resp. small values) are preserved for inter-class
separability (resp. intra-class separability) (Gao et al. (2014); Hoi et al. (2010); Lee et al. (2008);
Hoi et al. (2006); Chang & Yeung (2007); Cao et al. (2020)).

We will discuss the role of the geometric invariance concept in image recognition, and review the clas-
sical and recent literature1 on features invariance. Invariants help solve major problems of object recog-
nition. For instance, because of the distinct point of view from which they were obtained, different
images of the same object frequently differ from each other. Popular methods therefore need to find the
correct point of view to fit the two images, a difficult problem that can require looking for all possible
points of view and/or finding point correspondences in a high dimensional space (Adhan & Pintavirooj
(2014); Tosranon et al. (2009); Ollivier et al. (2017); Sun et al. (2015); Harrison & Estabrook (1971);
Tannenbaum (2006); Bottasso et al. (2002); Houtappel et al. (1965); Alghoniemy & Tewfik (2004);
Mundy et al. (1992); Biess et al. (2011); Romano et al. (2018); Mundy (2006); Farah et al. (1994); Mei
et al. (2018); Mundy et al. (1992); Sun & Cai (2009); Maweheb et al. (2016); Zisserman et al. (1995);
Bonmassar & Schwartz (1994); Giles & Maxwell (1987); Gross & Latecki (1995)). Shape descrip-
tors, calculated from the geometry of the shape, are geometric invariants that remain unchanged under
geometric transformations, such as changing the point of view. Another significant class of geometric
changes for which invariance is useful is object deformation (Flusser et al. (2009)). In the next section,
we introduce the problem of occlusions, clutter and noise in image that affect recognition accuracy.

1The figures that appear in this review are extracted from the cited papers in each respective section.

125

126CHAPTER 6. GENERALIZATION OF SIMILARITY MEASURE USING METRIC LEARNING

6.1 The Problem of Occlusions, Clutter and Noise
Most invariants from an image are less effective when certain parts of it are inaccessible. This is true
in presence of occlusions or clutters. The downside to most tests of similarity is that occlusions are
not robust (Steger, 2002). Such occlusions or clutter are not identified by several neural networks.
One possible explanation is that it is irrational to conclude that all possible occlusion patterns can be
found during the training step (Qi et al. (2018); Kurenkov et al. (2020); Li et al. (2017); Bejjani et al.
(2020)). Those occlusions are so numerous that it is not possible to detect all their variants during the
neural network training. Therefore, this becomes a major problem in machine learning tasks, especially
in computer vision, because we certainly can not presume that the data from the training and test are
sampled from the same underlying distribution.

Many neural network architectures have been introduced to classify picture data information beneath
those distortions (Kortylewski et al. (2020), Spoerer et al. (2017), Huang & Murphy (2015), Svirsky
& Sharf (2020)), but their recognition precision is still not perfect. In addition, Volokitin et al. (2017)
reveal that the training of cluttered picture models does not render models resilient to the configurations
of clutter and flankers not used in training. They also find that it is prohibitively costly to train a model
to be resilient to general clutter. In the next section, we present geometric invariance, and how it can
help to overcome clutters and occlusions in MNIST digit data (Cohen et al. (2017); Yadav & Bottou
(2019); Wu & Zhang (2010); Deng (2012)).

6.2 Geometric Invariance
A suitable choice of object invariants accomplishes high-efficiency detection of two-dimensional ob-
jects. The role of the principle of general invariance in object recognition has been discussed in the
work of Weiss (1993). Invariants are designed to help overcome big object recognition issues (Zisser-
man et al. (1995); Cao et al. (2019); Cao (2003); Lou et al. (2008); Hong (1991); Alghoniemy & Tewfik
(2004); Mundy et al. (1992)).

We need to retrieve numerous invariants, given a picture of a digit, that will serve as final descriptors.
Given another picture of the same object, contrasting from the primary by, e.g., perspective or viewpoint,
we need to retrieve the same descriptors. To do so, the influence of the transformations that gave rise
to the variations between the images must be eliminated in some way. By using sufficient invariants,
this task can be greatly facilitated. The word sufficient has to be taken as sufficient statistics (Ay et al.
(2015)). Much works have been initiated in that sense (Doretto & Yao (2010); Masci et al. (2014);
Rothganger et al. (2006); Arbter et al. (1990); Kazhdan et al. (2002); Kokkinos et al. (2012); Liao et al.
(2013); Dubey et al. (2015); Kokkinos & Yuille (2008); Chen et al. (2010b); Ling & Jacobs (2005);
Abdel-Hakim & Farag (2006)). When treating clustering of images like MNIST data, a fundamental
question immediately arises: when do we decide with a sufficient invariant that two images come from
the same digit, even though they are different?

6.3 Invariance descriptors and related works
There are many ways of removing changes between pictures. The easiest thing is to perform any possible
transformation of the image to see if the other images fit any of its transformed versions. For instance,

6.3. INVARIANCE DESCRIPTORS AND RELATED WORKS 127

in Ballard & Brown (1982), a template format and a given picture are assumed to vary as it were by
translation, and the format is moved pixel by pixel over the picture until it finds a coordinate match.
However, the search space becomes disproportionately broad when more complex transformations are
involved, such as rotation, projection, etc. Invariant features can therefore be used to decrease the search
space (Lowe, 1985). In the following, we present briefly some of those invariant features, and how they
are computed.

6.3.1 Holographic Nearest Neighbor (HNN)
Holographic nearest neighbour (HNN) is an algorithm for object recognition with characteristics based
on centroid moment of inertia and topological image characteristics. Under translation, rotation and
scaling conditions, Torres-Mendez et al. (2000) used HNN to implement a new approach for object
recognition that has been applied to character recognition. The invariant properties of the normalised
moment of inertia are taken into account in the preprocessing phase (Ma et al. (2019); Liu et al. (2013);
Lu & Xia (2007)). They also suggested a new encoding of an object that defines its topological features.
The vectors obtained during the preprocessing stage were then used as inputs to the algorithm of the
Holographic Nearest Neighbor (HNN) (Lu & Xia (2007)).

Figure 6.1: Letters A, E, and X are identified with 100% accuracy under some degrees of noise

Torres-Mendez et al. (2000) used 3 sets of invariant features:

1. Normalized central moment of inertia,

2. radial coding,

3. and differential radial coding;

Radial Coding and Computation Explained

The strategy for achieving the radial coding of a binary 2D object can be summed up as follows (Torres-
Mendez et al., 2000):

1. The centroid of the image is determined using its moment of inertia.

128CHAPTER 6. GENERALIZATION OF SIMILARITY MEASURE USING METRIC LEARNING

In general, the moment of inertia quantifies the inertia of a rotating object considering its mass
distribution. The moment of inertia is normally calculated by dividing the object into κ small
pieces of mass η1, η2, . . . , ηκ. Each piece is at a distance, g1, g2, . . . , gκ, from the axis of rotation.
The moment ιm of inertia of the object is:

ιm = η1g
2
1 + η2g

2
2 + . . .+ ηκg

2
κ

A two-dimensional image is not a mass object, but can be represented by a continuous function
f(u, v), where each image pixel can be considered as a mass particle equal to the pixel intensity
value. The moment of inertia with respect to the image centroid (central moment of inertia) for
binary images is:

ιm =
κ∑

i=1

(distance)2
i =

κ∑

i=1

(
(ui − Uu)2 + (vi − Vv)2)

where Uu, Vv are the coordinates of the image centroid, ui, vi the image pixel coordinates of the
object and κ the overall pixel count (its total number).

2. Generate around the centroid some concentric circles equidistantly in a number of J .

3. Count the number of changes in intensity for each circle: (0 to 1 or 1 to 0) that occur in the image,
this is Θj .

4. For each circle, obtain the two largest ares that are not part of the object (we assume a known
value for object and background). Measure each arc by counting the number of pixels, obtain the
difference and divide by the size of the circle.

Obtain the two largest circular segment (arcs) for each circle that are not part of the image. The
number of pixels will represent each arc measure, then compute : Oj = (o1 − o2) /oΦ, where oΦ

is the length of the circle itself, o1 is the length of the arc with the highest measure, and o2 is the
length of the second largest arc.

The radial coding can be represented by the following vector:

Θ1,Θ2, . . . ,ΘJ , O1, O2, . . . , OJ

considering j circles. Θi is positive integer and Oi is a real value in [0, 1].

Torres-Mendez et al. (2000) in their recognition stage uses the Holographic Nearest Neighbor (HNN)
algorithm that is based on the principles of the Holographic Associative Memory (Sutherland (1992)).
All these features are invariant to translation, rotation and scaling. Their recognition was obtained with
almost 100% accuracy on images.

6.3.2 Shape Context
In the characterization of Belongie et al. (2002), an image can be viewed as a point set of infinite ele-
ments, for an object form is be a finite projection those points. A shape is defined then more technically
by a distinct set of points sampled from the internal or external contours of the object. As detected by

6.3. INVARIANCE DESCRIPTORS AND RELATED WORKS 129

an edge detector, these can be obtained as positions of edge pixels, giving a set D = {x1, . . . ,xn},
xi ∈ R2, of n points.

They find the best matching point yj on the second shape for every point xi on the first shape using
bipartite graph-matching (Riesen et al., 2007) and shape context. Their methodology was productive
and only 63 out of 10000 were wrongly classified for all of the MNIST test digits data using their
process.

Figure 6.2: Examples of two digits that are handwritten. These two images are very different in terms
of pixel-to-pixel comparisons, but the forms can appear to be identical to the human observer.

Figure 6.3: Illustration of the matching procedure applied to Figure 6.2 example.

6.3.3 Hough transformations features
When a large number of parameters are involved, hashing strategies such as the Hough conversion
become necessary. It is a class of algorithms for the identification of edge-based objects, also called
Generalised Hough Transform (GHT) (Ballard (1981); Ballard (1981); Samal & Edwards (1997); Illing-
worth & Kittler (1988)). Approaches of this sort have the benefit of being resistant to both occlusion
and clutter.

Hough transform is an efficient method of detecting graphics specific targets; such that it can de-
tect straight lines, circles, ellipses, parabolas and many other analytical graphs (Nair & Saunders Jr
(1996), Yip (2000), Srihari & Govindaraju (1989), Pedersen (2007), Dahyot (2008), Goldenshluger
et al. (2004)). The main downside of the transformation of Hough is the discretization of space, as well
as the measurement process of the method that has some limitations, such as weak detection results
due to high-intensity noise, a large amount of calculation, and even a large storage resources, that is in
demand for the detection task, etc. (Illingworth & Kittler (1988), Mukhopadhyay & Chaudhuri (2015),
Yuen et al. (1990), Hassanein et al. (2015)). Unfortunately, for the edge directions is a complicated
and costly processing scheme for the generalised GHT, as it often needs extremely precise estimates to

130CHAPTER 6. GENERALIZATION OF SIMILARITY MEASURE USING METRIC LEARNING

determine if an object is present inside the image, and to determine its pose. For large models, this issue
is particularly serious. Even in low noise images, the necessary precision is typically not achievable
(Suetake et al. (2006)), since the discretization of the image contributes to errors in the edge direction
that are already too large for the GHT (Steger, 2002).

A tool to deal with such cases has also been introduced by Kimura & Watanabe (2002): it extends
the Generalized Hough Transform (GHT) under noise and occlusions to be an affine-invariant shape
detector. In order to bring the direct computation for six parameters of an affine transformation, this
process, called the affine-GHT, utilises pairwise parallel tangents and fundamental properties of an
affine transformation. Experimental findings indicate that the proposed approach works quickly and
effectively. More interesting results are presented in the work of Ecabert & Thiran (2004), Zhu et al.
(2009), Hahmann et al. (2015), Tsai (1997), Ulrich et al. (2003).

6.3.4 Fourier descriptors
For the identification of two-dimensional related forms, Fourier descriptors (FDs) are shape-based char-
acteristics. In object recognition and image processing, this method is used to represent a segment
boundary shape in an image.

Suppose that the boundary of a given shape in 2-dimension contains Π pixels, and that the coordinate of
the s-th pixel on this boundary is u[s] and v[s]. The Fourier Descriptor (Fd) of this shape boundary is
defined as the Direct Fourier Transform TFd [z[s]] of z[s] = u[s] + j · v[s] expressed as:

TFd [z[s]] =
1

Π

Π−1∑

s

z[s]e−
j2π
Π
sq (q = 0, · · · ,Π− 1)

In this Fourier transform, the first terms are much interesting and serve as the base ingredients of a given
descriptor. For recognition tasks, this type of object descriptor is useful because of its most attractive
properties, in the sense that it can be built to be independent of scaling, translation, or rotation. In
Invariant Object Recognition, boundary-based analysis using Direct Fourier transformations has been
suggested as an alternative (IOR) (Gonzalez (1987); Kauppinen et al. (1995)). For algorithms based on
this type of processing, effectively called Fourier descriptors, invariance is obtained by normalising the
image shape frequency representation.

6.4 Other Invariance researches

6.4.1 Chord distribution
The goal with chord distribution is to show an example of the construction of an algorithm for rapid
identification also for highly complex objects (Mingqiang et al., 2011). Chord background analysis
refers to finding the distribution of all chord lengths in a given form in various directions. Figure 6.4
shows an example of chords in a direction ζ = θ vectorized by a set of lines C(ρ,θ) defined by polar
coordinates:

ρ = x cos(θ − π/2) + y sin(θ − π/2),θ ∈ [0, π], and ρ ∈ (−∞,∞)

6.4. OTHER INVARIANCE RESEARCHES 131

where (x,y) are pixels coordinates. For invariance, Chord algorithms are used to describe a comprehen-
sive part of object recognition; precisely, they are used as an invariant of surfaces, representing a whole.
They were used around the object as a boundary length invariant (Cao (2011); You & Jain (1984); Smith
& Jain (1982); Marshall (1989)). The current example has been extracted from those existent researches
on the topic.

Figure 6.4: Representation of chords in direction θ with the interval ∆ρ. The bold lines are the chords
of the shape.

The interval, in order to catch the specifics of a shape, is ∆ρ of ρ, i.e. there should not be a great gap
between two parallel chords. In practice, ∆ρ = Fmax/(50 ∼ 100), Where Fmax is the length of a
shape longest axis.

6.4.2 Moment invariants method
The research of moment invariants and their applications in image processing was first proposed in (Hu,
1962), where seven moment invariants in 2D were given. To detect symmetry for shape analysis and
object recognition, directional moments (DMs) have been described in (Li & Li, 2017). They prove that
by solving a trigonometric method derived from the DMs, identification of reflection symmetry can be
achieved in a simple way, and if no reflection invariants are equal to 0, there is no symmetry between
the shapes.

Khotanzad & Hong (1990) provided Zernike moments where rotation invariant elements are added.
They are the magnitudes of a series of complex orthogonal moments. By first normalising the image
with respect to these parameters using its regular geometric moments, scale and translation invariance
are obtained. In their work, a systematic reconstruction-based approach is generated to determine the
highest order of Zernike moments needed in a classification problem. In its relation to the original,
the accuracy of the restored image is tested. More moments are used before the image reconstructed
from them is fairly close to the original image. Using clean and noisy images from a 26-class character
data set and a 4-class lake data set, the process is tested. Mainly, the supremacy of Zernike moment
characteristics is experimentally confirmed over periodic moments and moment invariants.

Others researchers have proposed other measures such as inner-distance (Ling & Jacobs, 2007), bis-

132CHAPTER 6. GENERALIZATION OF SIMILARITY MEASURE USING METRIC LEARNING

pectrum invariants (Negrinho & Aguiar, 2013), Möbius invariants (Marsland et al., 2016), but those
strategies will not be effective for some shape like letters or digits. Especially, illumination invariants
(Alferez & Wang, 1999) will be unuseful here because MNIST are grey scale images.

6.5 Open Research Framework
As Torres-Mendez et al. (2000) obtained almost 100% accuracy on their set of images, and Belongie
et al. (2002) method was defeated only 63 times out of 10000: is it that possible to combine multi-
ple/more invariants methods to reach a 100% accuracy without any possible error? In other words,
is that possible to build an engine that can auto-classify automatically any digit with a given perfect
combination of invariance descriptors with no error allowed?

As a basic example (not to be counted among the best necessarily), we combine here the HNN from
Torres-Mendez et al. (2000), and softmax activation function (Gold et al. (1996)) to introduce a modified
classifier that we call the Holographic Nearest Neighbor Class of a digit.

Holographic Nearest Neighbor Class of a digit

Let Ci = {c0, ..., c9} represent the set of all possible classes for a given misclassified digit dj .

As MNIST uses 60000 digits images for training, all categorized in 10 classes (6000 per class), we
compute the Holographic Nearest Neighbor (HNN) of a class given a digit dj by:

HNN(dj, ci) =
∑

di∈ci

HNN(di, dj)

where di represent a digit in the training class ci, and HNN(di, dj) using the features described in the
work of Torres-Mendez et al. (2000). The computation above gives rise to an estimate of the probability
for digit dj to belong to the class ci:

s (dj, ci) =
eHNN(dj ,ci)

∑9
j=0 e

HNN(dj ,ci)

Thanks to the properties of the softmax function, the outputs s (dj, ci) are always in the range [0,1] and
add up to 1, hence, forming a probability distribution. Finally, let us introduce our newest measure:

Definition 6.5.1 (Holographic Nearest Neighbor Class of a digit - The HNNC)
Holographic Nearest Neighbor Class (HNNC) of a digit dj , is computed as:

HNNC(dj) = arg max
ci

s (dj, ci)

Beyond that scope, our Main (General) Open Questions from this literature review are :

• What are the metrics that should be learned for automatic object recognition in a given retrieval
problem?

6.5. OPEN RESEARCH FRAMEWORK 133

• What is the right combination of invariance descriptors to reach a 100% accuracy in a given
recognition problem?

• Like fingerprints are unique and identifiable for everyone, is it that possible that each digit from a
given source is unique and identifiable through a unique combination of invariance descriptors?

134CHAPTER 6. GENERALIZATION OF SIMILARITY MEASURE USING METRIC LEARNING

Chapter 7

Convolutional Neural Network Gibbs Model

In this chapter, we propose to augment the Shallow Gibbs Model (SGM) using Convolutional Neural
Networks (CNNs) with image classification applications. This work is presented here as a conceptual
note, because the model may get improved in many ways. We wish to keep it in the body of the thesis
because of its contributing lines, as it proposes some directives to solve open questions in chapter [6].
We have introduced some novel architectures to explore [7.4.1] and have highlighted the importance of
invariant networks [7.4.3] as universal approximators.

With a lot of applications in computer vision, image classification is a fundamental research subject.
Due to its supervised feature, most image classification tasks perform training and testing using pre-
labeled datasets. In real-world situations, however, images need to be grouped from more abstract
definitions into labels. Typically, those labels definitions come from a particular domain, and certain
rules describe them. We call this type of problem domain-specific classification of images. A common
challenge in image classification is the lack of labelled images for training, especially for domain-
specific images. Analogously to the Shallow Gibbs Model [4], we want to build here an ensemble learner
by incorporating many Convolutional Neural Network (CNN) as base learners, in specific using some
special filters, mainly the (similarity) invariants descriptor [see 6], and some reduced configuration:
Quantized - Pruned - Binarized CNN. In real life problems, assumption (Fd) in [8.0.6] may not be
valid, or it may be difficult to explore all the Space domain to reach convergence. When it is the
case, as for domain-specific images (as e.g), it is better to explore other learning methods to find a
perfect learning framework for those classification tasks.

7.0.1 Simple talks about Convolution
From The Mind’s Machine, Foundations of Brain and Behavior (Watson & Breedlove (2012)), The
transfer of signals from our eyes to our brain, involving numerous intermediate functions and convoluted
pathways, is truly a complicated process. Suppose that each of our eyes represents a function [ι1 for the
left one, and ι2 for the right one] of the image of reality. The following equation [7.1] with v, u ∈ Ω is
called convolution between both eyes given an input v:

ι1 ? ι2(v) =

∫

Ω

ι1(u)ι2(v − u)du (7.1)

135

136 CHAPTER 7. CONVOLUTIONAL NEURAL NETWORK GIBBS MODEL

where ? is set for the convolution operation here. You may understand convolution ι1 ? ι2(v) as the way
both eyes join their effort to detect one image v. At the first sight of v, each eye ι ∈ {ι1, ι2} retina
sends signals known as optic nerves through a series of neuronal axons. The key ”connectors” between
the retina and the brain act as these nerves. Each optic nerve begins with its corresponding eye and
continues until a part of the brain called the thalamus is reached. Suppose in a simple configuration
that eye ι1 only perceives part u of image v, and ι2 perceives part v − u. Whatever the amount of sight
u perceived by ι1, both eyes always synchronize and sum out what they see in ι1(u)ι2(v − u), for all
possible values of u ∈ Ω. This leads to the integration [7.1], commonly called convolution.

Convolution in discrete perspective. For a moment, suppose that both eyes catch up a discrete view
of the reality. The convolution is:

ι1 ? ι2(v) =
∞∑

u=−∞

ι1(u)ι2(v − u)

2D convolution. More than one dimension space can also be convoluted. For example, two-dimensional
(2D) convolutions are applicable in the processing of images. If an image is a signal ι1(u, v), where
(u, v) is the position of a pixel, and ι2(u, v) is the kernel of a filter, the convolution is:

(ι1 ∗ ι2)(u, v) =

∫

u

∫

v

ι1(α, β)ι2(u− α, v − β)∂β∂α

For example, with a Gaussian Kernel, this operation is smoothing, since we are integrating a small
region of the image with a ’normal’ filter at each (u, v) location. [Chang & Sha (2016), Cheng & Parhi
(2020)].

7.1 Convolutional neural networks (CNNs)
Graphical Representation

Convolutional neural networks (CNNs) is a special architecture of artificial neural networks, proposed
by LeCun et al. (1995). LeCun called this model LeNet5 [Leray (2000), LeCun et al. (2015b)]. CNNs
use some features of the visual cortex. Image classification is one of the most common implementations
of this architecture. CNNs have a layer of data for the input phase, a layer of output, and a hidden layers.
The secret layers typically consist of convolutional layers, layers of ReLU, layers of pooling, and layers
that are completely connected.

1. A convolution process is introduced from the input layer by convolutional layers. The basic
information from the previous layer is passed on to the next layer. Neurons only receive feedback
from a subarea of the previous layer in a convolutional layer. [Zeiler & Fergus (2014), Kuo (2016),
LeCun et al. (1995), O’Shea & Nash (2015), Bouvrie (2006), Albawi et al. (2017)]

2. Pooling unites the outputs of neuron clusters in the next layer into a single neuron.

7.2. PRUNED AND QUANTIZED CNNS FOR SPARSITY AND MODEL COMPRESSION 137

3. Every neuron in one layer is connected to every neuron in the next layer by completely linked
layers. Each neuron receives input from every part of the previous layer in a completely connected
layer (fully connected layer).

Some experiments have been done in the past proving CNNs really effective in the field of image clas-
sification tasks (Sultana et al. (2018), Sermanet et al. (2012), Simonyan & Zisserman (2014)).

A more formalized definition for CNNs

Here follows a short definition of Convolutional Neural Network [Mairal et al. (2014), Wu (2017),
Albawi et al. (2017)]:

In general, a convolutional layer consists of a set of F filter weights Hf ∈ Rz×w, f = 1, . . . , F ,
F is called the depth, which generate each a so-called feature map Uf ∈ Rn

′×m′ from an input
matrix V ∈ Rn×m according to the following convolution:

Uf
i,j =

z−1∑

k=0

w−1∑

`=0

Hf
z−k,w−`V1+s(i−1)−k,1+s(j−1)−`

where s ≥ 1 is an integer parameter called stride, n′ = 1 +
⌊
n+z−2

s

⌋
and m′ = 1 +

⌊
m+w−2

s

⌋
,

and it is assumed that V is padded with zeros, i.e., Vi,j = 0 for all i /∈ [1, n] and j /∈ [1,m]. It is
possible to decrease the performance measurements by either increasing the s stride or by adding
a pooling layer. The pooling layer partitions U into regions p×p for each of which a single output
value is computed, e.g. a maximum or average value, or L2 -norm.

7.2 Pruned and Quantized CNNs for sparsity and model compres-
sion

It takes a huge dataset to use CNN for classification, which improves accuracy. A downside, however, is
that it produces several model parameters that increase the cost of computation and require high memory
bandwidth. We optimize the model in two ways. The first is network optimization to narrow down the
network size by pruning redundant links and quantifying the weights and fusing the neural networks.

7.2.1 Pruning a Convolutionnal Neural Network: computation speed and model
size reduction

This is a model compression type. It reduces the number of synaptic ties to other neurons in order to
reduce the total amount of data. Weights similar to zero are usually omitted. This will help remove
redundant connection ties for tasks such as classification with small accuracy drops (Shawahna et al.,
2018). We will focus here on pruning entire filters in convolutional layers.

This has a cool side affect of also reducing memory. As observed in Molchanov et al. (2016) paper, the
deeper the layer, the more it will get pruned. This implies a lot of pruning of the last convolutionary
layer, and a lot of neurons from the fully connected layer after it will also be discarded. Another

138 CHAPTER 7. CONVOLUTIONAL NEURAL NETWORK GIBBS MODEL

alternative would be to reduce the weights in each filter or delete a particular dimension of a single kernel
while pruning the convolution filters. You can end up with sparse filters, but having a computational
rate is not trivial. Latest works support ”Structured sparsity” instead of pruning whole filters [Ding et al.
(2018), You et al. (2019), Li et al. (2016), Luo et al. (2017), He et al. (2020), Huang et al. (2018), He
et al. (2018)]. One important thing some of these papers demonstrate is that they get results that are
much better than training a smaller network from scratch by training and then pruning a larger network,
particularly in the case of transfer learning.

Li et al. (2016) supports the pruning of full convolution filters. Pruning a filter with an index of k affects
the layer in which it resides, and the layer below. All input channels in the k index of the following
layer will have to be deleted, as they will no longer exist after pruning. If the following layer is a fully
linked layer, and the size of that channel’s feature map is M × N , then M × N neurons are excluded
from the fully linked layer. In this work, the neuron ranking is fairly basic. This is the L1 norm for
each filter’s weight. They rank all the filters at each pruning iteration, prune the lowest ranking filters
globally across all the layers, retrain and repeat.

A similar work has been proposed by Anwar et al. (2017), but the ranking is much more nuanced. They
retain a set of N particle filters that reflect the pruning of N convolutional filters. A score dependent
on the network precision on a validation set is allocated to each particle when the filter represented by
the particle has not been masked out. Then, new pruning masks are sampled based on the new ranking.
They used a small validation collection to calculate the particle scores because running this method is
heavy.

7.2.2 Other Proof-based and advanced Pruning methods

1. Adversarial Neural Pruning (Madaan et al. (2019))

2. Network Pruning via Transformable Architecture Search (Dong & Yang (2019))

3. Self-Adaptive Network Pruning (Chen et al. (2019))

4. Structured Pruning of Large Language Models (Wang et al. (2019))

7.3 Quantized Convolutional Neural Networks
To get the neural network to an acceptable size while still maintaining high-performance precision, the
quantization method is often applied. For edge applications, where the memory size and number of
computations are necessarily limited, this is particularly important. In such applications, the model
parameters are held in the local memory to prevent time-consuming transfers using PCIe ((Peripheral
Component Interconnect Express) or other interconnection interfaces in order to achieve better perfor-
mance [Gschwend (2020), Wang et al. (2020), Morcel et al. (2019), Ding et al. (2019a), Ding et al.
(2019b), Blott et al. (2018), Shu et al. (2019)].

The method of approximating a neural network using floating-point numbers (FTP32) through a neural
network of low-bit width numbers (INT8) is carried out for the reduction. This significantly decreases
both the need for memory and the cost of computing using neural networks. We slightly lose accuracy
and precision by quantizing the model. However, for most applications there is no need for a 32-bit

7.3. QUANTIZED CONVOLUTIONAL NEURAL NETWORKS 139

floating point. Research into the use of lower-precision numerical formats has been motivated by the
need for reduced bandwidth and machine specifications of deep learning models [Fromm et al. (2018),
Zhuang et al. (2019), Cai et al. (2018), Zhuang et al. (2018)]. It has been extensively demonstrated that
8-bit integers (or INT8) can be used to represent weights and activations without incurring substantial
loss of accuracy. An active area of research that has also shown tremendous success is the use of even
lower bit widths, such as 4 or 2, or even 1-bit (Zhou et al., 2016).

If binary (−1, 1) or ternary (−1, 0, 1) are weighted using 2-bits, then convolution and fully-connected
layers can only be determined by adding and subtracting, completely removing multiplications. If
activations are also binary, it is possible to delete additions in favor of bitwise operations (Rastegari
et al., 2016). High performance hardware is typically indispensable for the implementation of CNN
models because of the high computational complexity, which prevents their further extensions. Banner
et al. (2019) present the first realistic approach to quantization of 4-bit post-training: it does not include
training the quantized model (fine-tuning), nor does it require the entire dataset to be usable. They also
accomplished the quantization of all activations and Weights and three complementary methods have
been suggested to reduce the quantization error of the tensor stage, two of which achieve a closed-form
analytical solution.

7.3.1 Binarized Neural Networks (BNNs)

In this part, we review Binarized Neural Networks (BNNs).

Binarisation is the most extreme form of network quantization. Binarization is a 1-bit quantization
where only two possible values are possible for data. In general, for those two values, -1 and +1
were used. In some cases presented in the literature, quantized networks using the values -1 and
0 and +1 are not binary but ternary. [Simons & Lee (2019), Seo et al. (2016), Prost-Boucle et al.
(2018)].

The BNNs deep neural models are networks which, instead of full accuracy values, use binary values for
activations and weights. With binary values, BNNs can use bitwise operations to perform computations,
which decreases execution time. The model sizes of BNNs are much smaller than their complete coun-
terparts in precision. While the accuracy of a BNN model is typically less than full precision models, on
larger datasets such as ImageNet (Simons & Lee, 2019), BNNs have closed the accuracy gap and are be-
coming more accurate models. As a result of their bitwise performance, BNNs are also good candidates
for deep learning implementations on Field Programmable Gate Arrays (FPGAs) and ASICs. Those
machine are very famous due to their bitcoin and cryptocurrencies mining power (Tu et al., 2019).

A method has been implemented to train Binarized Neural Networks (BNNs) with binary weights and
runtime activations (Courbariaux et al., 2016). The binary weights and activations are used to measure
the parameter gradients at train-time. BNNs greatly decrease memory size and are accessed during
the forward transfer, as they replace most arithmetic operations with bit-wise operations, which are
supposed to dramatically increase power performance. They performed two sets of experiments on the
Torch7 and Theano systems to verify the efficacy of BNNs. On both, BNNs over the MNIST, CIFAR-10
and SVHN datasets achieved almost state-of-the-art results.

BNNs provide simple, compact descriptions and, thus, they have a wide variety of low-power com-

140 CHAPTER 7. CONVOLUTIONAL NEURAL NETWORK GIBBS MODEL

puter applications. Icarte et al. (2019) got a model-based approach to train BNNs using constraints.
Programming (CP), mixed-integer (MIP) and CP/MIP programming, and hybrids approaches were all
investigated. They formulate the issue of training as seeking a set of weights which correctly classify the
instances of the training set while optimizing objective functions proposed in the literature as proxies
in a quest of generalization. Their experimental findings on the MNIST digit recognition dataset indi-
cate that BNNs based on a hybrid approach generalize better than those obtained from state-of-the-art
models when training data is minimal.

7.4 Our CNN architecture

Let us assume a CNN architecture with Ξ convolutional layers, denoted as network (CNN). Assume Li

to be the ith layer and i ∈ [1, 2, . . .Ξ]. The layer Li has ni filters which gives the ni feature-maps that are
used as input for the next layer. The set of filters at layer Li is denoted as FLi where FLi = [1,2 , . . . ,ni].
Similarly, the feature maps at layer Li are represented as MLi = [m1,m2, . . . ,mni].

Each feature map mi is of dimension (eξ, dξ) , where eξ, dξ are height and width, respectively, of the
feature map. Therefore the shape of MLi is (eξ, dξ, ni).

7.4.1 Our 4-type CNN Gibbs Model

Our main CNN network has feature maps MLi on each layer Li that we replace by weighted feature
maps, and the weights are given by three (3) variants weights type for the network (CNN) (explained
in the next section). Let WLi = [W 1,W 2, . . . ,W ni] be the weights of layer Li given by the CNN
network. Then, the Lth

i layer feature maps of CNN is replaced as:

Mw = [W 1m1,W 2m2, . . . ,W nimni]

Here m1,m2, . . . ,mni are the feature maps at layer Li in the original network. Now, our objective is to
optimize the network such that most of the W i are close to zero, without sacrificing the accuracy. The
modified network is obtained using the following approaches :

• The Pruned CNN: mi ∈ {0, 1} with higher probability on 0. The probability is drawn with a beta
law with hierarchical Bayesian approach.

• The Mean and Contrast CNN: mi ∈ {0, 1} with lower probability on 0. The probability is still
drawn with a beta law with hierarchical Bayesian approach.

• Pruned CNN with Ising Models as illustrated in section [3.8], this approach is a very rich land of
statistical exploration.

• The Quantized CNN: mi ∈ {0, 1} with uniform probability. In this architecture, each scalar vi of
W i is transformed into the most closed number in ±2s format, for bitwidth standard computa-
tions. This is much more closed to the IEEE-754 standard presented in (Al-Hami et al., 2018).

We plan to test the effectiveness of the CNN Gibbs Model with CIFAR dataset described below.

7.4. OUR CNN ARCHITECTURE 141

7.4.2 The CIFAR-10 Photo classification dataset for experiments
The CIFAR-10 dataset is used for our experiments. It consists of color images in 10 classes of 60000
of 32× 32 pixels, with 6000 images per class. The dataset is divided into five training batches and one
test batch, each with 10000 photos. There are 50000 training images and 10000 test images. There
are precisely 1000 randomly-selected photos from each class in the test batch. The training batches
comprise the remaining images in random order, but more images from one class than another might be
present in certain training batches. The training batches between them contain precisely 5000 images
from each class. Krizhevsky et al. (2009) explains more the dataset and the methods used in much
greater detail when collecting it.

7.4.3 Two additional layers and Invariants Networks as (universal) approxima-
tors

As we are working to make the CNN Gibbs Model a very powerful model, one of our main contribution
in this chapter is to realize that neural networks can be built as invariant networks for universal
approximation purpose.

First, we will add after the input layer, a matching layer using bipartite graph-matching as presented
in shape context section 6.3.2. A second layer after the matching layer will extract different invariant
features coupled with the existent ones in the image: such as: Holographic Nearest Neighbor (HNN)
features [see 6.3.1], Hough transformation features [6.3.3], Fourier descriptors [see 6.3.4], Chord distri-
bution features [see 6.4.1], Moment invariant features [6.4.2].

Finally, we will integrate results from [Maron et al. (2018), Yarotsky (2018), Azizian & Lelarge (2020),
Dym & Maron (2020), Keriven & Peyré (2019), Maehara & NT (2019), Maron et al. (2019)] which
highlight some invariant networks as universal approximators. As for example, Maron et al. (2019)
exposes :

• G-Invariant networks;

• (hyper-) graph networks;

that are all universal. To the best of our knowledge, few of those networks have truly been implemented
in practice.

142 CHAPTER 7. CONVOLUTIONAL NEURAL NETWORK GIBBS MODEL

Chapter 8

Concluding Remarks, Discussion notes &
Applications

8.0.1 On the mixture models.
In the statistical literature, the significant role of finite mixture models is expanded by the ever-increasing
pace at which publications on their implementations appear. Many more combinations of such (mixture)
versions are also available. They are fundamentally different from the latent distribution type (discrete
or continuous) or family (exponential family most of the time), to their estimation method (Bayesian
posterior likelihood or maximum likelihood). The finite mixture models are easy to implement because
of various criterion that help to choose the right number of components: Akaike’s Information Criterion
(AIC), Bayesian information criterion (BIC), informational and entropy criterion, etc. (Steele & Raftery
(2010); Bozdogan (1993); Hawkins et al. (2001); Biernacki et al. (1999); Naik et al. (2007); McLachlan
& Rathnayake (2014); Celeux & Soromenho (1996); Lo et al. (2001)).

Algorithms that work for that purpose (Expectation Maximization –the EM particularly) rely on the
fact that, there exists a strongly consistent asymptotically efficient local maximizer in the interior of the
parameter space (Zhao et al. (2020); Archambeau et al. (2003); Yu et al. (2018); Jordan & Xu (1995);
Ma et al. (2000); Clark & Vo (2007); Xu & Jordan (1996)). Therefore, it is recommended to search the
best local maximum in the unconstrained parameter space and then to check that the obtained solution
indeed corresponds to a local maximum and is not on its way to infinity. This check can be difficult due
to the presence of so-called spurious local maxima which should be ignored.

A natural Bayesian approach for mixture models with an unknown number of components is to take the
usual finite mixture model with symmetric Dirichlet weights, and put a prior on the number of com-
ponents—that is also called sometimes: to use a mixture of finite mixtures (MFM) (Miller & Harrison
(2012); Miller & Harrison (2018); Geng & Hu (2020); Geng (2017)).

8.0.2 Extension to a Mixture of music composers.
Our interest into music goes way back to time series analysis (ALAHASSA (2018)). Like in time
series, music is essentially a subject of interest because of its special harmonics. Music automated
generation is one excellent study for mixture models that we would like to explore in the future for this

143

144 CHAPTER 8. CONCLUDING REMARKS, DISCUSSION NOTES & APPLICATIONS

reason. The motive is to use the potential of machine learning architectures and mixture models to learn
musical types from random musical corpora automatically and then to create samples from the predicted
distribution.

A question of interest: Is-it that possible that each musical type is a combination of specific
mixture of waves distributions? Are those mixtures all approximable by a reduced neural network
kernel, being Shallow or Deep ?

The applications are vast enough and can reach the domain of piano music generation, and automatic
realistic video contents creations as well. In practice, this is done by applying a mixture of composers
(Balkema & van der Heijden (2010); Engels et al. (2015); Boulanger-Lewandowski et al. (2012); Mao
et al. (2018); Williams et al. (2019); Dieleman et al. (2018); Moerchen et al. (2006); Suprem & Ruprem
(2013); Ramalingam & Krishnan (2006); Williams et al. (2020); Coviello et al. (2012); Li et al. (2019a)).
This may require the utilization of hidden mixture (Markov) models, as much as much more capital-
ization of deep neural networks and alike models (Deng et al. (2013); Docevski et al. (2018); Židek
(2020); Simões (2019)). One expectation of this challenge is to produce by itself sounding music with
original compositions that still respects the rules and classic patterns. It will also help music creators to
automatically correct/adjust their composition.

8.0.3 The Multilayer feedforward Neural Network.
Deep learning neural networks are trained using the stochastic gradient descent optimization algorithm
(Li & Orabona (2019)). The learning rate is a hyperparameter that controls how much to change the
model in response to the estimated error each time the model weights are updated (Gotmare et al.
(2018)). Choosing the learning rate is challenging as a value too small may result in a long training
process that could get stuck, whereas a value too large may result in learning a sub-optimal set of
weights too fast or an unstable training process that fails to converge (Darken et al. (1992); Magoulas
et al. (1999); Behera et al. (2006); Jacobs (1988)). For our experiments in section, the learning rate was
small, large learning rates result in unstable training and tiny rates result in a failure to train sometimes
(Wu et al. (2019)). A good batch size is also a matter of importance (Smith et al. (2017)). Those rules
have become more important in a variational inference scheme (Ranganath et al. (2013)).

With the recent advanced in neural networks, the choice of the loss function is simplified. The cross-
entropy is mostly used for classification tasks where the output is a probability value between 0 and 1
(Zhang et al. (2018c)). One may investigate other entropy criteria such as the Shannon entropy (Silva
et al. (2005)). The Mean Squared Error is frequently used for regression tasks, but depending on the
choice has to be validated (Rady (2011)) because of its potential impact on the final results. This is
valid for all neural networks classifiers (Falas & Stafylopatis (1999)). Activation functions are also a
subject of matter. You can choose your activation functions experimentally (Karlik & Olgac (2011);
Ramachandran et al. (2017); Sharma (2017); Zhang et al. (2018b); Nwankpa et al. (2018); Hayou et al.
(2019)). This is our main recommendation which is also valuable for all initialization (Hayou et al.
(2018)).

Our results from table 3.4 prove that we can reach any sufficiently good level of prediction by adapting
anNk H-Layer-Neural Network model. This architecture is universal and represents one state-of-the-art
model in multivariate regression. The experimental results are impressive because we can now (and

145

only) step to how to find the good model in statistical learning only by simply augmenting/reducing the
chosen number of layers, the number of training times (epochs), the size of the batch learning process,
the number of neurons on each layer, etc., to reach any desired precision level. This can be generalized
to classification task using the softmax activation function (Memisevic et al. (2010); Duan et al. (2003);
Liang et al. (2017)).

8.0.4 Notes on the Potts Models with Complete Shrinkage.

The Potts model is frequently used as random partitions models where covariates may be included [See
2.2]. Those models with covariates are called Product partition models with a covariate-dependent
extension (PPMx) mainly introduced by Müller et al. (2011a). The Shallow Gibbs Model is based on a
PPMx from Murua & Quintana (2017b) which has the form:

y1, . . . , yn | ρn,ψ∗1, . . . ,ψ∗kn
ind∼ p

(
yi | xi,ψ∗si

)

ψ∗1, . . . ,ψ
∗
kn

iid∼ p(ψ) and ρn ∼ p (ρn | xn)

where p (yi | xi, ψi) is the likelihood model stating the relationship between the i th response and the
associated covariate vector xi. The Potts clusters in this last model are simulated using the Swendsen-
Wang algorithm (Wang & Swendsen (1990), Barbu & Zhu (2003), Galanis et al. (2019)). One may be
confronted to the cluster size distribution during simulation, because the bonds based version of the Potts
Model [see 2.1.1] has the drawback to simulate small clusters that are not preferable in some circum-
stances, as for example to run or apply some neural networks models locally on the clusters themselves
(using cluster adaptive training scheme as a specific example – Gales (2001)). One theoretical approach
is to search for the distribution of the components size in the Potts Model to simulate a conditional
distribution: a bonds distribution with constraints or restrictions on the clusters minimum size. This
can be done using the frequency of frequencies distribution [see 2.6.1], specifically the count vector
M = ({mv})v of the clusters also called the frequency of frequencies (FoF) vector, the distribution of
which is also commonly referred to as the FoF distribution in short appellation. Once you find the FoF
distribution of clusters count vector given the bonds probabilities, expressed as :

FoF ({mv}|{δij};E(G))

with the graphG and its edges setE(G) (δij = 1 if observations i and j are connected), you may derive
the conditional distribution of bonds given the constraint cluster size condition Sc = {mv = 0, for v ≤
Sc}, where Sc is the minimum cluster size we expect. This requires that we explore all configurations
of Sc [see 2.6.4], for which we have proposed a fast algorithm. This may almost be intractable for our
usual computers (only for for large datasets), even to find the most probable configuration among Sc−list
given a label assignment. So, we have just limited this research to simply present this conditional bonds
distribution we were looking for in [see 2.6.6]:

p({bij}, {bij} ∈ S̃c − list|σ,X, β, q, Sc) = (8.1)

PRODi∈{1,...,n−1},j>i

(
[P̃ ◦ δ̃]B + [(1− P̃) ◦ δ̃]1−B

)

p({mv = 0, for v ≤ Sc}|σ,X, β, q)

146 CHAPTER 8. CONCLUDING REMARKS, DISCUSSION NOTES & APPLICATIONS

where we are given a q-state, a bandwidth σ, X is set for our covariates, and β the inverse of the
system temperature, and the other parameters are reformulated quantities presented in section 2.6. An-
other practical approach is to modify slightly the Swendsen-Wang algorithm to insert some clusters
constraints. This what we have achieved as a novel Potts Model, called the Potts Clustering with Com-
plete Shrinkage (PCCS) [see 2.3]. In this approach, to deal with the increasing number of small clusters
generated in a given partition, we apply a modified agglomerative clustering approach (Kurita, 1991)
by merging all small clusters of size ≤ h with their closest cluster in terms of minimal distance respec-
tively, where h is an integer greater or equal to 2. The algorithm uses a technique in which distances
of all pairs of observations are stored. Then the nearest cluster (with size ≥ h) is given by the cluster
with the closest node in terms of minimal distance to the cluster to be merged. This approach is truly
effective; it helps to control the clusters size, and we have found evidence of bell shape curve [figure 2.8,
figure 2.20] of the constrained cluster size distribution of PCCS, when applied to some datasets taken
from the multiple-output benchmark datasets available in the Mulan project website (Tsoumakas et al.,
2020) [see Table 2.1].

8.0.5 Concluding remarks on the Shallow Gibbs Structure.

We present in chapter 4 a framework to build a new structured Potts clustered Gibbs Multivariate Regres-
sion model which is properly say is Random Gibbs Neural Network Forest (Barber & Bishop (1997),
Barber & Bishop (1998)), by combining structured precision matrixes, Potts Neural Network Regression
(SPNNR), variational learning and backpropagation. You may call the model under many appellations:
Shallow Gibbs Network, Random Gibbs Network Forest, Shallow Potts Neural Network, the Potts-
Gibbs-NM model etc. The model has four variants: the fully-connected Gibbs network or full Gibbs
network (Full-Gibbs, for short), the between-layer sparse Gibbs network (B-Sparse-Gibbs), the sparse
shallow Gibbs network (Sparse-Gibbs), the sparse compound symmetry Gibbs network (CS-Sparse-
Gibbs), and the compound symmetry Gibbs network (CS-Gibbs). As literature references to many alike
sparse-structured or similar models, you may look for the work from: Ionescu et al. (2015), Kepner &
Robinett (2019), Wainwright (2014), Louizos & Welling (2016), Paul et al. (2016), Schwing & Urtasun
(2015), Ardakani et al. (2016), Mazza-Anthony (2019), with an exception of the Compound symmetry
Gibbs network, which is a particular innovation of our research. We can even say that one main innova-
tion of this research is the introduction of compound symmetry precision matrix on the weights on our
Bayesian Shallow neural networks. The effectiveness of our results will definitely increase interests in
those types of matrices.

The neural network (our base learner) weights are Gaussian Markov Random Field distributed. To offer
flexibility in terms of model structure, the precision matrix has been modified to infer three variants of
analysis : sparse analysis, compound symmetry analysis and fully-connected framework. Those models
have the properties to adapt themselves easily to the data in a few iterations during the learning process.
The model is mounted in three stages: a set of data yn = {y1, . . . , yn} ⊂ Rp with associate covariables ;
each yi following a Gaussian distribution p(y|x, ψ,Σ) = (2π)−p/2|Σ|−1/2 exp{−1/2(y−fψ(x))′Σ−1(y−
fψ(x))}., with covariance Σ and mean fψ(x) which represent specifically a neural network function of
the covariable x. The weights and the biases of the model vectorized as ψ = (b(1),W (1), b(2),W (2)) are
high dimensional and their size can be increased at will. But, keep in mind that the goal of the Shallow
Gibbs Network is to build a simplified model with few neurons and better mean squared error in a very
short training time (reduced number of epoch ≤ 10).

147

First, we define the Kullback-Leibler of the model variational distribution [See 4.4] that will help to
simulate variational parameters. This approach is very rich in terms of properties and convergence
(da Rocha et al. (2011), Wiegerinck & Kappen (2000), Challis & Barber (2013)); even though it suf-
fers from many drawbacks as the positive definiteness of your precision/covariances matrices during
gradients updates [see 4.4.2]. Gradients updates have good advantages such as a fact approximations
in a few iterative steps, mainly if you tweak appropriately the learning rate. When you applied an ap-
proximation for your parameters or hyper-parameters during the updates, you step forward the Iterative
Projected Gradient (IPG) updates approach (Cruz et al. (2011)) which converge also if the projection
space is an optimal subspace. As the case of PSD - Positive Semi Definite - approximation is current in
literature, we can index this paper ”Approximation by matrices positive semidefinite on a subspace”
from Hayden & Wells (1988) that was a great help in building our model.

It is no need to say that the double backpropagation scheme in [see 4.5.1] is truly a requirement to
reach an oustanding result. The secret behind is that the second backpropagation system represents
itself another neural network by its own. In other words, given a set of initial predictions, for the data
(x,y) and an estimated/or random values for ψ = (b(1),W (1), b(2),W (2)) and Σ, it reduces naturally the
model error by backpropagating under a suitable learning rate schedule. Our experiments and results
were not only efficient in comparison to the MMR model Zhen et al. (2017), but also was impressive
against Murua & Quintana (2017c) model, which was also a benchmark during all our supervision time
with him as Professor and Mentor.

The four (5) models developed in this framework include a clustered neural network regression via a
Potts model. Monte Carlo simulations are limited to run posterior simulation for these models, and
variational inference was the last resort. This novel representation (framework) aims to capture also
more complex pattern in small datasets with high dimensional features. We have increased relative
prediction power compare to simple prediction, and offered to the novice an adapted regression model
to heterogeneous data, that can surpass the Nk H-layer Feed Forward Neural Network (FFNN) [see
3.10] and shall over-become the next revolution of neural networks. And finally, we have found for
the Shallow Gibbs Network model [4.1], the perfect learning configuration is: the dist-NN-(h)-TS-
PMI)-(l1, ζ, εdbs) − DBS, which is a combination of the Universal Approximation Theorem, and the
DBS optimization, all coupled with the (dist)-Nearest Neighbor-(h)-Taylor Series-Perfect Multivariate
Interpolation (dist-NN-(h)-TS-PMI). It indicates that, with an optimal number l1 of neurons on the
hidden layer, an adapted ζ of DBS updates, an optimal DBS learning rate vector εdbs, an optimal distance
dist in the research of the nearest neighbor in the training dataset for each test data xtest

i , an optimal
order h of the Taylor approximation for the Perfect Multivariate Interpolation (dist-NN-(h)-TS-PMI)
model once the DBS has overfitted the training dataset, the train and the test error converge to zero
(0). εdbs integrates simultaneously the DBS learning rate vector for all the model parameters, the DBS
learning rate for the training data, and the DBS learning rate for the test data.

This finding is a great revolution in all fields and subfields of Statistical Learning Theory, from the
now to the forever. The generalization power of this model [under assumption (Fd)] is infinite, as the
secret is to understand that every augmented data can also be sufficiently differentiated, as much as we
want to overlap all the possible data Space domain:

148 CHAPTER 8. CONCLUDING REMARKS, DISCUSSION NOTES & APPLICATIONS

x
aug-train
j1

= (xtrain
j1

(1) + δ, ..., xtrain
j1

(q))−→





(xtrain
j1

(1) + s1 · δ, ..., xtrain
j1

(q))

(xtrain
j1

(1), xtrain
j1

(2) + s2 · δ, ..., xtrain
j1

(q))
.

(xtrain
j1

(1), xtrain
j1

(2), ..., xtrain
j1

(q) + sq · δ)
(8.2)

with (s1, s2, ..., sq) is a q-tuple of integers or rationals, where xaug-train
j1

is our augmented data in the
training set, and δ ∈ R a very small number. The re-training process has to be done progressively to
obtain their perfect associated parameters [see 5.4].

8.0.6 A Generalized Double Back-Propagation Scheme (GDBS) for any para-
metric model

We propose an effective Generalized Double Back-Propagation for any parametric model, aug-
mented with a differential and local neighborhood machine learning framework for almost sure
convergence. As an extension of section [4.5.1], we propose a general double back-propagation
scheme (GDBS) using the Mean Squared Error (MSE), and for any (parametric) model with param-
eter ψ as :

ŷest,i = fψ(xi) (8.3)

1. Using the equation (in 8.3), apply any suitable optimization framework to obtain a general esti-
mate ψ̂0 of ψ for all the model (in a first step).

2. Use again equation 8.3 to backpropagate the MSE(yi − ŷi) = 1
n
‖yi − ŷest,i‖2 to update ψ̂0 per

observation as follows:

ψ̂1,i ←− ψ̂0 − εψ,0
∂MSE(yi − ŷest,i)

∂ψ
(8.4)

ψ̂t,i ←− ψ̂t−1,i − εψ,t−1
∂MSE(yi − ŷest,i)

∂ψ
(8.5)

where εψ,t is the learning rate schedule [See 3.6.2] for this gradient update of ψ at step t, and ψ̂t,i

is the value of ψ at iteration t for observation i.

To reach convergence, above assignments have to integrate updates for y as follows:

ŷest,(i,t) ←− fψi,t(x) + Li,t · ui,t − εŷest,(i,t)
∂MSE(yi − ŷest,i)

∂ŷest,i
(8.6)

where ∂MSE(yi−ŷest,(i,t))
∂ŷest,i

= 2 ∗ (yi − ŷest,(i,t)).

149

But, at step t in the implementation, 2 ∗ (yi − ŷest,(i,t)) is replaced by 2 ∗ (yi − ŷest,(i,t−1)). At initial
step, ŷest,(i,0) is computed using the model equation and ψ̂0.

So each training data has its own learning rate which is here set as εŷest,(i,t) . This is valuable for each
test data as follows:

ŷtest
est,(i,t) ←− fψi,t(x

test) + Li,t · ui,t − εtest
ŷest,(i,t)

∂MSE(yi − ŷest,i)
∂ŷest,i

(8.7)

where for the k-th test data xtest
k the changes fψi,t are taken from the j-th training data yj which verify:

jchoosen = arg min
xj∈ Training Set

Mean(xj − xtestk) (8.8)

where the operation Mean(u) for vector u is taken upon all dimension of u. The criteria used in opti-
mization [4.29] can be modify for a distance dist for which each test data xtest

k is ensured to find an
associate xtrain

i in the training data with :

dist(xtest
k , xtrain

i) ≤ ε (8.9)

where ε is a very small number. This presented framework will be called (ζ, εdbs) − GDBS, and aug-
mented with the data Augmentation for Empirical Differentiation (DAED) framework in section 5.3,
shall be called the dist-NN-(h)-TS-PMI-(l1, ζ, εdbs) − GDBS. When the model is truly differentiable,
with assumption (Fd) being valid, the learning with this model is almost surely perfect.

8.0.7 The Infinite Zelda Stochastic Game.
This is a stochastic game framework we have derived for a direct application scheme of the Potts Shrink-
age model coupled with the Shallow Potts Gibbs Models. We all know that the next generation of games
will come from artificial intelligence (AI) networks (Hsu (2004), Hassabis (2017), DeCoste (1997),
Granter et al. (2017)). The core idea of this part is inspired from Bowling & Veloso (2002) that have
described a scalable learning algorithm for stochastic games, and mainly the equivalence between Potts
Model and percolation (Essam (1979), Ding et al. (2012), Kemppainen & Smirnov (2019)). We present
here the Infinite Zelda Game (IZG) that rely on the learning process of the Shallow Gibbs Network
(SGN) model.

The random partitions can be seen as random graphs. Each partition from the random bond Potts models
used for its simulation presents some connected components and isolated elements. With a given subset
of data {(xi, yi)}1≤i≤N , the graph generated at each step is equivalent to a network graph built from pair
interactions between the neighbors. Regardless of the connectivity structure, the graph has vN state (s)
if each data point is characterized by v possible states (or spins). Each of the v states are represented
graphically by a color. At each step (a new distinct generated partition from a previous one), yi can

150 CHAPTER 8. CONCLUDING REMARKS, DISCUSSION NOTES & APPLICATIONS

move from state v1 to v2, thanks to the clustering process, and its estimate from the Shallow Gibbs
Network (SGN) is denoted ŷi.

1(pos1)

5(pos2) 3(pos2)

6(pos2) 2(pos1)

7(pos1) 4(pos1) 8(pos1)

Figure 8.1: A 3-component Potts graph of size 8. Shrinkage constraint is reduced to 1.

The green colored circle shall indicate isolated points, and the same colored squared indicates a set
of points all connected forming a component. Given the size of the hidden layer of the Shallow Gibbs
Network (SGN), there two possibilities (denoted pos1 and pos2 and detailed in the following) [see figure
8.1]:

i. Estimated ŷi is close (in distance metric) to real yi more than its assigned cluster Si estimated
mean 1

si

∑
j∈Si yj , with |Si| = si. This possibility is called pos1.

ii. Estimated ŷi is not close (in distance metric) to yi more than its its assigned cluster Si mean
1
si

∑
j∈Si yj , with |Si| = si. This possibility is called pos2.

We set each available dataset Ds to represent a Mansion (the training part). In each Mansion, the player
has to maximize its coins collection to be eligible to move out to another Mansion. Each generated
partition proposes a conditional estimate ŷi for yi ∈ Y = {yi, 1 ≤ i ≤ q} through the Shallow Gibbs
Network (SGN). The player has to find by mouse or finger click in the network graph, those colored
points in the position pos2. Obviously, the isolated points (in white color) are always in position pos2.

To facilitate the game, we always declare the number b of data points in position pos2, and ask the player
to find them in be trials with b + 5 = be. Because the partitions are generated by Swenden-Wang cuts
(Barbu & Zhu (2003)), the game is set for the player to accumulate coins as many as he detects the right
squares in position pos2, in few trials, and in a given recorded time te.

The Goal of the Infinite Zelda Game (IZG): “Win or Learn More” The goal of the Infinite Zelda
Game (IZG) is to maximize your coins through the mansions. The more you win, the quicker you can
move to another mansion. One more trick is to be done each time before generating a partition (a new
network graph): the player has to choose the number of dist-NN-(h)-TS-PMI-(l1, ζ, εdbs)−DBS updates
for the Shallow Gibbs Network (SGN) characterising its power level. By default, the power is set to 5,
and he has to buy more coins to set more power.

151

The more dist-NN-(h)-TS-PMI-(l1, ζ, εdbs) − DBS updates you set, the more you may win at each
partition configuration, because it reduces the number of data points (yi) in position pos2 with a Potts
Shrinkage constraint ≥ m ≥ 5: the more power level you set, the more you reduce the number of
positions pos2 to find. The Infinite Zelda Game (IZG) for the Shallow Gibbs Network (SGN) can be
summarized in the WoLM principle (“Win or Learn More”) which encourages convergence.

8.0.8 Other potential researches.
Metric learning is the doorway to find for any recognition or classification task a sufficient invariant
descriptor, that can resists to any deformation such as an occlusion, clutter, etc. One may need to
combine multiple metrics to reach this goal, such as: Holographic Nearest Neighbor (HNN) [see 6.3.1],
Shape Context [see 6.3.2], Hough transformations features [6.3.3], Fourier descriptors [see 6.3.4], Chord
distribution [see 6.4.1], Moment invariants method [6.4.2], Holographic Nearest Neighbor Class of a
digit [6.5]. Is it that possible: like fingerprints are unique and identifiable for everyone, that each
digit from a given source is unique and identifiable through a unique combination of invariance
descriptors ? Our question stays opened with potential researches, with great advantages for the future
of Artificial Intelligence.

We are also doing some experiments with Convolutional Neural Networks presented in chapter 7 [see 7].
This is a conceptual note, that may further get improved in many ways. Essentially, we have introduced
some novel architectures to explore [7.4.1] and have highlighted the importance of invariant networks
[7.4.3] as universal approximators. This chapter is also an attempt to propose some directives to solve
open questions in chapter [6].

Random Neural Networks and Stationary Architectures. We are reviewing the work of Erol Ge-
lenbe, a pionner in random neural networks. Random connections in neural networks have also raised
interest because of their Universal approximation properties [Gelenbe et al. (2006), Gelenbe (1993),
Gelenbe et al. (1999a), Gelenbe et al. (1999b)]. The goal of our research is to develop approximate
stationary architectures during a learning process [Gelenbe (1990), Bakırcıoğlu & Koçak (2000)].

Graph Theory, Lie Groups, Non-Commutative algebras, and Infinite Representations for Deep
learning architectures: discovery of an infinite machine The progression of Deep learning has
been dependent upon its architecture all those years of its edge development. We found that using
Graph Theory, Lie Groups, Non-Commutative algebras, and some infinite representations, different
high level architectures arise easily that may reinforce existent ones. The proposed new representations
come from complex objects accessible through formalized algebraic theory of graphs, and evidence
from exploratory analysis, including some known geometric structures. From now, it is possible to
extend deep learning architectures to such an infinite scale of embedded networks that they may have
simultaneously an infinite number of backwards and forwards feed connections based on those novel
representations and their respective patterns. We also found that fully-connected networks, stacked
networks, convolutional networks, fractal networks or even spherical networks are just some derivatives
from those complex representations. The Cartan–Killing classification of Lie groups [Procesi (2007)],
and Non-commutative Penrose tilling objects [Akiyama & Arnoux (2017)], Cayley graphs [Alon &
Roichman (1994), Heydemann (1997), Kelarev (2002), Lakshmivarahan et al. (1993)], Metatron Cube
and HyperCube patterns (Knill & Slavkovsky (2013)), as well as Olde Grafham Geometric tiles were
all useful to illustrate our findings. For example, Lie groups are useful as they propose equivariant

152 CHAPTER 8. CONCLUDING REMARKS, DISCUSSION NOTES & APPLICATIONS

transformations to neural networks (Finzi et al. (2020)), stacking is the method to get fractal recursive
networks (Larsson et al., 2016), and tiling helps to generate Turing machines (Demaine et al. (2012),
Glassner (1998), Gopinath et al. (2011), Toth et al. (1987)) This research is completely novel in his
approaches, but can be seen as a much more general and deeper version of the work of Ngiam et al.
(2010), applicable to any neural network.

Syracuse as a Machine Learning Problem. We have initiated a work on Syracuse problem in 2017
(Alahassa, 2017), with partial results (the proof in the document is not complete). We are currently
proceeding reviews to answer the question if deep learning or machine learning can help to solve the
collatz conjecture, because this may be possible [Koch et al. (2020), Jiang (2021)].

Bibliography

Aarts, E., & Korst, J. (1988). Simulated annealing and boltzmann machines.

Abdel-Hakim, A. E., & Farag, A. A. (2006). Csift: A sift descriptor with color invariant characteristics.
In 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06),
vol. 2, (pp. 1978–1983). Ieee.

Abid, S., Fnaiech, F., & Najim, M. (2001). A fast feedforward training algorithm using a modified form
of the standard backpropagation algorithm. IEEE Transactions on neural networks, 12(2), 424–430.

Adhan, S., & Pintavirooj, C. (2014). Alphabetic hand sign interpretation using geometric invariance. In
The 7th 2014 Biomedical Engineering International Conference, (pp. 1–4). IEEE.

Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.

Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation functions to improve
deep neural networks. arXiv preprint arXiv:1412.6830.

Agusta, Y., & Dowe, D. L. (2003). Unsupervised learning of correlated multivariate gaussian mix-
ture models using mml. In Australasian Joint Conference on Artificial Intelligence, (pp. 477–489).
Springer.

Ahsanullah, M., Kibria, B. G., & Shakil, M. (2014). Normal distribution. In Normal and Student´ st
Distributions and Their Applications, (pp. 7–50). Springer.

Aiyer, S. V., Niranjan, M., & Fallside, F. (1990). A theoretical investigation into the performance of the
hopfield model. IEEE transactions on neural networks, 1(2), 204–215.

Akiyama, S., & Arnoux, P. (2017). Substitution and tiling dynamics: Introduction to self-inducing
structures.

Al-Hami, M., Pietron, M., Casas, R., Hijazi, S., & Kaul, P. (2018). Towards a stable quantized convo-
lutional neural networks: an embedded perspective. In 10th International conference on agents and
artificial intelligence (ICAART), vol. 2, (pp. 573–580).

Alahassa, K.-A. (2020).
URL http://my-github.com/kgalahassa

Alahassa, N. K.-A. (2017). Arithmétique cantus, graphe de syracuse, et preuve de la conjecture de
collatz.

153

http://my-github.com/kgalahassa

154 BIBLIOGRAPHY

ALAHASSA, N. K.-A. (2018). P-lag ratio analysis for sound pattern detection in time series.

Alahassa, N. K.-A., & Murua, A. (2020). Shallow structured potts neural network regression (s-spnnr).
Proceedings of the Edge Intelligence Workshop 2020, Les Cahiers du GERAD G–2020–23.
URL https://www.gerad.ca/en/papers/G-2020-23-EIW03

Alali, F. A., & Romero, S. (2013). Benford’s law: Analyzing a decade of financial data. Journal of
Emerging Technologies in Accounting, 10(1), 1–39.

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network.
In 2017 International Conference on Engineering and Technology (ICET), (pp. 1–6). IEEE.

Alexander, C. (2004). Normal mixture diffusion with uncertain volatility: Modelling short-and long-
term smile effects. Journal of Banking & Finance, 28(12), 2957–2980.

Alferez, R., & Wang, Y.-F. (1999). Geometric and illumination invariants for object recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(6), 505–536.

Alghoniemy, M., & Tewfik, A. H. (2004). Geometric invariance in image watermarking. IEEE transac-
tions on image processing, 13(2), 145–153.

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random forests and decision trees. International
Journal of Computer Science Issues (IJCSI), 9(5), 272.

Alon, N., & Roichman, Y. (1994). Random cayley graphs and expanders. Random Structures & Algo-
rithms, 5(2), 271–284.

Alpaydin, E. (2004). Machine learning. The New AI.

Alpaydin, E. (2016). Machine learning: the new AI. MIT press.

Altman, D. G., & Bland, J. M. (1995). Statistics notes: the normal distribution. Bmj, 310(6975), 298.

Amari, . N. H., S. (2007). Methods of Information Geometry. American Mathematical Society.

Amari, S.-i. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5),
185–196.

Améndola, C., Faugere, J.-C., & Sturmfels, B. (2015). Moment varieties of gaussian mixtures. arXiv
preprint arXiv:1510.04654.

Amit, Y., & Murua, A. (2001). Speech recognition using randomized relational decision trees. IEEE
transactions on speech and audio processing, 9(4), 333–341.

Amos, B., & Yarats, D. (2020). The differentiable cross-entropy method. In International Conference
on Machine Learning, (pp. 291–302). PMLR.

Anastassiou, G. A. (2011a). Multivariate hyperbolic tangent neural network approximation. Computers
& Mathematics with Applications, 61(4), 809–821.

Anastassiou, G. A. (2011b). Univariate hyperbolic tangent neural network approximation. Mathematical
and Computer Modelling, 53(5-6), 1111–1132.

https://www.gerad.ca/en/papers/G-2020-23-EIW03

BIBLIOGRAPHY 155

Andersson, S. A., Madigan, D., & Perlman, M. D. (2001). Alternative markov properties for chain
graphs. Scandinavian journal of statistics, 28(1), 33–85.

Andriotis, P., Oikonomou, G., & Tryfonas, T. (2013). Jpeg steganography detection with benford’s law.
Digital Investigation, 9(3-4), 246–257.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B., &
De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances in
neural information processing systems, (pp. 3981–3989).

Antoniak, C. E. (1974). Mixtures of dirichlet processes with applications to bayesian nonparametric
problems. The annals of statistics, (pp. 1152–1174).

Anwar, S., Hwang, K., & Sung, W. (2017). Structured pruning of deep convolutional neural networks.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3), 1–18.

Arbter, K., Snyder, W. E., Burkhardt, H., & Hirzinger, G. (1990). Application of affine-invariant fourier
descriptors to recognition of 3-d objects. IEEE Transactions on pattern analysis and machine intelli-
gence, 12(7), 640–647.

Archambeau, C., Lee, J. A., Verleysen, M., et al. (2003). On convergence problems of the em algorithm
for finite gaussian mixtures. In ESANN, vol. 3, (pp. 99–106).

Ardakani, A., Condo, C., & Gross, W. J. (2016). Sparsely-connected neural networks: towards efficient
vlsi implementation of deep neural networks. arXiv preprint arXiv:1611.01427.

Ari, B., & Güvenir, H. (2002). Clustered linear regression. Knowledge-Based Systems, 15(3), 169 –
175.

Arjevani, Y., & Field, M. (2020). Symmetry & critical points for a model shallow neural network. arXiv
preprint arXiv:2003.10576.

Arora, R., Basu, A., Mianjy, P., & Mukherjee, A. (2016). Understanding deep neural networks with
rectified linear units. arXiv preprint arXiv:1611.01491.

Arsad, P. M., Buniyamin, N., et al. (2013). A neural network students’ performance prediction model
(nnsppm). In 2013 IEEE International Conference on Smart Instrumentation, Measurement and
Applications (ICSIMA), (pp. 1–5). IEEE.

Ashkin, J., & Teller, E. (1943). Statistics of two-dimensional lattices with four components. Physical
Review, 64(5-6), 178.

Asikainen, J., Aharony, A., Mandelbrot, B., Rausch, E., & Hovi, J.-P. (2003). Fractal geometry of
critical potts clusters. The European Physical Journal B-Condensed Matter and Complex Systems,
34(4), 479–487.

Attali, J.-G., & Pagès, G. (1997). Approximations of functions by a multilayer perceptron: a new
approach. Neural networks, 10(6), 1069–1081.

Aurelio, Y. S., de Almeida, G. M., de Castro, C. L., & Braga, A. P. (2019). Learning from imbalanced
data sets with weighted cross-entropy function. Neural Processing Letters, 50(2), 1937–1949.

156 BIBLIOGRAPHY

Ay, N., Jost, J., Vân Lê, H., & Schwachhöfer, L. (2015). Information geometry and sufficient statistics.
Probability Theory and Related Fields, 162(1-2), 327–364.

Ayodele, T. O. (2010). Machine learning overview. New Advances in Machine Learning, (pp. 9–19).

Azizian, W., & Lelarge, M. (2020). Characterizing the expressive power of invariant and equivariant
graph neural networks. arXiv preprint arXiv:2006.15646.

Bach, F. (2018). Statistical machine learning and convex optimization.

Badal-Valero, E., Alvarez-Jareño, J. A., & Pavı́a, J. M. (2018). Combining benford’s law and machine
learning to detect money laundering. an actual spanish court case. Forensic science international,
282, 24–34.

Bagnell, D. (2020). Gibbs fields and markov random fields. Statistical Techniques in Robotics (16-831,
F10), 7.

Bahl, L. R., Desouza, P. V., Mercer, R. L., & Picheny, M. A. (1992). Feneme-based markov models for
words. US Patent 5,165,007.

Baird, L., Smalenberger, D., & Ingkiriwang, S. (2005). One-step neural network inversion with pdf
learning and emulation. In Proceedings. 2005 IEEE International Joint Conference on Neural Net-
works, 2005., vol. 2, (pp. 966–971). IEEE.

Bakırcıoğlu, H., & Koçak, T. (2000). Survey of random neural network applications. European journal
of operational research, 126(2), 319–330.

Bakker, B. (2001). Reinforcement learning with long short-term memory. Advances in neural informa-
tion processing systems, 14, 1475–1482.

Balakrishnan, K. (2018). Exponential distribution: theory, methods and applications. Routledge.

Baldassi, C., Malatesta, E. M., & Zecchina, R. (2019). Properties of the geometry of solutions and
capacity of multilayer neural networks with rectified linear unit activations. Physical review letters,
123(17), 170602.

Balkema, W., & van der Heijden, F. (2010). Music playlist generation by assimilating gmms into soms.
Pattern Recognition Letters, 31(11), 1396–1402.

Ballard, D. H. (1981). Generalizing the hough transform to detect arbitrary shapes. Pattern recognition,
13(2), 111–122.

Ballard, D. H., & Brown, C. M. (1982). Computer vision, article, 4 pages prentice-hall. Englewood
Cliffs, New Jersey, believed to be published more than one year prior to the filing date of the present
application.

Banner, R., Nahshan, Y., & Soudry, D. (2019). Post training 4-bit quantization of convolutional networks
for rapid-deployment. In Advances in Neural Information Processing Systems, (pp. 7948–7956).

Bansal, A., Kauffman, R. J., & Weitz, R. R. (1993). Comparing the modeling performance of regression
and neural networks as data quality varies: a business value approach. Journal of Management
Information Systems, 10(1), 11–32.

BIBLIOGRAPHY 157

Barbarossa, D., & Manzonetto, G. (2019). About the power of taylor expansion. In 3rd International
Workshop on Trends in Linear Logic and Applications.

Barber, D., & Bishop, C. (1997). Ensemble learning for multi-layer networks. Advances in neural
information processing systems, 10, 395–401.

Barber, D., & Bishop, C. M. (1998). Ensemble learning in bayesian neural networks. Nato ASI Series
F Computer and Systems Sciences, 168, 215–238.

Barbu, A., & Zhu, S.-C. (2003). Graph partition by swendsen-wang cuts. In null, (p. 320). IEEE.

Barcella, W., De Iorio, M., & Baio, G. (2017). A comparative review of variable selection techniques
for covariate dependent dirichlet process mixture models. Canadian Journal of Statistics, 45(3),
254–273.

Barra, A., Bernacchia, A., Santucci, E., & Contucci, P. (2012). On the equivalence of hopfield networks
and boltzmann machines. Neural Networks, 34, 1–9.

Barry, D., & Hartigan, J. A. (1992). Product partition models for change point problems. The Annals of
Statistics, (pp. 260–279).

Bartholomew-Biggs, M., Brown, S., Christianson, B., & Dixon, L. (2000). Automatic differentiation
of algorithms. Journal of Computational and Applied Mathematics, 124(1), 171 – 190. Numerical
Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.

Bastani, V., Marcenaro, L., & Regazzoni, C. (2014). Unsupervised trajectory pattern classification using
hierarchical dirichlet process mixture hidden markov model. In 2014 IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), (pp. 1–6). IEEE.

Baştanlar, Y., & Özuysal, M. (2014). Introduction to machine learning. In miRNomics: MicroRNA
Biology and Computational Analysis, (pp. 105–128). Springer.

Beal, M., Ghahramani, Z., & Rasmussen, C. (2001). The infinite hidden markov model. Advances in
neural information processing systems, 14, 577–584.

Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13),
1317–1318.

Beamer, S., Asanovic, K., & Patterson, D. (2012). Direction-optimizing breadth-first search. In SC’12:
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, (pp. 1–10). IEEE.

Behera, L., Kumar, S., & Patnaik, A. (2006). On adaptive learning rate that guarantees convergence in
feedforward networks. IEEE transactions on neural networks, 17(5), 1116–1125.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J.-H. (2019). Invertible residual
networks. In International Conference on Machine Learning, (pp. 573–582). PMLR.

Bejjani, W., Agboh, W. C., Dogar, M. R., & Leonetti, M. (2020). Occlusion-aware search for object
retrieval in clutter. arXiv preprint arXiv:2011.03334.

158 BIBLIOGRAPHY

Bela, A., Frigyik, A., & Gupta, M. (2010). Introduction to the dirichlet distribution and related pro-
cesses. Department of Electrical Engineering, University of Washington.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape
contexts. IEEE transactions on pattern analysis and machine intelligence, 24(4), 509–522.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, (pp. 437–478). Springer.

Bengio, Y., & Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation.
Journal of machine learning research, 5(Sep), 1089–1105.

Berger, A., & Hill, T. P. (2015). An introduction to Benford’s law. Princeton University Press.

Berger, A., Hill, T. P., et al. (2011). A basic theory of benford’s law. Probability Surveys, 8, 1–126.

Berrar, D. (2019). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1,
542–545.

Bertolazzi, E. (2008). One-dimensional minimization. Lecture Notes, Università di Trento.

Besag, J. (2004). Markov Chain Monte Carlo Methods for Statistical Inference. Tech. rep., Department
of Statistics, University of Washington, Seattle, USA.

Betancourt, B., Zanella, G., & Steorts, R. C. (2020). Random partition models for microclustering tasks.
arXiv preprint arXiv:2004.02008.

Bhattacharyay, A. (2019). Equilibrium of a brownian particle with coordinate dependent diffusivity and
damping: Generalized boltzmann distribution. Physica A: Statistical Mechanics and its Applications,
515, 665–670.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine
learning. Nature, 549(7671), 195–202.

Bianchini, M., & Scarselli, F. (2014). On the complexity of neural network classifiers: A comparison
between shallow and deep architectures. IEEE transactions on neural networks and learning systems,
25(8), 1553–1565.

Biau, G., & Devroye, L. (2010). On the layered nearest neighbour estimate, the bagged nearest neigh-
bour estimate and the random forest method in regression and classification. Journal of Multivariate
Analysis, 101(10), 2499–2518.

Biernacki, C., Celeux, G., & Govaert, G. (1999). An improvement of the nec criterion for assessing the
number of clusters in a mixture model. Pattern Recognition Letters, 20(3), 267–272.

Biess, A., Flash, T., & Liebermann, D. G. (2011). Riemannian geometric approach to human arm
dynamics, movement optimization, and invariance. Physical Review E, 83(3), 031927.

Bingham, E., & Mannila, H. (2001). Random projection in dimensionality reduction: applications
to image and text data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, (pp. 245–250).

BIBLIOGRAPHY 159

Bishop, C. (1991). Improving the generalization properties of radial basis function neural networks.
Neural computation, 3(4), 579–588.

Bishop, C. M. (1997). Bayesian Neural Networks. Journal of the Brazilian Computer Society, 4.

Bishop, C. M. (2006a). Pattern recognition and machine learning. springer.

Bishop, C. M. (2006b). Pattern Recognition and Machine Learning. Springer.

Blackledge, J., Bezobrazov, S., & Tobin, P. (2015). Cryptography using artificial intelligence. In 2015
International Joint Conference on Neural Networks (IJCNN), (pp. 1–6). IEEE.

Blackwell, D., MacQueen, J. B., et al. (1973). Ferguson distributions via pólya urn schemes. The annals
of statistics, 1(2), 353–355.

Blatt, M., Wiseman, S., & Domany, E. (1996a). Clustering data through an analogy to the potts model.
In Advances in Neural Information Processing Systems, (pp. 416–422).

Blatt, M., Wiseman, S., & Domany, E. (1996b). Superparamagnetic clustering of data. Physical review
letters, 76(18), 3251.

Blatt, M., Wiseman, S., & Domany, E. (1996c). Superparamagnetic clustering of data. Physical Review
Letters, 76, 3251–3254.

Blatt, M., Wiseman, S., & Domany, E. (1997). Data clustering using a model granular magnet. Neural
Computation, 9(8), 1805–1842.

Blei, D. M., & Frazier, P. I. (2011). Distance dependent chinese restaurant processes. Journal of
Machine Learning Research, 12(8).

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518), 859–877.

Blott, M., Preußer, T. B., Fraser, N. J., Gambardella, G., O’brien, K., Umuroglu, Y., Leeser, M., &
Vissers, K. (2018). Finn-r: An end-to-end deep-learning framework for fast exploration of quantized
neural networks. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 11(3),
1–23.

Blum, A., Kalai, A., & Langford, J. (1999). Beating the hold-out: Bounds for k-fold and progressive
cross-validation. In Proceedings of the twelfth annual conference on Computational learning theory,
(pp. 203–208).

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural
networks. In Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15, (pp. 1613–1622). JMLR.org.
URL http://dl.acm.org/citation.cfm?id=3045118.3045290

Bonaccorso, G. (2017). Machine learning algorithms. Packt Publishing Ltd.

http://dl.acm.org/citation.cfm?id=3045118.3045290

160 BIBLIOGRAPHY

Bonmassar, G., & Schwartz, E. L. (1994). Geometric invariance in space-variant vision systems: the
exponential chirp transform. In Proceedings of the 12th IAPR International Conference on Pattern
Recognition, Vol. 2-Conference B: Computer Vision & Image Processing.(Cat. No. 94CH3440-5),
(pp. 204–207). IEEE.

Borgs, C., Chayes, J. T., & Tetali, P. (2012). Tight bounds for mixing of the swendsen–wang algorithm
at the potts transition point. Probability Theory and Related Fields, 152(3-4), 509–557.

Bors, A. G., & Pitas, I. (1996). Median radial basis function neural network. IEEE transactions on
Neural Networks, 7(6), 1351–1364.

Bosman, A. S., Engelbrecht, A., & Helbig, M. (2020). Visualising basins of attraction for the cross-
entropy and the squared error neural network loss functions. Neurocomputing.

Botev, Z., & Kroese, D. P. (2004). Global likelihood optimization via the cross-entropy method with
an application to mixture models. In Proceedings of the 2004 Winter Simulation Conference, 2004.,
vol. 1. IEEE.

Bottasso, C. L., Borri, M., & Trainelli, L. (2002). Geometric invariance. Computational mechanics,
29(2), 163–169.

Bottou, L. (1991). Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes, 91(8),
12.

Bottou, L. (1998). Online learning and stochastic approximations. On-line learning in neural networks,
17(9), 142.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, (pp.
421–436). Springer.

Bottou, L., & Cun, Y. (2003). Large scale online learning. Advances in neural information processing
systems, 16, 217–224.

Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2012). Modeling temporal dependencies in
high-dimensional sequences: Application to polyphonic music generation and transcription. arXiv
preprint arXiv:1206.6392.

Bourely, A., Boueri, J. P., & Choromonski, K. (2017). Sparse neural networks topologies. arXiv preprint
arXiv:1706.05683.

Bourke, P. (1999). Interpolation methods. Miscellaneous: projection, modelling, rendering, 1.

Bouvrie, J. (2006). Notes on convolutional neural networks.

Bowling, M., & Veloso, M. (2002). Scalable learning in stochastic games. In AAAI Workshop on Game
Theoretic and Decision Theoretic Agents, (pp. 11–18).

Bozdogan, H. (1993). Choosing the number of component clusters in the mixture-model using a new
informational complexity criterion of the inverse-fisher information matrix. In Information and clas-
sification, (pp. 40–54). Springer.

BIBLIOGRAPHY 161

Brame, R., Nagin, D. S., & Wasserman, L. (2006). Exploring some analytical characteristics of finite
mixture models. Journal of Quantitative Criminology, 22(1), 31–59.

Brandenburger, A., & Steverson, K. (2019). Axioms for the boltzmann distribution. Foundations of
physics, 49(5), 444–456.

Braun, M., & McAuliffe, J. (2010). Variational inference for large-scale models of discrete choice.
Journal of the American Statistical Association, 105(489), 324–335.

Bresler, G. (2015). Efficiently learning ising models on arbitrary graphs. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing, (pp. 771–782).

Brigo, D., & Mercurio, F. (2002). Lognormal-mixture dynamics and calibration to market volatility
smiles. International Journal of Theoretical and Applied Finance, 5(04), 427–446.

Broderick, T., Jordan, M. I., Pitman, J., et al. (2012). Beta processes, stick-breaking and power laws.
Bayesian analysis, 7(2), 439–476.

Browder, A. (2012). Mathematical analysis: an introduction. Springer Science & Business Media.

Brown, M., Hughey, R., Krogh, A., Mian, I. S., Sjölander, K., & Haussler, D. (1993). Using dirichlet
mixture priors to derive hidden markov models for protein families. In Ismb, vol. 1, (pp. 47–55).

Brush, S. G. (1967). History of the lenz-ising model. Reviews of modern physics, 39(4), 883.

Bryc, W. (2012). The normal distribution: characterizations with applications, vol. 100. Springer
Science & Business Media.

Bundy, A., & Wallen, L. (1984). Breadth-first search. In Catalogue of artificial intelligence tools, (pp.
13–13). Springer.

Burke, J., & Kincanon, E. (1991). Benford’s law and physical constants: the distribution of initial digits.
American Journal of Physics, 59(10), 952.

Busta, B., & Weinberg, R. (1998). Using benford’s law and neural networks as a review procedure.
Managerial Auditing Journal.

Cai, Y., Tang, T., Xia, L., Cheng, M., Zhu, Z., Wang, Y., & Yang, H. (2018). Training low bitwidth
convolutional neural network on rram. In 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), (pp. 117–122). IEEE.

Campbell, T., & Beronov, B. (2019). Sparse variational inference: Bayesian coresets from scratch. In
Advances in Neural Information Processing Systems, (pp. 11461–11472).

Campbell, T., & Li, X. (2019). Universal boosting variational inference. In Advances in Neural Infor-
mation Processing Systems, (pp. 3484–3495).

Canuto, C., & Tabacco, A. (2015). Mathematical analysis II, vol. 85. Springer.

Cao, F. (2003). Geometric curve evolution and image processing. Springer Science & Business Media.

162 BIBLIOGRAPHY

Cao, J., Su, Z., Yu, L., Chang, D., Li, X., & Ma, Z. (2018). Softmax cross entropy loss with unbiased
decision boundary for image classification. In 2018 Chinese Automation Congress (CAC), (pp. 2028–
2032). IEEE.

Cao, R., Zhang, Q., Zhu, J., Li, Q., Li, Q., Liu, B., & Qiu, G. (2020). Enhancing remote sensing image
retrieval using a triplet deep metric learning network. International Journal of Remote Sensing, 41(2),
740–751.

Cao, T. P. (2011). Object recognition. BoD–Books on Demand.

Cao, Y., Yang, Z., Wang, H., Peng, X., Gao, C., & Li, Y. (2019). Template matching based on geometric
invariance in deep neural network. IEEE Access, 7, 82174–82182.

Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine learning. In
Machine learning, (pp. 3–23). Elsevier.

Cardy, J., & Ziff, R. M. (2003). Exact results for the universal area distribution of clusters in percolation,
ising, and potts models. Journal of statistical physics, 110(1-2), 1–33.

Casella, G., & Berger, R. L. (2002). Statistical inference, vol. 2. Duxbury Pacific Grove, CA.

Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a
mixture model. Journal of classification, 13(2), 195–212.

Challis, E., & Barber, D. (2013). Gaussian kullback-leibler approximate inference. The Journal of
Machine Learning Research, 14(1), 2239–2286.

Chang, C. A., & Su, C.-T. (1995). A comparison of statistical regression and neural network methods
in modeling measurement errors for computer vision inspection systems. Computers & industrial
engineering, 28(3), 593–603.

Chang, H., & Yeung, D.-Y. (2007). Kernel-based distance metric learning for content-based image
retrieval. Image and Vision Computing, 25(5), 695–703.

Chang, J., & Sha, J. (2016). An efficient implementation of 2d convolution in cnn. IEICE Electronics
Express, (pp. 13–20161134).

Chang, Y.-C. (2009). N-dimension golden section search: Its variants and limitations. In 2009 2nd
International Conference on Biomedical Engineering and Informatics, (pp. 1–6). IEEE.

Chao, W.-L. (2011). Machine learning tutorial. Digital Image and Signal Processing.

Charniak, E. (1985). Introduction to artificial intelligence. Pearson Education India.

Chaudhuri, B., & Bhattacharya, U. (2000). Efficient training and improved performance of multilayer
perceptron in pattern classification. Neurocomputing, 34(1-4), 11–27.

Chekouo, T., & Murua, A. (2015). The penalized biclustering model and related algorithms. Journal of
Applied Statistics, 42(6), 1255–1277.

Chekouo, T., & Murua, A. (2018). High-dimensional variable selection with the plaid mixture model
for clustering. Computational Statistics, 33(3), 1475–1496.

BIBLIOGRAPHY 163

Chekouo, T., Murua, A., Raffelsberger, W., et al. (2015). The gibbs-plaid biclustering model. The
Annals of Applied Statistics, 9(3), 1643–1670.

Chen, A.-S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial
market: forecasting and trading the taiwan stock index. Computers & Operations Research, 30(6),
901–923.

Chen, C., Ding, N., & Carin, L. (2015a). On the convergence of stochastic gradient mcmc algorithms
with high-order integrators. In Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’15, (pp. 2278–2286). Cambridge, MA, USA: MIT Press.
URL http://dl.acm.org/citation.cfm?id=2969442.2969494

Chen, H., Chen, J., & Kalbfleisch, J. D. (2004). Testing for a finite mixture model with two components.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(1), 95–115.

Chen, H. H., Wang, P. F., Sung, C. T., Yeh, Y. R., & Lee, Y. J. (2013). Energy disaggregation via clus-
tered regression models: A case study in the convenience store. In 2013 Conference on Technologies
and Applications of Artificial Intelligence, (pp. 37–42).

Chen, J., Adebomi, O. E., Olusayo, O. S., & Kulesza, W. (2010a). The evaluation of the gaussian
mixture probability hypothesis density approach for multi-target tracking. In 2010 IEEE International
Conference on Imaging Systems and Techniques, (pp. 182–185). IEEE.

Chen, J., & Khalili, A. (2009). Order selection in finite mixture models with a nonsmooth penalty.
Journal of the American Statistical Association, 104(485), 187–196.

Chen, J., Tian, J., Lee, N., Zheng, J., Smith, R. T., & Laine, A. F. (2010b). A partial intensity invari-
ant feature descriptor for multimodal retinal image registration. IEEE Transactions on Biomedical
Engineering, 57(7), 1707–1718.

Chen, J., Zhu, Z., Li, C., & Zhao, Y. (2019). Self-adaptive network pruning. In International Conference
on Neural Information Processing, (pp. 175–186). Springer.

Chen, L., Zhou, M., Su, W., Wu, M., She, J., & Hirota, K. (2018). Softmax regression based deep
sparse autoencoder network for facial emotion recognition in human-robot interaction. Information
Sciences, 428, 49–61.

Chen, S., Cowan, C. F., & Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial
basis function networks. IEEE Transactions on neural networks, 2(2), 302–309.

Chen, T., Cullen, R. M., & Godwin, M. (2015b). Hidden markov model using dirichlet process for
de-identification. Journal of biomedical informatics, 58, S60–S66.

Chen, X.-W., & Lin, X. (2014). Big data deep learning: challenges and perspectives. IEEE access, 2,
514–525.

Cheney, E. W., & Kincaid, D. R. (2012). Numerical mathematics and computing. Cengage Learning.

Cheng, C., Chau, K., Sun, Y., & Lin, J. (2005). Long-term prediction of discharges in manwan reservoir
using artificial neural network models. In International Symposium on Neural Networks, (pp. 1040–
1045). Springer.

http://dl.acm.org/citation.cfm?id=2969442.2969494

164 BIBLIOGRAPHY

Cheng, C., & Parhi, K. K. (2020). Fast 2d convolution algorithms for convolutional neural networks.
IEEE Transactions on Circuits and Systems I: Regular Papers, 67(5), 1678–1691.

Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for machine reading.
arXiv preprint arXiv:1601.06733.

Cho, K. H., Raiko, T., & Ilin, A. (2013). Gaussian-bernoulli deep boltzmann machine. In The 2013
International Joint Conference on Neural Networks (IJCNN), (pp. 1–7). IEEE.

Choo, S., & Lee, H. (2018). Learning framework of multimodal gaussian–bernoulli rbm handling real-
value input data. Neurocomputing, 275, 1813–1822.

Choquet-Bruhat, Y., DeWitt-Morette, C., de Witt, C., Bleick, M. D., & Dillard-Bleick, M. (1982).
Analysis. Gulf Professional Publishing.

Chouldechova, A., & Roth, A. (2018). The frontiers of fairness in machine learning. arXiv preprint
arXiv:1810.08810.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015). Gated feedback recurrent neural networks. In
International conference on machine learning, (pp. 2067–2075).

Chunseong Park, C., Kim, B., & Kim, G. (2017). Attend to you: Personalized image captioning with
context sequence memory networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, (pp. 895–903).

Ciampi, A., & Lechevallier, Y. (1997). Statistical models as building blocks of neural networks. Com-
munications in Statistics - Theory and Methods, 26(4), 991–1009.

Cipra, B. A. (1987). An introduction to the ising model. The American Mathematical Monthly, 94(10),
937–959.

Clark, D., & Vo, B.-N. (2007). Convergence analysis of the gaussian mixture phd filter. IEEE Transac-
tions on Signal Processing, 55(4), 1204–1212.

Clifford, P. (1990). Markov random fields in statistics. Disorder in physical systems: A volume in
honour of John M. Hammersley, 19.

Cohen, G., Afshar, S., Tapson, J., & Van Schaik, A. (2017). Emnist: Extending mnist to handwritten
letters. In 2017 International Joint Conference on Neural Networks (IJCNN), (pp. 2921–2926). IEEE.

Cohen, M. A., & Tan, C. O. (2012). A polynomial approximation for arbitrary functions. Applied
Mathematics Letters, 25(11), 1947–1952.

Cohen, P. R. (1995). Empirical methods for artificial intelligence, vol. 139. MIT press Cambridge, MA.

Coke, G., & Tsao, M. (2010). Random effects mixture models for clustering electrical load series.
Journal of time series analysis, 31(6), 451–464.

BIBLIOGRAPHY 165

Coniglio, A., & Peruggi, F. (1982). Clusters and droplets in the q-state potts model. Journal of Physics
A: Mathematical and General, 15(6), 1873.

Cooil, B., Winer, R. S., & Rados, D. L. (1987). Cross-validation for prediction. Journal of Marketing
Research, 24(3), 271–279.

Cornelius, L. (1997). Neural Network Systems Techniques and Applications. Volume 1. Algorithms and
Architectures, vol. 7. Academic Press, 1st edition ed.

Costa, R., Assael, I. A., Shillingford, B., de Freitas, N., & Vogels, T. (2017). Cortical microcircuits as
gated-recurrent neural networks. In Advances in neural information processing systems, (pp. 272–
283).

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830.

Coviello, E., Vaizman, Y., Chan, A. B., & Lanckriet, G. R. (2012). Multivariate autoregressive mixture
models for music auto-tagging. In ISMIR, (pp. 547–552).

Cressie, N., & Lele, S. (1992). New models for markov random fields. Journal of Applied probability,
(pp. 877–884).

Cruz, J. B., Pérez, L. L., & Melo, J. (2011). Convergence of the projected gradient method for quasi-
convex multiobjective optimization. Nonlinear Analysis: Theory, Methods & Applications, 74(16),
5268–5273.

Cui, X., & Feng, W.-c. (2019). Iterative machine learning (iterml) for effective parameter pruning and
tuning in accelerators. In Proceedings of the 16th ACM International Conference on Computing
Frontiers, (pp. 16–23).

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4), 303–314.

da Rocha, J. C. F., Guimarães, A. M., & Kozlowski Jr, V. (2011). Convergence of iterative algorithms
for learning bayesian networks. Iberoamerican Journal of Applied Computing, 1(2).

Dahl, D. B. (2008). Distance-based probability distribution for set partitions with applications to
bayesian nonparametrics. JSM Proceedings. Section on Bayesian Statistical Science, American Sta-
tistical Association, Alexandria, Va.

Dahl, D. B., Day, R., & Tsai, J. W. (2017). Random partition distribution indexed by pairwise informa-
tion. Journal of the American Statistical Association, 112(518), 721–732.

Dahl, D. B., et al. (2009). Modal clustering in a class of product partition models. Bayesian Analysis,
4(2), 243–264.

Dahyot, R. (2008). Statistical hough transform. IEEE Transactions on pattern analysis and machine
intelligence, 31(8), 1502–1509.

166 BIBLIOGRAPHY

Darken, C., Chang, J., Moody, J., et al. (1992). Learning rate schedules for faster stochastic gradient
search. In Neural networks for signal processing, vol. 2. Citeseer.

Darken, C., & Moody, J. E. (1991). Note on learning rate schedules for stochastic optimization. In
Advances in neural information processing systems, (pp. 832–838).

Darroch, J., & Ratcliff, D. (1971). A characterization of the dirichlet distribution. Journal of the
American Statistical Association, 66(335), 641–643.

Dash, P., Mishra, S., & Panda, G. (2000). A radial basis function neural network controller for upfc.
IEEE Transactions on Power Systems, 15(4), 1293–1299.

Davis, M. H. (2018). Markov models & optimization. Routledge.

Day, N. E. (1969). Estimating the components of a mixture of normal distributions. Biometrika, 56(3),
463–474.

de Brébisson, A., & Vincent, P. (2015). An exploration of softmax alternatives belonging to the spherical
loss family. arXiv preprint arXiv:1511.05042.

De Ceuster, M. J., Dhaene, G., & Schatteman, T. (1998). On the hypothesis of psychological barriers in
stock markets and benford’s law. Journal of Empirical Finance, 5(3), 263–279.

de Dios, J., & Bruna, J. (2020). On sparsity in overparametrised shallow relu networks. arXiv preprint
arXiv:2006.10225.

Deckert, J., Myagkov, M., & Ordeshook, P. C. (2011). Benford’s law and the detection of election fraud.
Political Analysis, 19(3), 245–268.

DeCoste, D. (1997). The future of chess-playing technologies and the significance of kasparov versus
deep blue. In Deep Blue Versus Kasparov: The Significance for Artificial Intelligence, (pp. 9–13).

Deisenroth, A. A. F. M. P., & Ong, C. S. (????). Mathematics for machine learning. 2019. url:
https://mml-book. github.io, (p. 407).

Delalleau, O., & Bengio, Y. (2011). Shallow vs. deep sum-product networks. In Advances in neural
information processing systems, (pp. 666–674).

Demaine, E. D., Demaine, M. L., Fekete, S. P., Patitz, M. J., Schweller, R. T., Winslow, A., & Woods,
D. (2012). One tile to rule them all: simulating any turing machine, tile assembly system, or tiling
system with a single puzzle piece. arXiv preprint arXiv:1212.4756.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–22.

Deng, L. (2012). The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Processing Magazine, 29(6), 141–142.

Deng, L., Hinton, G., & Kingsbury, B. (2013). New types of deep neural network learning for speech
recognition and related applications: An overview. In 2013 IEEE international conference on acous-
tics, speech and signal processing, (pp. 8599–8603). IEEE.

BIBLIOGRAPHY 167

Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and trends in signal
processing, 7(3–4), 197–387.

Dey, A. (2016). Machine learning algorithms: a review. International Journal of Computer Science and
Information Technologies, 7(3), 1174–1179.

Dey, R., & Salemt, F. M. (2017). Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), (pp. 1597–1600).
IEEE.

Di Benedetto, G., Caron, F., & Teh, Y. W. (2017). Non-exchangeable random partition models for
microclustering. arXiv preprint arXiv:1711.07287.

Diekmann, A. (2007). Not the first digit! using benford’s law to detect fraudulent scientific data. Journal
of Applied Statistics, 34(3), 321–329.

Diekmann, A., & Jann, B. (2010). Benford’s law and fraud detection: Facts and legends. German
economic review, 11(3), 397–401.

Dieleman, S., van den Oord, A., & Simonyan, K. (2018). The challenge of realistic music generation:
modelling raw audio at scale. Advances in Neural Information Processing Systems, 31, 7989–7999.

Dikusar, N. (2016). Higher-order polynomial approximation. Mathematical Models and Computer
Simulations, 8(2), 183–200.

Ding, C., Wang, S., Liu, N., Xu, K., Wang, Y., & Liang, Y. (2019a). Req-yolo: A resource-aware, effi-
cient quantization framework for object detection on fpgas. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, (pp. 33–42).

Ding, C., Wang, Y., & Li, Y. (2012). Potts and percolation models on bowtie lattices. Physical Review
E, 86(2), 021125.

Ding, L., & Barbu, A. (2015). Scalable subspace clustering with application to motion segmentation.
Current Trends in Bayesian Methodology with Applications, (p. 267).

Ding, W., Huang, Z., Huang, Z., Tian, L., Wang, H., & Feng, S. (2019b). Designing efficient accelerator
of depthwise separable convolutional neural network on fpga. Journal of Systems Architecture, 97,
278–286.

Ding, X., Ding, G., Han, J., & Tang, S. (2018). Auto-balanced filter pruning for efficient convolutional
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32.

Dinov, I. D. (2008). Expectation maximization and mixture modeling tutorial.

Do, K.-A., Müller, P., & Tang, F. (2005). A bayesian mixture model for differential gene expression.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 627–644.

Docevski, M., Zdravevski, E., Lameski, P., & Kulakov, A. (2018). Towards music generation with deep
learning algorithms.

168 BIBLIOGRAPHY

Dolezel, P., Honc, D., & Stursa, D. (2019). Predictive controller based on feedforward neural network
with rectified linear units. In Proceedings of the Computational Methods in Systems and Software,
(pp. 1–12). Springer.

Dong, T., & Huang, T. (2019). Neural cryptography based on complex-valued neural network. IEEE
Transactions on Neural Networks and Learning Systems.

Dong, X., & Yang, Y. (2019). Network pruning via transformable architecture search. In Advances in
Neural Information Processing Systems, (pp. 760–771).

Doretto, G., & Yao, Y. (2010). Region moments: Fast invariant descriptors for detecting small image
structures. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
(pp. 3019–3026). IEEE.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv
preprint arXiv:1702.08608.

Dressler, M. (2009). Art of surface interpolation. Technical University of Liberec Faculty of Mecha-
tronics and Interdisciplinary Engineering Studies: Czech Republic.

Drucker, H., & Le Cun, Y. (1991). Double backpropagation increasing generalization performance. In
IJCNN-91-Seattle International Joint Conference on Neural Networks, vol. 2, (pp. 145–150). IEEE.

Drucker, H., & Le Cun, Y. (1992). Improving generalization performance using double backpropaga-
tion. IEEE Transactions on Neural Networks, 3(6), 991–997.

Du, S., Lee, J., Li, H., Wang, L., & Zhai, X. (2019). Gradient descent finds global minima of deep
neural networks. In International Conference on Machine Learning, (pp. 1675–1685). PMLR.

Du, X., Cai, Y., Wang, S., & Zhang, L. (2016). Overview of deep learning. In 2016 31st Youth Academic
Annual Conference of Chinese Association of Automation (YAC), (pp. 159–164). IEEE.

Duan, K., Keerthi, S. S., Chu, W., Shevade, S. K., & Poo, A. N. (2003). Multi-category classification by
soft-max combination of binary classifiers. In International Workshop on Multiple Classifier Systems,
(pp. 125–134). Springer.

Dubey, S. R., Singh, S. K., & Singh, R. K. (2015). Rotation and scale invariant hybrid image descriptor
and retrieval. Computers & Electrical Engineering, 46, 288–302.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochas-
tic optimization. Journal of machine learning research, 12(Jul), 2121–2159.

Duda, R. O., Hart, P. E., et al. (1973). Pattern classification and scene analysis, vol. 3. Wiley New
York.

Duminil-Copin, H. (2016). Graphical representations of lattice spin models: cours Peccot, College de
France : janvier-fevrier 2015. Spartacus IDH.
URL https://books.google.ca/books?id=OPFbswEACAAJ

https://books.google.ca/books?id=OPFbswEACAAJ

BIBLIOGRAPHY 169

Duminil-Copin, H., Sidoravicius, V., & Tassion, V. (2017). Continuity of the phase transition for planar
random-cluster and potts models with 1 ≤ q ≤ 4. Communications in Mathematical Physics, 349(1),
47–107.

Dumitru, P. D., Plopeanu, M., & Badea, D. (2013). Comparative study regarding the methods of inter-
polation. Recent advances in geodesy and Geomatics engineering, 1, 45–52.

Dunson, D. B., & Park, J.-H. (2008). Kernel stick-breaking processes. Biometrika, 95(2), 307–323.

Durtschi, C., Hillison, W., & Pacini, C. (2004). The effective use of benford’s law to assist in detecting
fraud in accounting data. Journal of forensic accounting, 5(1), 17–34.

Dyer, C., Kuncoro, A., Ballesteros, M., & Smith, N. A. (2016). Recurrent neural network grammars.
arXiv preprint arXiv:1602.07776.

Dym, N., & Maron, H. (2020). On the universality of rotation equivariant point cloud networks. arXiv
preprint arXiv:2010.02449.

Ecabert, O., & Thiran, J.-P. (2004). Adaptive hough transform for the detection of natural shapes under
weak affine transformations. Pattern Recognition Letters, 25(12), 1411–1419.

El Naqa, I., & Murphy, M. J. (2015). What is machine learning? In Machine Learning in Radiation
Oncology, (pp. 3–11). Springer.

Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107, 3–11.

Elguebaly, T., & Bouguila, N. (2011). Bayesian learning of finite generalized gaussian mixture models
on images. Signal Processing, 91(4), 801–820.

Engels, S., Tong, T., & Chan, F. (2015). Automatic real-time music generation for games. In Eleventh
Artificial Intelligence and Interactive Digital Entertainment Conference.

Epstein, B. (1958). The exponential distribution and its role in life testing. Tech. rep., WAYNE STATE
UNIV DETROIT MI.

Ernst, O. K., Bartol, T. M., Sejnowski, T. J., & Mjolsness, E. (2019). Learning moment closure in
reaction-diffusion systems with spatial dynamic boltzmann distributions. Physical Review E, 99(6),
063315.

Essam, J. (1979). Potts models, percolation, and duality. Journal of Mathematical Physics, 20(8),
1769–1773.

Etmann, C. (2019). Double Backpropagation with Applications to Robustness and Saliency Map Inter-
pretability. Ph.D. thesis, Universität Bremen.

Falas, T., & Stafylopatis, A.-G. (1999). The impact of the error function selection in neural network-
based classifiers. In IJCNN’99. International Joint Conference on Neural Networks. Proceedings
(Cat. No. 99CH36339), vol. 3, (pp. 1799–1804). IEEE.

170 BIBLIOGRAPHY

Farah, M. J., Rochlin, R., & Klein, K. L. (1994). Orientation invariance and geometric primitives in
shape recognition. Cognitive Science, 18(2), 325–344.

Fattah, M. A., & Ren, F. (2009). Ga, mr, ffnn, pnn and gmm based models for automatic text summa-
rization. Computer Speech & Language, 23(1), 126–144.

Feng, J., Tse, C. K., & Lau, F. C. (2003). A neural-network-based channel-equalization strategy for
chaos-based communication systems. IEEE transactions on circuits and systems I: fundamental the-
ory and applications, 50(7), 954–957.

Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems. The annals of statistics,
(pp. 209–230).

Ferreira, J. A., Loschi, R. H., & Costa, M. A. (2014). Detecting changes in time series: A product
partition model with across-cluster correlation. Signal processing, 96, 212–227.

Fewster, R. M. (2009). A simple explanation of benford’s law. The American Statistician, 63(1), 26–32.

Figueiredo, M. A., Leitão, J. M., & Jain, A. K. (1999). On fitting mixture models. In International
Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, (pp. 54–
69). Springer.

Figueiredo, M. A. T., & Jain, A. K. (2002). Unsupervised learning of finite mixture models. IEEE
Transactions on pattern analysis and machine intelligence, 24(3), 381–396.

Fink, G. A. (2014). Markov models for pattern recognition: from theory to applications. Springer
Science & Business Media.

Finzi, M., Stanton, S., Izmailov, P., & Wilson, A. G. (2020). Generalizing convolutional neural networks
for equivariance to lie groups on arbitrary continuous data. In International Conference on Machine
Learning, (pp. 3165–3176). PMLR.

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial
market predictions. European Journal of Operational Research, 270(2), 654–669.

Fisk, D. L. (1965). Quasi-martingales. Transactions of the American Mathematical Society, 120(3),
369–389.

Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cam-
bridge University Press.

Flach, P. A. (2001). On the state of the art in machine learning: A personal review. Artificial Intelligence,
131(1-2), 199–222.

Flusser, J., Zitova, B., & Suk, T. (2009). Moments and moment invariants in pattern recognition. John
Wiley & Sons.

Fogel, D. B. (1993). Evolving artificial intelligence.

Fortuin, C. M., & Kasteleyn, P. W. (1972). On the random-cluster model: I. introduction and relation to
other models. Physica, 57(4), 536–564.

BIBLIOGRAPHY 171

Fosler-Lussier, E. (1998). Markov models and hidden markov models: A brief tutorial. International
Computer Science Institute.

Frank, E. (2000). Pruning decision trees and lists. Ph.D. thesis, Citeseer.

Fredrickson, G. H., & Andersen, H. C. (1984). Kinetic ising model of the glass transition. Physical
review letters, 53(13), 1244.

Freeman, C. D., & Bruna, J. (2016). Topology and geometry of half-rectified network optimization.
arXiv preprint arXiv:1611.01540.

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical
lasso. Biostatistcs, 9(3), 432–441.

Friston, K. J., Mattout, J., Trujillo-Barreto, N. J., Ashburner, J., & Penny, W. D. (2007). Variational free
energy and the laplace approximation. NeuroImage, 34 1, 220–34.

Fromm, J., Patel, S., & Philipose, M. (2018). Heterogeneous bitwidth binarization in convolutional
neural networks. arXiv preprint arXiv:1805.10368.

Frühwirth-Schnatter, S., & Pyne, S. (2010). Bayesian inference for finite mixtures of univariate and
multivariate skew-normal and skew-t distributions. Biostatistics, 11(2), 317–336.

Frydenberg, M. (1990). The chain graph markov property. Scandinavian Journal of Statistics, (pp.
333–353).

Fu, D., Shi, Y. Q., & Su, W. (2007). A generalized benford’s law for jpeg coefficients and its applications
in image forensics. In Security, Steganography, and Watermarking of Multimedia Contents IX, vol.
6505, (p. 65051L). International Society for Optics and Photonics.

Fu, H., Chi, Y., & Liang, Y. (2019). Local geometry of cross entropy loss in learning one-hidden-
layer neural networks. In 2019 IEEE International Symposium on Information Theory (ISIT), (pp.
1972–1976). IEEE.

Fuglede, B., & Topsoe, F. (2004). Jensen-shannon divergence and hilbert space embedding. In Interna-
tional Symposium onInformation Theory, 2004. ISIT 2004. Proceedings., (p. 31). IEEE.

Fukumizu, K. (1998). Effect of batch learning in multilayer neural networks. Gen, 1(04), 1E–03.

Fung, L. H. (2012). Model-based Clustering with Network Covariates by Combining a Modified Product
Partition Model with Hidden Markov Random Field. Ph.D. thesis, Chinese University of Hong Kong.

Fuse, T., & Kamiya, K. (2017). Statistical anomaly detection in human dynamics monitoring using a
hierarchical dirichlet process hidden markov model. IEEE Transactions on Intelligent Transportation
Systems, 18(11), 3083–3092.

Fuster, J. M. (1997). Network memory. Trends in neurosciences, 20(10), 451–459.

Galanis, A., Štefankovič, D., & Vigoda, E. (2019). Swendsen-wang algorithm on the mean-field potts
model. Random Structures & Algorithms, 54(1), 82–147.

172 BIBLIOGRAPHY

Gales, M. J. (2001). Multiple-cluster adaptive training schemes. In 2001 IEEE International Conference
on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 1, (pp. 361–
364). IEEE.

Gan, C., & Danai, K. (1999). Fault diagnosis of the ifac benchmark problem with a model-based
recurrent neural network. In Proceedings of the 1999 IEEE International Conference on Control
Applications (Cat. No. 99CH36328), vol. 2, (pp. 1755–1760). IEEE.

Ganganath, N., Cheng, C.-T., & Tse, C. K. (2014). Data clustering with cluster size constraints using a
modified k-means algorithm. Institute of Electrical and Electronics Engineers.

Gao, X., Gallicchio, E., & Roitberg, A. E. (2019). The generalized boltzmann distribution is the only
distribution in which the gibbs-shannon entropy equals the thermodynamic entropy. The Journal of
chemical physics, 151(3), 034113.

Gao, X., Hoi, S. C., Zhang, Y., Wan, J., & Li, J. (2014). Soml: Sparse online metric learning with
application to image retrieval.

Gardner, E. (1989). Optimal basins of attraction in randomly sparse neural network models. Journal of
Physics A: Mathematical and General, 22(12), 1969.

Gardner, M. W., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a review
of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 2627–2636.

Geiger, D., & Heckerman, D. (1996). A characterization of the dirichlet distribution with application to
learning bayesian networks. In Maximum entropy and Bayesian methods, (pp. 61–68). Springer.

Gelenbe, E. (1990). Stability of the random neural network model. Neural computation, 2(2), 239–247.

Gelenbe, E. (1993). Learning in the recurrent random neural network. Neural computation, 5(1), 154–
164.

Gelenbe, E., Mao, Z.-H., & Li, Y.-D. (1999a). Function approximation with spiked random networks.
IEEE Transactions on Neural Networks, 10(1), 3–9.

Gelenbe, E., Mao, Z.-H., & Li, Y.-D. (2006). Function approximation by random neural networks with
a bounded number of layers. In Computer System Performance Modeling In Perspective: A Tribute
to the Work of Prof Kenneth C Sevcik, (pp. 35–58). World Scientific.

Gelenbe, E., Mao, Z.-W., & Li, Y.-D. (1999b). Approximation by random networks with bounded
number of layers. In Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE
Signal Processing Society Workshop (Cat. No. 98TH8468), (pp. 166–175). IEEE.

Geman, S., & Graffigne, C. (1986). Markov random field image models and their applications to com-
puter vision. In Proceedings of the international congress of mathematicians, vol. 1, (p. 2). Berkeley,
CA.

Geng, J. (2017). Bayesian models for capturing heterogeneity in discrete data.

Geng, J., & Hu, G. (2020). Mixture of finite mixtures model for basket trial. arXiv preprint
arXiv:2011.04135.

BIBLIOGRAPHY 173

Georgii, H.-O., & Häggström, O. (1996). Phase transition in continuum potts models. Communications
in mathematical physics, 181(2), 507–528.

Ghahramani, Z., Jordan, M., & Adams, R. P. (2010). Tree-structured stick breaking for hierarchical
data. Advances in neural information processing systems, 23, 19–27.

Ghasemain, B., Asl, D. T., Pham, B. T., Avand, M., Nguyen, H. D., & Janizadeh, S. (2020). Shal-
low landslide susceptibility mapping: A comparison between classification and regression tree and
reduced error pruning tree algorithms. Vietnam Journal of Earth Sciences.

Ghiassi, M., Saidane, H., & Zimbra, D. (2005). A dynamic artificial neural network model for forecast-
ing time series events. International Journal of Forecasting, 21(2), 341–362.

Giaquinta, M., & Modica, G. (2010). Mathematical analysis: An introduction to functions of several
variables. Springer Science & Business Media.

Gidas, B., & Murua, A. (1995). Classification and clustering of stop consonants via nonparametric
transformations and wavelets. In 1995 International Conference on Acoustics, Speech, and Signal
Processing, vol. 1, (pp. 872–875). IEEE.

Gilbert, G. T. (1991). Positive definite matrices and sylvester’s criterion. The American Mathematical
Monthly, 98(1), 44–46.

Giles, C. L., & Maxwell, T. (1987). Learning, invariance, and generalization in high-order neural
networks. Applied optics, 26(23), 4972–4978.

Giles, D. E. (2007). Benford’s law and naturally occurring prices in certain ebay auctions. Applied
Economics Letters, 14(3), 157–161.

Ginsberg, M. (2012). Essentials of artificial intelligence. Newnes.

Giudici, P., & Green, P. (1999). Decomposable graphical Gaussian model determination. Biometrika,
86(4), 785–801.

Glassner, A. (1998). Penrose tiling. IEEE Computer Graphics and Applications, 18(4), 78–86.

Glauber, R. J. (1963). Time-dependent statistics of the ising model. Journal of mathematical physics,
4(2), 294–307.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of
the fourteenth international conference on artificial intelligence and statistics, (pp. 315–323).

Godhavari, T., Alamelu, N., & Soundararajan, R. (2005). Cryptography using neural network. In 2005
Annual IEEE India Conference-Indicon, (pp. 258–261). IEEE.

Goertzel, B., & Pennachin, C. (2007). Artificial general intelligence, vol. 2. Springer.

Gold, S., Rangarajan, A., et al. (1996). Softmax to softassign: Neural network algorithms for combina-
torial optimization. Journal of Artificial Neural Networks, 2(4), 381–399.

Goldberg, L. A., Jerrum, M., & Paterson, M. (2003). The computational complexity of two-state spin
systems. Random Structures & Algorithms, 23(2), 133–154.

174 BIBLIOGRAPHY

Goldenshluger, A., Zeevi, A., et al. (2004). The hough transform estimator. The Annals of Statistics,
32(5), 1908–1932.

Golik, P., Doetsch, P., & Ney, H. (2013). Cross-entropy vs. squared error training: a theoretical and
experimental comparison. In Interspeech, vol. 13, (pp. 1756–1760).

Gonzalez, R. C. (1987). P. wintz digital image processing. Addision-Wesley Publishing Company, (pp.
275–281).

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters.
Biometrika, 40(3-4), 237–264.

Good, I. J., et al. (1976). On the application of symmetric dirichlet distributions and their mixtures to
contingency tables. The Annals of Statistics, 4(6), 1159–1189.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning, vol. 1. MIT press
Cambridge.

Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex gaussian distribu-
tion (an introduction). The Annals of mathematical statistics, 34(1), 152–177.

Gopinath, R., Zheng, Y., Vadvalkar, M., Lin, J., & Lin, L. (2011). Computing with tiles.

Gotmare, A., Keskar, N. S., Xiong, C., & Socher, R. (2018). A closer look at deep learning heuristics:
Learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243.

Gottardo, R., Besag, J., Stephens, M., & Murua, A. (2006). Probabilistic segmentation and intensity
estimation for microarray images. Biostatistics, 7(1), 85–99.

Goutte, C. (1997). Note on free lunches and cross-validation. Neural Computation, 9(6), 1245–1249.

Govaert, G., & Nadif, M. (2003). Clustering with block mixture models. Pattern Recognition, 36(2),
463–473.

Govaert, G., & Nadif, M. (2008). Block clustering with bernoulli mixture models: Comparison of
different approaches. Computational Statistics & Data Analysis, 52(6), 3233–3245.

Graner, F., & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional
extended potts model. Physical review letters, 69(13), 2013.

Granter, S. R., Beck, A. H., & Papke Jr, D. J. (2017). Alphago, deep learning, and the future of the
human microscopist. Archives of pathology & laboratory medicine, 141(5), 619–621.

Graves, A. (2011). Practical variational inference for neural networks. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.) Advances in Neural Information Processing
Systems 24, (pp. 2348–2356). Curran Associates, Inc.

Graves, A. (2012). Long short-term memory. In Supervised sequence labelling with recurrent neural
networks, (pp. 37–45). Springer.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4), 711–732.

BIBLIOGRAPHY 175

Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New journal
of Physics, 12(10), 103018.

Griffin, J. E., & Steel, M. F. (2011). Stick-breaking autoregressive processes. Journal of econometrics,
162(2), 383–396.

Griffin, J. E., & Steel, M. J. (2006). Order-based dependent dirichlet processes. Journal of the American
statistical Association, 101(473), 179–194.

Grimm, K. J., Mazza, G. L., & Davoudzadeh, P. (2017). Model selection in finite mixture models: A
k-fold cross-validation approach. Structural Equation Modeling: A Multidisciplinary Journal, 24(2),
246–256.

Grimmett, G. (1994). Potts models and random-cluster processes with many-body interactions. Journal
of Statistical Physics, 75(1-2), 67–121.

Grimmett, G. (2004). The random-cluster model. In Probability on discrete structures, (pp. 73–123).
Springer.

Gross, A., & Latecki, L. (1995). Digital geometric invariance and shape representation. In Proceedings
of International Symposium on Computer Vision-ISCV , (pp. 121–126). IEEE.

Gschwend, D. (2020). Zynqnet: An fpga-accelerated embedded convolutional neural network. arXiv
preprint arXiv:2005.06892.

Guessab, A., Nouisser, O., & Schmeisser, G. (2006). Multivariate approximation by a combination of
modified taylor polynomials. Journal of Computational and Applied Mathematics, 196(1), 162–179.

Guilhoto, L. F. (2018). An overview of artificial neural networks for mathematicians.

Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Research Projects
Agency (DARPA), Web, 2(2).

Guo, F., Wang, X., Fan, K., Broderick, T., & Dunson, D. B. (2016). Boosting variational inference.
arXiv preprint arXiv:1611.05559.

Guo-qiang, Y., Wan-jin, H., Wen-cai, L., et al. (2004). Linear interpolation method for processing the
test data of five-hole probes [j]. Journal of Engineering for Thermal Energy and Power, 5.

Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network models in stock
market index prediction. Expert Systems with Applications, 38(8), 10389–10397.

Hadke, P. P., & Kale, S. G. (2016). Use of neural networks in cryptography: A review. In 2016 World
Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave),
(pp. 1–4). IEEE.

Haff, L. (1979). An identity for the wishart distribution with applications. Journal of Multivariate
Analysis, 9(4), 531–544.

Häggkvist, R., Rosengren, A., Andrén, D., Kundrotas, P., Lundow, P. H., & Markström, K. (2004). A
monte carlo sampling scheme for the ising model. Journal of statistical physics, 114(1-2), 455–480.

176 BIBLIOGRAPHY

Häggström, O., Jonasson, J., Lyons, R., et al. (2002). Coupling and bernoullicity in random-cluster and
potts models. Bernoulli, 8(3), 275–294.

Hahmann, F., Böer, G., Gabriel, E., Meyer, C., & Schramm, H. (2015). A shape consistency measure
for improving the generalized hough transform. Proc. VISAPP.

Hamerly, G., & Elkan, C. (2004). Learning the k in k-means. In Advances in neural information
processing systems, (pp. 281–288).

HAMMER, F. G. H. (2017). Taylor expansion, gradient descent and newton’s method in machine
learning.

Han, J., & Moraga, C. (1995). The influence of the sigmoid function parameters on the speed of
backpropagation learning. In International Workshop on Artificial Neural Networks, (pp. 195–201).
Springer.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for efficient
neural network. In Advances in neural information processing systems, (pp. 1135–1143).

Hansen, L. K., Sigurdsson, S., Kolenda, T., Nielsen, F. A., Kjems, U., & Larsen, J. (2000). Modeling
text with generalizable gaussian mixtures. In 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), vol. 6, (pp. 3494–3497). IEEE.

Hao, X., Zhang, G., & Ma, S. (2016). Deep learning. International Journal of Semantic Computing,
10(03), 417–439.

Hara, K., Saito, D., & Shouno, H. (2015). Analysis of function of rectified linear unit used in deep
learning. In 2015 International Joint Conference on Neural Networks (IJCNN), (pp. 1–8). IEEE.

Harrington, P. (2012). Machine learning in action. Manning Publications Co.

Harrison, B. K., & Estabrook, F. B. (1971). Geometric approach to invariance groups and solution of
partial differential systems. Journal of Mathematical Physics, 12(4), 653–666.

Hartigan, J. A. (1990). Partition models. Communications in statistics-Theory and methods, 19(8),
2745–2756.

Hasan, T., & Hansen, J. H. (2011). A study on universal background model training in speaker verifica-
tion. IEEE Transactions on Audio, Speech, and Language Processing, 19(7), 1890–1899.

Hasan, T., Lei, Y., Chandrasekaran, A., & Hansen, J. H. (2010). A novel feature sub-sampling method
for efficient universal background model training in speaker verification. In 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, (pp. 4494–4497). IEEE.

Hassabis, D. (2017). Artificial intelligence: Chess match of the century. Nature, 544(7651), 413–414.

Hassanein, A. S., Mohammad, S., Sameer, M., & Ragab, M. E. (2015). A survey on hough transform,
theory, techniques and applications. arXiv preprint arXiv:1502.02160.

Hassani, H., Soltanolkotabi, M., & Karbasi, A. (2017). Gradient methods for submodular maximization.
In Advances in Neural Information Processing Systems, (pp. 5841–5851).

BIBLIOGRAPHY 177

Hassoun, M. H., et al. (1995). Fundamentals of artificial neural networks. MIT press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Overview of supervised learning. In The elements of
statistical learning, (pp. 9–41). Springer.

Hatti, M., & Tioursi, M. (2009). Dynamic neural network controller model of pem fuel cell system.
International Journal of Hydrogen Energy, 34(11), 5015–5021.

Haugeland, J. (1989). Artificial intelligence: The very idea. MIT press.

Haugh, M. (2017). Mcmc and bayesian modeling. IEOR E4703 Monte-Carlo Simulation, Columbia
University.

Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of
chemical information and computer sciences, 43(2), 579–586.

Hawkins, D. S., Allen, D. M., & Stromberg, A. J. (2001). Determining the number of components in
mixtures of linear models. Computational Statistics & Data Analysis, 38(1), 15–48.

Hayden, T. L., & Wells, J. (1988). Approximation by matrices positive semidefinite on a subspace.
Linear Algebra and its Applications, 109, 115–130.

Hayou, S., Doucet, A., & Rousseau, J. (2018). On the selection of initialization and activation function
for deep neural networks. arXiv preprint arXiv:1805.08266.

Hayou, S., Doucet, A., & Rousseau, J. (2019). On the impact of the activation function on deep neural
networks training. arXiv preprint arXiv:1902.06853.

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., & Yang, Y. (2020). Learning filter pruning criteria for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, (pp. 2009–2018).

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter pruning for accelerating deep
convolutional neural networks. arXiv preprint arXiv:1808.06866.

Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural networks for
perception, (pp. 65–93). Elsevier.

Hernandez, H. (2017). Standard maxwell-boltzmann distribution: Definition and properties. ForsChem
Research Reports, 2, 2017–2.

Heydemann, M.-C. (1997). Cayley graphs and interconnection networks. In Graph symmetry, (pp.
167–224). Springer.

Higham, N. J. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear algebra and
its applications, 103, 103–118.

Hinton, G. (2007). How to do backpropagation in a brain. In Invited talk at the NIPS’2007 deep learning
workshop, vol. 656.

Hinton, G., Srivastava, N., & Swersky, K. (2012a). Lecture 6a overview of mini–batch gradient descent.
Coursera Lecture slides https://class. coursera. org/neuralnets-2012-001/lecture,[Online.

178 BIBLIOGRAPHY

Hinton, G., Srivastava, N., & Swersky, K. (2012b). Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent. Cited on, 14(8).

Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5), 5947.

Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual inference. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, vol. 448. Citeseer.

Hinton, G. E., & van Camp, D. (1993). Keeping the neural networks simple by minimizing the de-
scription length of the weights. In Proceedings of the Sixth Annual Conference on Computational
Learning Theory, COLT ’93, (pp. 5–13). New York, NY, USA: ACM.
URL http://doi.acm.org/10.1145/168304.168306

Hirai, S., & Yamanishi, K. (2011). Efficient computation of normalized maximum likelihood coding for
gaussian mixtures with its applications to optimal clustering. In 2011 IEEE International Symposium
on Information Theory Proceedings, (pp. 1031–1035). IEEE.

Hirai, S., & Yamanishi, K. (2013). Efficient computation of normalized maximum likelihood codes
for gaussian mixture models with its applications to clustering. IEEE Transactions on Information
Theory, 59(11), 7718–7727.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning to learn using gradient descent. In
International Conference on Artificial Neural Networks, (pp. 87–94). Springer.

Hoi, S. C., Liu, W., & Chang, S.-F. (2010). Semi-supervised distance metric learning for collaborative
image retrieval and clustering. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), 6(3), 1–26.

Hoi, S. C., Liu, W., Lyu, M. R., & Ma, W.-Y. (2006). Learning distance metrics with contextual
constraints for image retrieval. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), vol. 2, (pp. 2072–2078). IEEE.

Hong, Z.-Q. (1991). Algebraic feature extraction of image for recognition. Pattern recognition, 24(3),
211–219.

Hood, C., & Jones, D. (2003). Chapter four: The extent to which “statistics are signs from god”. In
Accident And Design, (pp. 98–100). Routledge.

Hooke, R. (1979). Getting people to use statistics as god and sir ronald fisher intended. The American
Statistician, 34, 39–42.

Hopfield, J. J. (2007). Hopfield network. Scholarpedia, 2(5), 1977.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2), 251–257.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359 – 366.

http://doi.acm.org/10.1145/168304.168306

BIBLIOGRAPHY 179

Hosoda, C., Tanaka, K., Nariai, T., Honda, M., & Hanakawa, T. (2013). Dynamic neural network
reorganization associated with second language vocabulary acquisition: a multimodal imaging study.
Journal of Neuroscience, 33(34), 13663–13672.

Houtappel, R., Van Dam, H., & Wigner, E. (1965). The conceptual basis and use of the geometric
invariance principles. Reviews of Modern Physics, 37(4), 595.

Howard, A. G. (2013). Some improvements on deep convolutional neural network based image classi-
fication. arXiv preprint arXiv:1312.5402.

Hsu, F.-H. (2004). Behind Deep Blue: Building the computer that defeated the world chess champion.
Princeton University Press.

Hu, C.-K. (1987). Exact cluster size distributions and mean cluster sizes for the q-state bond-correlated
percolation model. Journal of Physics A: Mathematical and General, 20(18), 6617.

Hu, C. W., Li, H., & Qutub, A. A. (2018a). Shrinkage clustering: a fast and size-constrained clustering
algorithm for biomedical applications. BMC bioinformatics, 19(1), 19.

Hu, K., Zhang, Z., Niu, X., Zhang, Y., Cao, C., Xiao, F., & Gao, X. (2018b). Retinal vessel segmentation
of color fundus images using multiscale convolutional neural network with an improved cross-entropy
loss function. Neurocomputing, 309, 179–191.

Hu, M.-K. (1962). Visual pattern recognition by moment invariants. IRE transactions on information
theory, 8(2), 179–187.

Hua, Y., Guo, J., & Zhao, H. (2015). Deep belief networks and deep learning. In Proceedings of 2015
International Conference on Intelligent Computing and Internet of Things, (pp. 1–4). IEEE.

Huang, J., & Murphy, K. (2015). Efficient inference in occlusion-aware generative models of images.
arXiv preprint arXiv:1511.06362.

Huang, Q., Zhou, K., You, S., & Neumann, U. (2018). Learning to prune filters in convolutional neural
networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), (pp. 709–
718). IEEE.

Huang, T., Peng, H., & Zhang, K. (2017). Model selection for gaussian mixture models. Statistica
Sinica, (pp. 147–169).

Huber, M. F., & Hanebeck, U. D. (2008). Progressive gaussian mixture reduction. In 2008 11th Inter-
national Conference on Information Fusion, (pp. 1–8). IEEE.

Hussain, F., & Jeong, J. (2016). Efficient deep neural network for digital image compression employing
rectified linear neurons. Journal of Sensors, 2016.

Huszár, F. (2015). How (not) to train your generative model: Scheduled sampling, likelihood, adversary?
arXiv preprint arXiv:1511.05101.

Hutter, M. (2008). Introduction to statistical machine learning. Machine Learning Summer School-
MLSS-2008, (pp. 2–15).

180 BIBLIOGRAPHY

Hwang, Y.-S., & Bang, S.-Y. (1997). An efficient method to construct a radial basis function neural
network classifier. Neural networks, 10(8), 1495–1503.

H.-J., M. (1985). Spath, h.: Cluster dissection and analysis: theory, fortran programs, examples. (trans-
lator: Johannes goldschmidt.) ellis horwood ltd wiley, chichester 1985. 226 pp. £25. Biometrical
Journal, 28(2), 182–182.

Iannario, M. (2010). On the identifiability of a mixture model for ordinal data. Metron, 68(1), 87–94.

Icarte, R. T., Illanes, L., Castro, M. P., Cire, A. A., McIlraith, S. A., & Beck, J. C. (2019). Training
binarized neural networks using mip and cp. In International Conference on Principles and Practice
of Constraint Programming, (pp. 401–417). Springer.

Illingworth, J., & Kittler, J. (1988). A survey of the hough transform. Computer vision, graphics, and
image processing, 44(1), 87–116.

Ionescu, C., Vantzos, O., & Sminchisescu, C. (2015). Training deep networks with structured layers by
matrix backpropagation. arXiv preprint arXiv:1509.07838.

Ishak, S., Kotha, P., & Alecsandru, C. (2003). Optimization of dynamic neural network performance
for short-term traffic prediction. Transportation Research Record, 1836(1), 45–56.

Ishwaran, H., & Zarepour, M. (2002). Exact and approximate sum representations for the dirichlet
process. Canadian Journal of Statistics, 30(2), 269–283.

Ito, M., Noda, K., Hoshino, Y., & Tani, J. (2006). Dynamic and interactive generation of object handling
behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks, 19(3),
323–337.

Ito, Y. (1991). Representation of functions by superpositions of a step or sigmoid function and their
applications to neural network theory. Neural Networks, 4(3), 385–394.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural networks,
1(4), 295–307.

Jang, J.-S., & Sun, C.-T. (1993). Functional equivalence between radial basis function networks and
fuzzy inference systems. IEEE transactions on Neural Networks, 4(1), 156–159.

Janke, W., & Schakel, A. M. (2004). Geometrical vs. fortuin–kasteleyn clusters in the two-dimensional
q-state potts model. Nuclear Physics B, 700(1-3), 385–406.

Jerrum, M., & Sinclair, A. (1993). Polynomial-time approximation algorithms for the ising model.
SIAM Journal on computing, 22(5), 1087–1116.

Jewbali, A., & Ore, R. T. I. (2009). Finding the nearest positive definite matrix for input to semi-
automatic variogram fitting (varfit lmc). Centre for Computational Geostatistics, 11, 402.

Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y., & Guan, R. (2018a). Text classification based
on deep belief network and softmax regression. Neural Computing and Applications, 29(1), 61–70.

BIBLIOGRAPHY 181

Jiang, S. G. (2021). Collatz total stopping times with neural networks. World Scientific Research
Journal, 7(1), 296–301.

Jiang, W., & Tanner, M. A. (1999). On the identifiability of mixtures-of-experts. Neural Networks,
12(9), 1253–1258.

Jiang, X., & Adeli, H. (2005). Dynamic wavelet neural network for nonlinear identification of highrise
buildings. Computer-Aided Civil and Infrastructure Engineering, 20(5), 316–330.

Jiang, X., Pang, Y., Li, X., Pan, J., & Xie, Y. (2018b). Deep neural networks with elastic rectified linear
units for object recognition. Neurocomputing, 275, 1132–1139.

Jin, C., Zhang, Y., Balakrishnan, S., Wainwright, M. J., & Jordan, M. I. (2016). Local maxima in the
likelihood of gaussian mixture models: Structural results and algorithmic consequences. In Advances
in neural information processing systems, (pp. 4116–4124).

Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., & Yan, S. (2015). Deep learning with s-shaped rectified
linear activation units. arXiv preprint arXiv:1512.07030.

Jo, S., Lee, J., Page, G., Quintana, F., Trippa, L., & Müller, P. (2015). Spatial species sampling and prod-
uct partition models. In Nonparametric Bayesian Inference in Biostatistics, (pp. 359–375). Springer.

Joarder, A. H. (2001). Six ways to look at linear interpolation. International Journal of Mathematical
Education in Science and Technology, 32(6), 932–937.

Johansson, J., & Pistol, M.-E. (2011). Microcanonical entropy of the infinite-state potts model. Physics
Research International, 2011.

Johnson, J. K., Oyen, D., Chertkov, M., & Netrapalli, P. (2015). Learning planar ising models. arXiv
preprint arXiv:1502.00916.

Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, (pp. 315–323).

Jordan, C., Livingstone, V., & Barry, D. (2007). Statistical modelling using product partition models.
Statistical Modelling, 7(3), 275–295.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science,
349(6245), 255–260.

Jordan, M. I., & Xu, L. (1995). Convergence results for the em approach to mixtures of experts archi-
tectures. Neural networks, 8(9), 1409–1431.

Jorjani, H., Klei, L., & Emanuelson, U. (2003). A simple method for weighted bending of genetic (co)
variance matrices. Journal of dairy science, 86(2), 677–679.

Joya, G., Atencia, M., & Sandoval, F. (2002). Hopfield neural networks for optimization: study of the
different dynamics. Neurocomputing, 43(1-4), 219–237.

Jung, Y., & Hu, J. (2015). A k-fold averaging cross-validation procedure. Journal of nonparametric
statistics, 27(2), 167–179.

182 BIBLIOGRAPHY

Kadowaki, T., & Nishimori, H. (1998). Quantum annealing in the transverse ising model. Physical
Review E, 58(5), 5355.

Kai, Y., Lei, J., Yuqiang, C., & Wei, X. (2013). Deep learning: yesterday, today, and tomorrow. Journal
of computer Research and Development, 50(9), 1799.

Kalanov, T. Z. (2008). Modern analysis of the boltzmann distribution. Galilean Electrodynamics (be
published).

Kalchbrenner, N., Danihelka, I., & Graves, A. (2015). Grid long short-term memory. arXiv preprint
arXiv:1507.01526.

Kamruzzaman, J., Kumagai, Y., & Aziz, S. M. (1997). Character recognition by double backpropagation
neural network. In TENCON’97 Brisbane-Australia. Proceedings of IEEE TENCON’97. IEEE Region
10 Annual Conference. Speech and Image Technologies for Computing and Telecommunications (Cat.
No. 97CH36162), vol. 1, (pp. 411–414). IEEE.

Kamruzzaman, J., & Syed, A., Mahfuzul (1998). A neural network based character recognition system
using double backpropagation. Malaysian Journal of Computer Science, 11(1), 58–64.

Kamwa, I., Grondin, R., Sood, V., Gagnon, C., Nguyen, V. T., & Mereb, J. (1996). Recurrent neural
networks for phasor detection and adaptive identification in power system control and protection.
IEEE Transactions on Instrumentation and Measurement, 45(2), 657–664.

Kanai, S., Fujiwara, Y., Yamanaka, Y., & Adachi, S. (2018). Sigsoftmax: Reanalysis of the softmax
bottleneck. Advances in Neural Information Processing Systems, 31, 286–296.

Kanellopoulos, I., & Wilkinson, G. G. (1997). Strategies and best practice for neural network image
classification. International Journal of Remote Sensing, 18(4), 711–725.

Kanter, I. (1988). Potts-glass models of neural networks. Phys. Rev. A, 37, 2739–2742.
URL https://link.aps.org/doi/10.1103/PhysRevA.37.2739

Kanter, I., & Kinzel, W. (2003). The theory of neural networks and cryptography. In The Physics of
Communication, (pp. 631–642). World Scientific.

Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in generalized
mlp architectures of neural networks. International Journal of Artificial Intelligence and Expert
Systems, 1(4), 111–122.

Kauppinen, H., Seppanen, T., & Pietikainen, M. (1995). An experimental comparison of autoregressive
and fourier-based descriptors in 2d shape classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(2), 201–207.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural information
processing systems, (pp. 586–594).

Kay, S. (1983). Some results in linear interpolation theory. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 31(3), 746–749.

https://link.aps.org/doi/10.1103/PhysRevA.37.2739

BIBLIOGRAPHY 183

Kaya, Y., Hong, S., & Dumitras, T. (2019). Shallow-deep networks: Understanding and mitigating
network overthinking. In International Conference on Machine Learning, (pp. 3301–3310). PMLR.

Kazhdan, M., Chazelle, B., Dobkin, D., Finkelstein, A., & Funkhouser, T. (2002). A reflective symmetry
descriptor. In European Conference on Computer Vision, (pp. 642–656). Springer.

Kelarev, A. V. (2002). On undirected cayley graphs. Australasian Journal of Combinatorics, 25, 73–78.

Kelleher, J. D. (2019). Deep learning. Mit Press.

Kemppainen, A., & Smirnov, S. (2019). Conformal invariance of boundary touching loops of fk ising
model. Communications in Mathematical Physics, 369(1), 49–98.

Kepner, J., & Robinett, R. (2019). Radix-net: Structured sparse matrices for deep neural networks. In
2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), (pp.
268–274). IEEE.

Keriven, N., & Peyré, G. (2019). Universal invariant and equivariant graph neural networks. arXiv
preprint arXiv:1905.04943.

Kéry, M. (2018). Identifiability in n-mixture models: A large-scale screening test with bird data. Ecol-
ogy, 99(2), 281–288.

Khalidov, V., Forbes, F., & Horaud, R. (2011). Conjugate mixture models for clustering multimodal
data. Neural Computation, 23(2), 517–557.

Khor, H.-Q., See, J., Liong, S.-T., Phan, R. C., & Lin, W. (2019). Dual-stream shallow networks for
facial micro-expression recognition. In 2019 IEEE International Conference on Image Processing
(ICIP), (pp. 36–40). IEEE.

Khotanzad, A., & Hong, Y. H. (1990). Invariant image recognition by zernike moments. IEEE Trans-
actions on pattern analysis and machine intelligence, 12(5), 489–497.

Kilian, J., & Siegelmann, H. T. (1993). On the power of sigmoid neural networks. In Proceedings of
the sixth annual conference on Computational learning theory, (pp. 137–143).

Kim, D., & Lindsay, B. G. (2015). Empirical identifiability in finite mixture models. Annals of the
Institute of Statistical Mathematics, 67(4), 745–772.

Kim, D., & Seo, B. (2014). Assessment of the number of components in gaussian mixture models in
the presence of multiple local maximizers. Journal of Multivariate Analysis, 125, 100–120.

Kim, D. E., & Gofman, M. (2018). Comparison of shallow and deep neural networks for network intru-
sion detection. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference
(CCWC), (pp. 204–208). IEEE.

Kim, P. (2017). Deep learning. In MATLAB Deep Learning, (pp. 103–120). Springer.

Kim, S. M., Do, T. T., Oechtering, T. J., & Peters, G. (2015). On the entropy computation of large
complex gaussian mixture distributions. IEEE Transactions on Signal Processing, 63(17), 4710–
4723.

184 BIBLIOGRAPHY

Kimura, A., & Watanabe, T. (2002). An extension of the generalized hough transform to realize affine-
invariant two-dimensional (2d) shape detection. In Object recognition supported by user interaction
for service robots, vol. 1, (pp. 65–69). IEEE.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P., Salimans, T., & Welling, M. (2015). Variational dropout and the local reparameterization
trick. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.) Advances in Neural
Information Processing Systems 28, (pp. 2575–2583). Curran Associates, Inc.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kinzel, W., & Kanter, I. (2002a). Interacting neural networks and cryptography. In Advances in solid
state physics, (pp. 383–391). Springer.

Kinzel, W., & Kanter, I. (2002b). Neural cryptography. In Proceedings of the 9th International Confer-
ence on Neural Information Processing, 2002. ICONIP’02., vol. 3, (pp. 1351–1354). IEEE.

Klimov, A., Mityagin, A., & Shamir, A. (2002). Analysis of neural cryptography. In International
Conference on the Theory and Application of Cryptology and Information Security, (pp. 288–298).
Springer.

Kline, D. M., & Berardi, V. L. (2005). Revisiting squared-error and cross-entropy functions for training
neural network classifiers. Neural Computing & Applications, 14(4), 310–318.

Knill, O., & Slavkovsky, E. (2013). Illustrating mathematics using 3d printers. arXiv preprint
arXiv:1306.5599.

Ko, S. I., Chong, T. T., Ghosh, P., et al. (2015). Dirichlet process hidden markov multiple change-point
model. Bayesian Analysis, 10(2), 275–296.

Koch, C., Sultanow, E., & Cox, S. (2020). Divisions by two in collatz sequences: A data science
approach.

Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of cluster in k-means
clustering. International Journal, 1(6), 90–95.

Kokkinos, I., Bronstein, M., & Yuille, A. (2012). Dense scale invariant descriptors for images and
surfaces.

Kokkinos, I., & Yuille, A. (2008). Scale invariance without scale selection. In 2008 IEEE Conference
on Computer Vision and Pattern Recognition, (pp. 1–8). IEEE.

Kondo, T. (2006). Revised gmdh-type neural network algorithm with a feedback loop identifying sig-
moid function neural network. In Proceedings of the ISCIE International Symposium on Stochastic
Systems Theory and its Applications, vol. 2006, (pp. 137–142). The ISCIE Symposium on Stochastic
Systems Theory and Its Applications.

Kononenko, I., & Kukar, M. (2007). Machine learning and data mining. Horwood Publishing.

BIBLIOGRAPHY 185

Kortylewski, A., Liu, Q., Wang, H., Zhang, Z., & Yuille, A. (2020). Combining compositional models
and deep networks for robust object classification under occlusion. In The IEEE Winter Conference
on Applications of Computer Vision, (pp. 1333–1341).

Kossovsky, A. E. (2014). Benford’s Law: Theory, the General Law of Relative Quantities, and Forensic
Fraud Detection Applications, vol. 3. World Scientific.

Kotsiantis, S. (2011). Combining bagging, boosting, rotation forest and random subspace methods.
Artificial intelligence review, 35(3), 223–240.

Kozliak, E. I. (2004). Introduction of entropy via the boltzmann distribution in undergraduate physical
chemistry: A molecular approach. Journal of chemical education, 81(11), 1595.

Krakar, Z., & Žgela, M. (2009). Application of benford’s law in payment systems auditing. Journal of
Information and Organizational Sciences, 33(1), 39–51.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Kros, J. F., Lin, M., & Brown, M. L. (2006). Effects of the neural network s-sigmoid function on kdd
in the presence of imprecise data. Computers & operations research, 33(11), 3136–3149.

Kucukelbir, A., Ranganath, R., Gelman, A., & Blei, D. (2014). Fully automatic variational inference of
differentiable probability models. In NIPS Workshop on Probabilistic Programming.

Kulis, B., & Jordan, M. I. (2011). Revisiting k-means: New algorithms via bayesian nonparametrics.
arXiv preprint arXiv:1111.0352.

Kullback, S., & Leibler, R. (1951). On information and sufficiency. Ann. Math. Stat, 22, 79–86.

Kullmann, L., Kertesz, J., & Mantegna, R. (2000). Identification of clusters of companies in stock in-
dices via potts super-paramagnetic transitions. Physica A: Statistical Mechanics and its Applications,
287(3-4), 412–419.

Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V., Paulus, R., &
Socher, R. (2016). Ask me anything: Dynamic memory networks for natural language processing. In
International conference on machine learning, (pp. 1378–1387).

Kuo, C.-C. J. (2016). Understanding convolutional neural networks with a mathematical model. Journal
of Visual Communication and Image Representation, 41, 406–413.

Kurenkov, A., Taglic, J., Kulkarni, R., Dominguez-Kuhne, M., Garg, A., Martı́n-Martı́n, R., & Savarese,
S. (2020). Visuomotor mechanical search: Learning to retrieve target objects in clutter. arXiv preprint
arXiv:2008.06073.

Kurihara, K., Welling, M., & Teh, Y. W. (2007). Collapsed variational dirichlet process mixture models.
In IJCAI, vol. 7, (pp. 2796–2801).

Kurita, T. (1991). An efficient agglomerative clustering algorithm using a heap. Pattern Recognition,
24(3), 205–209.

186 BIBLIOGRAPHY

Lakshmivarahan, S., Jwo, J.-S., & Dhall, S. K. (1993). Symmetry in interconnection networks based on
cayley graphs of permutation groups: A survey. Parallel Computing, 19(4), 361–407.

Landau, L. D., & Evgeny, L. (1980). Course of theoretical physics: statistical physics. Elsevier Butter-
worth Heinemann.

Lange, S., Gabel, T., & Riedmiller, M. (2012). Batch reinforcement learning. In Reinforcement learning,
(pp. 45–73). Springer.

Larsson, G., Maire, M., & Shakhnarovich, G. (2016). Fractalnet: Ultra-deep neural networks without
residuals. arXiv preprint arXiv:1605.07648.

Lartillot, N., & Philippe, H. (2004). A bayesian mixture model for across-site heterogeneities in the
amino-acid replacement process. Molecular biology and evolution, 21(6), 1095–1109.

Laurent, T., & Brecht, J. (2018). Deep linear networks with arbitrary loss: All local minima are global.
In International conference on machine learning, (pp. 2902–2907).

Lauritzen, S., Sadeghi, K., et al. (2018). Unifying markov properties for graphical models. The Annals
of Statistics, 46(5), 2251–2278.

Lauritzen, S. L., & Richardson, T. S. (2002). Chain graph models and their causal interpretations.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3), 321–348.

Lauzon, F. Q. (2012). An introduction to deep learning. In 2012 11th International Conference on
Information Science, Signal Processing and their Applications (ISSPA), (pp. 1438–1439). IEEE.

Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941.

Le Cam, L. M. (1986). On the Bernstein-von Mises theorem. Department of Statistics, University of
California.

LeCun, Y., Bengio, Y., & Hinton, G. (2015a). Deep learning. nature, 521(7553), 436–444.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10), 1995.

LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances in neural informa-
tion processing systems, (pp. 598–605).

LeCun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-
propagation. In Proceedings of the 1988 connectionist models summer school, vol. 1, (pp. 21–28).
CMU, Pittsburgh, Pa: Morgan Kaufmann.

LeCun, Y., et al. (2015b). Lenet-5, convolutional neural networks. URL: http://yann. lecun. com/exd-
b/lenet, 20(5), 14.

Lee, J., & MacEachern, S. N. (2020). A new proof of the stick-breaking representation of dirichlet
processes. Journal of the Korean Statistical Society, (pp. 1–6).

BIBLIOGRAPHY 187

Lee, J., Shridhar, K., Hayashi, H., Iwana, B. K., Kang, S., & Uchida, S. (2019). Probact: A probabilistic
activation function for deep neural networks. arXiv preprint arXiv:1905.10761.

Lee, J. D., Simchowitz, M., Jordan, M. I., & Recht, B. (2016). Gradient descent only converges to
minimizers. In Conference on learning theory, (pp. 1246–1257).

Lee, J.-E., Jin, R., & Jain, A. K. (2008). Rank-based distance metric learning: An application to image
retrieval. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, (pp. 1–8). IEEE.

Lehr, D., & Ohm, P. (2017). Playing with the data: what legal scholars should learn about machine
learning. UCDL Rev., 51, 653.

Lemke, W. (2006). Term structure modeling and estimation in a state space framework, vol. 565.
Springer Science & Business Media.

Leray, P. (2000). Quelques types de réseaux de neurones la rétropropagation. Fond de cours.

Leung, H., Lo, T., & Wang, S. (2001). Prediction of noisy chaotic time series using an optimal radial
basis function neural network. IEEE Transactions on Neural Networks, 12(5), 1163–1172.

Leven, S. J., & Levine, D. S. (1996). Multiattribute decision making in context: A dynamic neural
network methodology. Cognitive Science, 20(2), 271–299.

Li, D., Chen, X., Zhang, Z., & Huang, K. (2017). Learning deep context-aware features over body and
latent parts for person re-identification. In Proceedings of the IEEE conference on computer vision
and pattern recognition, (pp. 384–393).

Li, E., & Li, H. (2017). Reflection invariant and symmetry detection. arXiv preprint arXiv:1705.10768.

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710.

Li, J. (2011). Potts model clustering for discovering patterns of epigenetic marks. Ph.D. thesis, Rutgers
University-Graduate School-New Brunswick.

Li, J., & Murua, A. (1999). A 2d extended hmm for speech recognition. In 1999 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.
99CH36258), vol. 1, (pp. 349–352). IEEE.

Li, J., Xing, F., Liu, Y., & Liu, Z. (2020). Backward-link computational imaging using batch learning
networks. Neural Computing and Applications, (pp. 1–13).

Li, J. F., & Lowengrub, J. (2014). The effects of cell compressibility, motility and contact inhibition on
the growth of tumor cell clusters using the cellular potts model. Journal of theoretical biology, 343,
79–91.

Li, M., Zhang, T., Chen, Y., & Smola, A. J. (2014a). Efficient mini-batch training for stochastic opti-
mization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, (pp. 661–670).

188 BIBLIOGRAPHY

Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D. D., & Chen, M. (2014b). Medical image classification
with convolutional neural network. In 2014 13th International Conference on Control Automation
Robotics & Vision (ICARCV), (pp. 844–848). IEEE.

Li, Q. J. (1999). Estimation of mixture models. Yale University.

Li, S. Z. (1994). Markov random field models in computer vision. In European conference on computer
vision, (pp. 361–370). Springer.

Li, T., Choi, M., Fu, K., & Lin, L. (2019a). Music sequence prediction with mixture hidden markov
models. In 2019 IEEE International Conference on Big Data (Big Data), (pp. 6128–6132). IEEE.

Li, X., Chang, D., Tian, T., & Cao, J. (2019b). Large-margin regularized softmax cross-entropy loss.
IEEE Access, 7, 19572–19578.

Li, X., & Orabona, F. (2019). On the convergence of stochastic gradient descent with adaptive stepsizes.
In The 22nd International Conference on Artificial Intelligence and Statistics, (pp. 983–992). PMLR.

Li, X., Yu, L., Chang, D., Ma, Z., & Cao, J. (2019c). Dual cross-entropy loss for small-sample fine-
grained vehicle classification. IEEE Transactions on Vehicular Technology, 68(5), 4204–4212.

Li, Y., & Liang, Y. (2018). Learning overparameterized neural networks via stochastic gradient descent
on structured data. Advances in Neural Information Processing Systems, 31, 8157–8166.

Li, Z., Cai, X., Liu, Y., & Zhu, B. (2019d). A novel gaussian–bernoulli based convolutional deep belief
networks for image feature extraction. Neural Processing Letters, 49(1), 305–319.

Li, Z.-H., & Hu, W.-Z. (2017). A high-precision digital integrator based on the romberg algorithm.
Review of Scientific Instruments, 88(4), 045111.

Liang, N.-Y., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2006). A fast and accurate online
sequential learning algorithm for feedforward networks. IEEE Transactions on neural networks,
17(6), 1411–1423.

Liang, S., Sun, R., Lee, J. D., & Srikant, R. (2018). Adding one neuron can eliminate all bad local
minima. In Advances in Neural Information Processing Systems, (pp. 4350–4360).

Liang, X., Chen, H., & Lozano, J. A. (2014). A boltzmann-based estimation of distribution algorithm
for a general resource scheduling model. IEEE Transactions on Evolutionary Computation, 19(6),
793–806.

Liang, X., Wang, X., Lei, Z., Liao, S., & Li, S. Z. (2017). Soft-margin softmax for deep classification.
In International Conference on Neural Information Processing, (pp. 413–421). Springer.

Liao, K., Liu, G., & Hui, Y. (2013). An improvement to the sift descriptor for image representation and
matching. Pattern Recognition Letters, 34(11), 1211–1220.

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clustering algorithm. Pattern
recognition, 36(2), 451–461.

BIBLIOGRAPHY 189

Lin, C.-W., & Wang, J.-S. (2008). A digital circuit design of hyperbolic tangent sigmoid function for
neural networks. In 2008 IEEE International Symposium on Circuits and Systems, (pp. 856–859).
IEEE.

Lin, J. (2016). On the dirichlet distribution. Ph.D. thesis, Master’s thesis, Department of Mathematics
and Statistics, Queens University

Lin, J., & Zhou, D.-X. (2017). Online learning algorithms can converge comparably fast as batch
learning. IEEE transactions on neural networks and learning systems, 29(6), 2367–2378.

Ling, H., & Jacobs, D. W. (2005). Deformation invariant image matching. In Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, (pp. 1466–1473). IEEE.

Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE transactions on
pattern analysis and machine intelligence, 29(2), 286–299.

Lison, P. (2015). An introduction to machine learning. Language Technology Group (LTG), 1(35).

Liu, F., & Perez, J. (2017). Gated end-to-end memory networks. In Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers,
(pp. 1–10).

Liu, F.-H., Gao, Y.-Q., & Li, B.-C. (2014). Comparing two-boltzmann distribution and tsallis statistics
of particle transverse momentums in collisions at lhc energies. The European Physical Journal A,
50(8), 123.

Liu, Q., Zhao, L. M., & Zhang, L. J. (2013). Image feature extraction of moment of inertia based on
otsu threshold segmentation. In Advanced Materials Research, vol. 756, (pp. 3157–3161). Trans Tech
Publ.

Liu, S. (2020). Learning sparse neural networks for better generalization. In 29th International Joint
Conference on Artificial Intelligence-17th Pacific Rim International Conference on Artificial Intelli-
gence..

Liu, S., Van der Lee, T., Yaman, A., Atashgahi, Z., Ferraro, D., Sokar, G., Pechenizkiy, M., & Mocanu,
D. C. (2020). Topological insights in sparse neural networks. arXiv preprint arXiv:2006.14085.

Liu, W., Wen, Y., Yu, Z., & Yang, M. (2016). Large-margin softmax loss for convolutional neural
networks. In ICML, vol. 2, (p. 7).

Liu, Y. (2014). Random forest algorithm in big data environment. Computer Modelling & New Tech-
nologies, 18(12A), 147–151.

Liu, Y., Wang, Y., & Zhang, J. (2012). New machine learning algorithm: Random forest. In Interna-
tional Conference on Information Computing and Applications, (pp. 246–252). Springer.

Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture.
Biometrika, 88(3), 767–778.

190 BIBLIOGRAPHY

Loschi, R., & Cruz, F. (2002). An analysis of the influence of some prior specifications in the identifica-
tion of change points via product partition model. Computational Statistics & Data Analysis, 39(4),
477–501.

Loschi, R. H., & Cruz, F. R. (2005). Extension to the product partition model: computing the probability
of a change. Computational Statistics & Data Analysis, 48(2), 255–268.

Lou, L., Zhang, F.-M., Xu, C., Li, F., & Xue, M.-G. (2008). Automatic registration of aerial image series
using geometric invariance. In 2008 IEEE International Conference on Automation and Logistics,
(pp. 1198–1203). IEEE.

Louizos, C., & Welling, M. (2016). Structured and efficient variational deep learning with matrix
gaussian posteriors. In International Conference on Machine Learning, (pp. 1708–1716).

Louizos, C., Welling, M., & Kingma, D. P. (2017). Learning sparse neural networks through l 0 regu-
larization. arXiv preprint arXiv:1712.01312.

Lowe, D. (1985). Perceptual organization and vi-sual recognition”, kluwer academic publishers, boston.

Lu, F., & Xia, S. (2007). Microscopic image mosaicing algorithm based on normalized moment of
inertia. In International Conference on Intelligent Computing, (pp. 1010–1017). Springer.

Luo, J.-H., Wu, J., & Lin, W. (2017). Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international conference on computer vision, (pp. 5058–
5066).

Lydia, A., & Francis, S. (2019). Adagrad—an optimizer for stochastic gradient descent. Int. J. Inf.
Comput. Sci., 6(5).

Ma, C., Lv, X., & Ao, J. (2019). Normalized moment of inertia-based detection algorithm for copy-paste
image tampering. International Journal of Pattern Recognition and Artificial Intelligence, 33(06),
1954023.

Ma, J., Xu, L., & Jordan, M. I. (2000). Asymptotic convergence rate of the em algorithm for gaussian
mixtures. Neural Computation, 12(12), 2881–2907.

Machta, J., Choi, Y., Lucke, A., Schweizer, T., & Chayes, L. (1996). Invaded cluster algorithm for potts
models. Physical Review E, 54(2), 1332.

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university
press.

Mackenzie, A. (2015). The production of prediction: What does machine learning want? European
Journal of Cultural Studies, 18(4-5), 429–445.

Madaan, D., Shin, J., & Hwang, S. J. (2019). Adversarial neural pruning with latent vulnerability
suppression. arXiv preprint arXiv:1908.04355.

Maehara, T., & NT, H. (2019). A simple proof of the universality of invariant/equivariant graph neural
networks. arXiv preprint arXiv:1910.03802.

BIBLIOGRAPHY 191

Maeland, E. (1988). On the comparison of interpolation methods. IEEE transactions on medical imag-
ing, 7(3), 213–217.

Magidson, J., & Vermunt, J. (2002). Latent class models for clustering: A comparison with k-means.
Canadian Journal of Marketing Research, 20(1), 36–43.

Magoulas, G. D., Vrahatis, M. N., & Androulakis, G. S. (1999). Improving the convergence of the back-
propagation algorithm using learning rate adaptation methods. Neural Computation, 11(7), 1769–
1796.

Maguolo, G., Nanni, L., & Ghidoni, S. (2019). Ensemble of convolutional neural networks trained with
different activation functions. arXiv preprint arXiv:1905.02473.

Mahdavi, A., & Kundu, D. (2017). A new method for generating distributions with an application to
exponential distribution. Communications in Statistics-Theory and Methods, 46(13), 6543–6557.

Mairal, J., Koniusz, P., Harchaoui, Z., & Schmid, C. (2014). Convolutional kernel networks. Advances
in neural information processing systems, 27, 2627–2635.

Malach, E., & Shalev-Shwartz, S. (2019). Is deeper better only when shallow is good? In Advances in
Neural Information Processing Systems, (pp. 6429–6438).

Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015). Long short term memory networks for anomaly
detection in time series. In Proceedings, vol. 89, (pp. 89–94). Presses universitaires de Louvain.

Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., & Dally, W. J. (2017). Exploring the regularity of
sparse structure in convolutional neural networks. arXiv preprint arXiv:1705.08922.

Mao, H. H., Shin, T., & Cottrell, G. (2018). Deepj: Style-specific music generation. In 2018 IEEE 12th
International Conference on Semantic Computing (ICSC), (pp. 377–382). IEEE.

Marchisio, G. B., Koperski, K., Liang, J., Murua, A., Nguyen, T., Tusk, C., Dhillon, N. S., & Pochman,
L. (2008). Method and system for enhanced data searching. US Patent 7,398,201.

Marée, S. (2012). Correcting non positive definite correlation matrices. BSc Thesis Applied Mathe-
matics, TU Delft.

Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. (2018). Invariant and equivariant graph networks.
arXiv preprint arXiv:1812.09902.

Maron, H., Fetaya, E., Segol, N., & Lipman, Y. (2019). On the universality of invariant networks. In
International conference on machine learning, (pp. 4363–4371). PMLR.

Marquez, L., Hill, T., Worthley, R., & Remus, W. (1991). Neural network models as an alternative to
regression. In System Sciences, 1991. Proceedings of the Twenty-Fourth Annual Hawaii International
Conference on, vol. 4, (pp. 129–135). IEEE.

Marshall, A. W., & Olkin, I. (1967). A multivariate exponential distribution. Journal of the American
Statistical Association, 62(317), 30–44.

Marshall, S. (1989). Review of shape coding techniques. Image and vision computing, 7(4), 281–294.

192 BIBLIOGRAPHY

Marsland, S. (2015). Machine learning: an algorithmic perspective. CRC press.

Marsland, S., McLachlan, R. I., et al. (2016). Möbius invariants of shapes and images. SIGMA. Sym-
metry, Integrability and Geometry: Methods and Applications, 12, 080.

Martinelli, F., Olivieri, E., & Scoppola, E. (1990). Rigorous analysis of low-temperature stochastic
ising models: metastability and exponential approach to equilibrium. EPL (Europhysics Letters),
12(3), 223.

Martinez, M., & Stiefelhagen, R. (2018). Taming the cross entropy loss. In German Conference on
Pattern Recognition, (pp. 628–637). Springer.

Martı́nez-Muñoz, G., Hernández-Lobato, D., & Suárez, A. (2008). An analysis of ensemble pruning
techniques based on ordered aggregation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 31(2), 245–259.

Masci, J., Migliore, D., Bronstein, M. M., & Schmidhuber, J. (2014). Descriptor learning for omni-
directional image matching. In Registration and Recognition in Images and Videos, (pp. 49–62).
Springer.

Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612.

Mathias, A. C., & Rech, P. C. (2012). Hopfield neural network: The hyperbolic tangent and the
piecewise-linear activation functions. Neural Networks, 34, 42–45.

Maweheb, S., Malek, S., & Faouzi, G. (2016). Geometric invariance in digital imaging for the preserva-
tion of cultural heritage in tunisia. Digital Applications in Archaeology and Cultural Heritage, 3(4),
99–107.

May, T., Van de Par, S., & Kohlrausch, A. (2011). Noise-robust speaker recognition combining miss-
ing data techniques and universal background modeling. IEEE Transactions on Audio, Speech, and
Language Processing, 20(1), 108–121.

Mazumder, R., & Hastie, T. (2015). The graphical lasso: new insights and alternatives. Electronic
Journal of Statisitcs, 6, 2125–2149.

Mazza-Anthony, C. A. (2019). Structured Sparsity and Precision Matrix Estimation. Ph.D. thesis,
McGill University.

McCarthy, J. (1987). Generality in artificial intelligence. Communications of the ACM, 30(12), 1030–
1035.

McCarthy, J. (1998). What is artificial intelligence?

McCoy, B. M., & Wu, T. T. (2014). The two-dimensional Ising model. Courier Corporation.

McCullagh, P. (2011). Random permutations and partition models.

McCullagh, P. (2017). Robustifying concurrent.futures with loky.
URL https://tommoral.github.io/talks/pyparis17/#41

https://tommoral.github.io/talks/pyparis17/#41

BIBLIOGRAPHY 193

McDonnell, M. D., Tissera, M. D., Vladusich, T., van Schaik, A., & Tapson, J. (2015). Fast, simple
and accurate handwritten digit classification by training shallow neural network classifiers with the
‘extreme learning machine’algorithm. PloS one, 10(8), e0134254.

McDowell, S. A. (1999). A simple derivation of the boltzmann distribution. Journal of chemical
education, 76(10), 1393.

McLachlan, G. J., & Basford, K. E. (1988). Mixture models: Inference and applications to clustering,
vol. 38. M. Dekker New York.

McLachlan, G. J., & Peel, D. (2004). Finite mixture models. John Wiley & Sons.

McLachlan, G. J., Peel, D., Basford, K. E., & Adams, P. (1999). The emmix software for the fitting of
mixtures of normal and t-components. Journal of Statistical Software, 4(2).

McLachlan, G. J., & Rathnayake, S. (2014). On the number of components in a gaussian mixture model.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5), 341–355.

Mebane, W. R. (2011). Comment on “benford’s law and the detection of election fraud”. Political
Analysis, 19(3), 269–272.

Mebane, W. R., & Kalinin, K. (2009). Comparative election fraud detection. In APSA 2009 Toronto
Meeting Paper.

Mebane Jr, W. R. (2006). Election forensics: Vote counts and benford’s law. In Summer Meeting of the
Political Methodology Society, UC-Davis, July, (pp. 20–22).

Medsker, L., & Jain, L. C. (1999). Recurrent neural networks: design and applications. CRC press.

Medsker, L. R., & Jain, L. (2001). Recurrent neural networks. Design and Applications, 5.

Medvedovic, M., Yeung, K. Y., & Bumgarner, R. E. (2004). Bayesian mixture model based clustering
of replicated microarray data. Bioinformatics, 20(8), 1222–1232.

Mei, L., Guo, X., & Yin, W. (2018). Learning geometric invariance features and discrimination repre-
sentation for image classification via spatial transform network and xgboost modeling. In Proceed-
ings of the 7th International Conference on Informatics, Environment, Energy and Applications, (pp.
222–226).

Meinicke, P., & Ritter, H. (2001). Resolution-based complexity control for gaussian mixture models.
Neural computation, 13(2), 453–475.

Melnykov, V., Maitra, R., et al. (2010). Finite mixture models and model-based clustering. Statistics
Surveys, 4, 80–116.

Melnykov, V., & Melnykov, I. (2012). Initializing the em algorithm in gaussian mixture models with an
unknown number of components. Computational Statistics & Data Analysis, 56(6), 1381–1395.

Memisevic, R., Zach, C., Pollefeys, M., & Hinton, G. E. (2010). Gated softmax classification. Advances
in neural information processing systems, 23, 1603–1611.

194 BIBLIOGRAPHY

Menon, A., Mehrotra, K., Mohan, C. K., & Ranka, S. (1996). Characterization of a class of sigmoid
functions with applications to neural networks. Neural Networks, 9(5), 819–835.

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., & Khudanpur, S. (2011). Extensions of recurrent
neural network language model. In 2011 IEEE international conference on acoustics, speech and
signal processing (ICASSP), (pp. 5528–5531). IEEE.

Miller, J. W., & Harrison, M. T. (2012). Posterior consistency for the number of components in a finite
mixture. In NIPS Workshop on Modern Nonparametric Machine Learning, (pp. 1–5).

Miller, J. W., & Harrison, M. T. (2018). Mixture models with a prior on the number of components.
Journal of the American Statistical Association, 113(521), 340–356.

Miller, S. J. (2015). Benford’s Law. Princeton University Press.

Mingqiang, Y., Kidiyo, K., & Joseph, R. (2011). Chord context algorithm for shape feature extraction.
Object Recognition, (p. 65).

Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8–30.

Mitchell, R., Michalski, J., & Carbonell, T. (2013). An artificial intelligence approach. Springer.

Mitchell, T. M. (1997). Does machine learning really work? AI magazine, 18(3), 11–11.

Mitchell, T. M., Carbonell, J. G., & Michalski, R. S. (1986). Machine learning: a guide to current
research, vol. 12. Springer Science & Business Media.

Mnih, A., & Gregor, K. (2014). Neural variational inference and learning in belief networks. arXiv
preprint arXiv:1402.0030.

Moerchen, F., Mierswa, I., & Ultsch, A. (2006). Understandable models of music collections based
on exhaustive feature generation with temporal statistics. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, (pp. 882–891).

Mohamed, S., Rosca, M., Figurnov, M., & Mnih, A. (2019). Monte carlo gradient estimation in machine
learning. arXiv preprint arXiv:1906.10652.

Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: algorithms and applica-
tions. Crc Press.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT press.

Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional neural networks
for resource efficient inference. arXiv preprint arXiv:1611.06440.

Moon, T., Erk, K., & Baldridge, J. (2010). Crouching dirichlet, hidden markov model: Unsupervised
pos tagging with context local tag generation. In Proceedings of the 2010 conference on empirical
methods in natural language processing, (pp. 196–206).

Morcel, R., Hajj, H., Saghir, M. A., Akkary, H., Artail, H., Khanna, R., & Keshavamurthy, A. (2019).
Feathernet: An accelerated convolutional neural network design for resource-constrained fpgas. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 12(2), 1–27.

BIBLIOGRAPHY 195

Mordjaoui, M., Haddad, S., Medoued, A., & Laouafi, A. (2017). Electric load forecasting by using
dynamic neural network. International journal of hydrogen energy, 42(28), 17655–17663.

Morrison, G. S. (2011). A comparison of procedures for the calculation of forensic likelihood ratios
from acoustic–phonetic data: Multivariate kernel density (mvkd) versus gaussian mixture model–
universal background model (gmm–ubm). Speech Communication, 53(2), 242–256.

Moser, G., Lee, S. H., Hayes, B. J., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2015). Simultane-
ous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model.
PLoS Genet, 11(4), e1004969.

Mühlenbein, H., Mahnig, T., & Rodriguez, A. O. (1999). Schemata, distributions and graphical models
in evolutionary optimization. Journal of Heuristics, 5(2), 215–247.

Mukhopadhyay, P., & Chaudhuri, B. B. (2015). A survey of hough transform. Pattern Recognition,
48(3), 993–1010.

Mulder, J., & Fox, J.-P. (2013). Bayesian tests on components of the compound symmetry covariance
matrix. Statistics and Computing, 23(1), 109–122.

Müller, P., & Quintana, F. (2010a). Random partition models with regression on covariates. Journal of
statistical planning and inference, 140(10), 2801–2808.

Müller, P., & Quintana, F. (2010b). Random partition models with regression on covariates. Journal of
Statistical Planning and Inference, 140(10).

Müller, P., Quintana, F., & Rosner, G. (2008). Bayesian clustering with regression. Tech. rep., Working
paper series - European Central Bank.

Müller, P., Quintana, F., & Rosner, G. L. (2011a). A product partition model with regression on covari-
ates. Journal of Computational and Graphical Statistics, 20(1), 260–278.

Müller, P., Quintana, F. A., & Rosner, G. L. (2011b). A Product Partition Model with Regression on
Covariates. Journal of Computational and Graphical Statistics, 20(1), 260–278.

Müller, P., Rodriguez, A., et al. (2013). Random partition models. In Nonparametric Bayesian Inference,
(pp. 87–92). IMS and ASA.

Mundy, J. L. (2006). Object recognition in the geometric era: A retrospective. In Toward category-level
object recognition, (pp. 3–28). Springer.

Mundy, J. L., Zisserman, A., et al. (1992). Geometric invariance in computer vision, vol. 92. MIT press
Cambridge, MA.

Munson, M. A., & Caruana, R. (2009). On feature selection, bias-variance, and bagging. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, (pp. 144–159).
Springer.

Murata, N. (1998). A statistical study of on-line learning. Online Learning and Neural Networks.
Cambridge University Press, Cambridge, UK, (pp. 63–92).

196 BIBLIOGRAPHY

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Interpretable machine
learning: definitions, methods, and applications. arXiv preprint arXiv:1901.04592.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6),
183–197.

Murua, A., & Maitra, R. (2017). Fast spatial inference in the homogeneous ising model. arXiv preprint
arXiv:1712.02195.

Murua, A., & Quintana, F. A. (2017a). Sem iparametric bayesian regression via potts model. Journal
of Computational and Graphical Statistics, 26(2), 265–274.
URL https://doi.org/10.1080/10618600.2016.1172015

Murua, A., & Quintana, F. A. (2017b). Semiparametric bayesian regression via potts model. Journal of
Computational and Graphical Statistics, 26(2), 265–274.

Murua, A., & Quintana, F. A. (2017c). Semiparametric bayesian regression via potts model. Journal of
Computational and Graphical Statistics, 26(2), 265–274.
URL https://doi.org/10.1080/10618600.2016.1172015

Murua, A., Ramakrishnan, R., Li, X., Yang, R. H., & Nia, V. P. (2020). Tensor train decompositions on
recurrent networks. arXiv preprint arXiv:2006.05442.

Murua, A., Stanberry, L., & Stuetzle, W. (2008a). On potts model clustering, kernel k-means and density
estimation. Journal of Computational and Graphical Statistics, 17(3), 629–658.

Murua, A., Stanberry, L., & Stuetzle, W. (2008b). On potts model clustering, kernel k-means, and
density estimation. Journal of Computational and Graphical Statistics, 17(3), 629–658.

Murua, A., Stanberry, L., & Stuetzle, W. (2008c). On potts model clustering, kernel k means and density
estimation. Journal of Computational and Graphical Statistics, 17, 629–658.

Murua, A., & Wicker, N. (2014a). The conditional-potts clustering model. Journal of Computational
and Graphical Statistics, 23(3), 717–739.

Murua, A., & Wicker, N. (2014b). The conditional-potts clustering model. Journal of Computational
and Graphical Statistics, 23(3), 717–739.
URL https://doi.org/10.1080/10618600.2013.837828

Murua, A., & Wicker, N. (2015). Kernel-based mixture models for classification. Computational
Statistics, 30(2), 317–344.

Murua, A., & Wicker, N. (2020). Fast approximate complete-data k-nearest-neighbor estimation. Aus-
trian Journal of Statistics, 49(2), 18–30.

Nadikattu, R. R. (2018). Fundamental applications of machine learning across the globe. International
Journal of Creative Research Thoughts (IJCRT), ISSN.

Nagpal, G., Uddin, M., & Kaur, A. (2013). Estimating project development effort using clustered
regression approach. In Computer Science & Information Technology, vol. 3, (pp. 493–507).

https://doi.org/10.1080/10618600.2016.1172015
https://doi.org/10.1080/10618600.2016.1172015
https://doi.org/10.1080/10618600.2013.837828

BIBLIOGRAPHY 197

Naik, P. A., Shi, P., & Tsai, C.-L. (2007). Extending the akaike information criterion to mixture regres-
sion models. Journal of the American Statistical Association, 102(477), 244–254.

Nair, P., & Saunders Jr, A. (1996). Hough transform based ellipse detection algorithm. Pattern Recog-
nition Letters, 17(7), 777–784.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E.
(2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2.

Najar, F., Bourouis, S., Bouguila, N., & Belghith, S. (2019). Unsupervised learning of finite full covari-
ance multivariate generalized gaussian mixture models for human activity recognition. Multimedia
Tools and Applications, 78(13), 18669–18691.

Namin, A. H., Leboeuf, K., Muscedere, R., Wu, H., & Ahmadi, M. (2009). Efficient hardware imple-
mentation of the hyperbolic tangent sigmoid function. In 2009 IEEE International Symposium on
Circuits and Systems, (pp. 2117–2120). IEEE.

Nasfi, R., Amayri, M., & Bouguila, N. (2020). A novel approach for modeling positive vectors with
inverted dirichlet-based hidden markov models. Knowledge-Based Systems, 192, 105335.

Nash, L. K. (1982). On the boltzmann distribution law. Journal of Chemical Education, 59(10), 824.

Nasr, G. E., Badr, E., & Joun, C. (2002). Cross entropy error function in neural networks: Forecasting
gasoline demand. In FLAIRS conference, (pp. 381–384).

Nasserinejad, K., van Rosmalen, J., de Kort, W., & Lesaffre, E. (2017). Comparison of criteria for
choosing the number of classes in bayesian finite mixture models. PloS one, 12(1), e0168838.

Natarajan, B. K. (2014). Machine learning: a theoretical approach. Elsevier.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Secaucus, NJ, USA: Springer-Verlag New
York, Inc.

Neal, R. M. (2000). Markov chain sampling methods for dirichlet process mixture models. Journal of
computational and graphical statistics, 9(2), 249–265.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., & Martens, J. (2015).
Adding gradient noise improves learning for very deep networks. arXiv preprint arXiv:1511.06807.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., & Cauwenberghs, G. (2014). Event-driven con-
trastive divergence for spiking neuromorphic systems. Frontiers in neuroscience, 7, 272.

Negnevitsky, M. (2005). Artificial intelligence: a guide to intelligent systems. Pearson education.

Negrinho, R., & Aguiar, P. (2013). “shape representation via symmetric polynomials: a complete
invariant inspired by the bispectrum. Submitted for publication.

Neumaier, A. (2003). Taylor forms—use and limits. Reliable computing, 9(1), 43–79.

Ng, A., Ngiam, J., Foo, C. Y., & Mai, Y. (2014). Deep learning. CS229 Lecture Notes, (pp. 1–30).

198 BIBLIOGRAPHY

Ng, K. W., Tian, G.-L., & Tang, M.-L. (2011). Dirichlet and related distributions: Theory, methods and
applications, vol. 888. John Wiley & Sons.

Ng, S.-K., & McLachlan, G. J. (2014). Mixture models for clustering multilevel growth trajectories.
Computational Statistics & Data Analysis, 71, 43–51.

Ngah, S., Bakar, R. A., Embong, A., & Razali, S. (2016). Two-steps implementation of sigmoid function
for artificial neural network in field programmable gate array. ARPN Journal of Engineering and
Applied Sciences, 11(7), 4882–4888.

Ngiam, J., Chen, Z., Chia, D., Koh, P., Le, Q., & Ng, A. (2010). Tiled convolutional neural networks.
Advances in neural information processing systems, 23, 1279–1287.

Nigrini, M. J. (2017). Audit sampling using benford’s law: a review of the literature with some new
perspectives. Journal of emerging technologies in accounting, 14(2), 29–46.

Nikolenko, S., Kadurin, A., & Arkhangelskaya, E. (2018). Deep learning. SPb.: Peter.

Nilforooshan, M. A. (2020). mbend: an r package for bending non-positive-definite symmetric matrices
to positive-definite. BMC genetics, 21(1), 1–8.

Nilforooshan, M. A., & Nilforooshan, M. M. A. (2020). Package ‘mbend’.

Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.

Nilsson, N. J. (2014). Principles of artificial intelligence. Morgan Kaufmann.

Noriega, L. (2005). Multilayer perceptron tutorial. School of Computing. Staffordshire University.

Novak, J., & Bortz, A. B. (1970). The evolution of the two-dimensional maxwell-boltzmann distribu-
tion. American Journal of Physics, 38(12), 1402–1406.

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of
trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.

Ollivier, Y., Arnold, L., Auger, A., & Hansen, N. (2017). Information-geometric optimization algo-
rithms: A unifying picture via invariance principles. The Journal of Machine Learning Research,
18(1), 564–628.

Ongaro, A., & Migliorati, S. (2013). A generalization of the dirichlet distribution. Journal of Multivari-
ate Analysis, 114, 412–426.

Orhan, E. (2012a). Bayesian statistics: Dirichlet processes.

Orhan, E. (2012b). Dirichlet processes. Ph.D. thesis, PhD thesis, Rochester University, 2012.(Cited on
page 46.).

Orr, M. J., et al. (1996). Introduction to radial basis function networks.

O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458.

BIBLIOGRAPHY 199

Otsuki, T., Ogino, H., Ide, S., & Chiba, T. (2004). Curve interpolation method. US Patent 6,823,234.

O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Trans-
actions on Cognitive Communications and Networking, 3(4), 563–575.

Page, G. L., & Quintana, F. A. (2018). Calibrating covariate informed product partition models. Statis-
tics and Computing, 28(5), 1009–1031.

Page, G. L., Quintana, F. A., & Dahl, D. B. (2019). Spatio-temporal random partition models. arXiv
preprint arXiv:1912.11542.

Paik, J. K., & Katsaggelos, A. K. (1992). Image restoration using a modified hopfield network. IEEE
Transactions on image processing, 1(1), 49–63.

Paine, T., Jin, H., Yang, J., Lin, Z., & Huang, T. (2013). Gpu asynchronous stochastic gradient descent
to speed up neural network training. arXiv preprint arXiv:1312.6186.

Paisley, J. (2010). A simple proof of the stick-breaking construction of the dirichlet process. Technical
Report, Princeton University, Department of Computer Science, Tech. Rep..

Paisley, J., Blei, D., & Jordan, M. (2012). Variational bayesian inference with stochastic search. arXiv
preprint arXiv:1206.6430.

Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of
remote sensing, 26(1), 217–222.

Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, classifiaction.

Pan, B., Li, H., Zhao, Z., Cao, B., Cai, D., & He, X. (2017). Memen: Multi-layer embedding with
memory networks for machine comprehension. arXiv preprint arXiv:1707.09098.

Panchapagesan, S., Sun, M., Khare, A., Matsoukas, S., Mandal, A., Hoffmeister, B., & Vitaladevuni,
S. (2016). Multi-task learning and weighted cross-entropy for dnn-based keyword spotting. In Inter-
speech, vol. 9, (pp. 760–764).

Panicker, M., & Babu, C. (2012). Efficient fpga implementation of sigmoid and bipolar sigmoid activa-
tion functions for multilayer perceptrons. IOSR Journal of Engineering, 2(6), 1352–1356.

Panov, P., & Džeroski, S. (2007). Combining bagging and random subspaces to create better ensembles.
In International Symposium on Intelligent Data Analysis, (pp. 118–129). Springer.

Pappagari, R. R., Nayak, S., & Murty, K. S. R. (2014). Unsupervised spoken word retrieval using
gaussian-bernoulli restricted boltzmann machines. In Fifteenth Annual Conference of the Interna-
tional Speech Communication Association.

Park, S. B., Lee, J. W., & Kim, S. K. (2004). Content-based image classification using a neural network.
Pattern Recognition Letters, 25(3), 287–300.

Parlos, A. G., Fernandez, B., Atiya, A. F., Muthusami, J., & Tsai, W. K. (1994). An accelerated learning
algorithm for multilayer perceptron networks. IEEE Transactions on Neural Networks, 5(3), 493–
497.

200 BIBLIOGRAPHY

Patel, J. K., & Read, C. B. (1996). Handbook of the normal distribution, vol. 150. CRC Press.

Pattanayak, S., & Ludwig, S. A. (2017). Encryption based on neural cryptography. In International
Conference on Health Information Science, (pp. 321–330). Springer.

Paul, D., Wang, L., et al. (2016). Discussion of “estimating structured high-dimensional covariance and
precision matrices: Optimal rates and adaptive estimation”. Electronic Journal of Statistics, 10(1),
74–80.

Pedersen, S. J. K. (2007). Circular hough transform. Aalborg University, Vision, Graphics, and Inter-
active Systems, 123(6).

Peng, M., Gupta, N. K., & Armitage, A. F. (1996). An investigation into the improvement of local
minima of the hopfield network. Neural networks, 9(7), 1241–1253.

Pennington, J., & Bahri, Y. (2017). Geometry of neural network loss surfaces via random matrix theory.
In International Conference on Machine Learning, (pp. 2798–2806).

Permuter, H., Francos, J., & Jermyn, I. (2006). A study of gaussian mixture models of color and texture
features for image classification and segmentation. Pattern Recognition, 39(4), 695–706.

Permuter, H., Francos, J., & Jermyn, I. H. (2003). Gaussian mixture models of texture and colour for
image database retrieval. In 2003 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03)., vol. 3, (pp. III–569). IEEE.

Pernkopf, F., & Bouchaffra, D. (2005). Genetic-based em algorithm for learning gaussian mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1344–1348.

Pettersson, R. (1992). Stratonovich–taylor expansion and numerical methods. Stochastic Analysis and
Applications, 10(5), 603–612.

Pfeuty, P. (1970). The one-dimensional ising model with a transverse field. ANNALS of Physics, 57(1),
79–90.

Pham, B. T., Prakash, I., Singh, S. K., Shirzadi, A., Shahabi, H., Bui, D. T., et al. (2019). Landslide
susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid
machine learning approaches. Catena, 175, 203–218.

Philipsen, W., & Cluitmans, L. (1993). Using a genetic algorithm to tune potts neural networks. In
Artificial Neural Nets and Genetic Algorithms, (pp. 650–657). Springer.

Phillips, G. M. (2003). Interpolation and approximation by polynomials, vol. 14. Springer Science &
Business Media.

Pitman, J. (1996). Some developments of the blackwell-macqueen urn scheme. Lecture Notes-
Monograph Series, (pp. 245–267).

Plant, R. (2011). An introduction to artificial intelligence. In 32nd Aerospace Sciences Meeting and
Exhibit, (p. 294).

BIBLIOGRAPHY 201

Plaut, D. C., & Hinton, G. E. (1987). Learning sets of filters using back-propagation. Computer Speech
& Language, 2(1), 35–61.

Pollastri, G., Przybylski, D., Rost, B., & Baldi, P. (2002). Improving the prediction of protein secondary
structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure,
Function, and Bioinformatics, 47(2), 228–235.

Povey, D., Chu, S. M., & Varadarajan, B. (2008). Universal background model based speech recog-
nition. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (pp.
4561–4564). IEEE.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1996). Numerical recipes in C.
Cambridge University Press.

Preston, C. J. (1973). Generalized gibbs states and markov random fields. Advances in Applied proba-
bility, 5(2), 242–261.

Probst, P., Wright, M. N., & Boulesteix, A.-L. (2019). Hyperparameters and tuning strategies for random
forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1301.

Procesi, C. (2007). Lie groups. an approach through invariants and representations. Bull. Amer. Math.
Soc.

Prost-Boucle, A., Bourge, A., & Pétrot, F. (2018). High-efficiency convolutional ternary neural networks
with custom adder trees and weight compression. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 11(3), 1–24.

Qi, Y., Zhang, S., Qin, L., Huang, Q., Yao, H., Lim, J., & Yang, M.-H. (2018). Hedging deep features for
visual tracking. IEEE transactions on pattern analysis and machine intelligence, 41(5), 1116–1130.

Qian, Z. (2011). High order directional derivative and the simple form of multivariate taylor theorem.
Journal of Heze University, (2), 4.

Qin, Z., Kim, D., & Gedeon, T. (2019). Rethinking softmax with cross-entropy: Neural network classi-
fier as mutual information estimator. arXiv preprint arXiv:1911.10688.

Quintana, F. A. (2010). Linear regression with a dependent skewed dirichlet process. Chilean Journal
of Statistics, 1, 35–49.

Quintana, F. A., & Iglesias, P. L. (2003). Bayesian clustering and product partition models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 65(2), 557–574.

Quintana, F. A., Mueller, P., Jara, A., & MacEachern, S. N. (2020). The dependent dirichlet process and
related models. arXiv preprint arXiv:2007.06129.

Rabbani, A., & Babaei, M. (2019). Hybrid pore-network and lattice-boltzmann permeability modelling
accelerated by machine learning. Advances in water resources, 126, 116–128.

Rady, H. A. K. (2011). Shannon entropy and mean square errors for speeding the convergence of
multilayer neural networks: A comparative approach. Egyptian Informatics Journal, 12(3), 197–209.

202 BIBLIOGRAPHY

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community
structures in large-scale networks. Physical review E, 76(3), 036106.

Rahman, S., et al. (2004). A neural network with o (n) neurons for ranking n numbers in o (1/n) time.
IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10), 2044–2051.

Rajaratnam, B., Massam, H., & Carvalho, C. M. (2008). Flexible covariance estimation in graphical
Gaussian models. The Annals of Statistics, 36(6), 2818–2849.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. arXiv preprint
arXiv:1710.05941.

Ramalingam, A., & Krishnan, S. (2006). Gaussian mixture modeling of short-time fourier transform
features for audio fingerprinting. IEEE Transactions on Information Forensics and Security, 1(4),
457–463.

Ramchoun, H., Idrissi, M. A. J., Ghanou, Y., & Ettaouil, M. (2016). Multilayer perceptron: Architecture
optimization and training. IJIMAI, 4(1), 26–30.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Pavlović,
M., Sandve, G. K., Greiff, V., et al. (2020). Hopfield networks is all you need. arXiv preprint
arXiv:2008.02217.

Ranganath, R., Gerrish, S., & Blei, D. (2014). Black box variational inference. In Artificial intelligence
and statistics, (pp. 814–822). PMLR.

Ranganath, R., Wang, C., David, B., & Xing, E. (2013). An adaptive learning rate for stochastic varia-
tional inference. In International Conference on Machine Learning, (pp. 298–306). PMLR.

Ranjan, R., Castillo, C. D., & Chellappa, R. (2017). L2-constrained softmax loss for discriminative face
verification. arXiv preprint arXiv:1703.09507.

Rasmussen, C. E. (1995). A practical monte carlo implementation of bayesian learning. In Proceedings
of the 8th International Conference on Neural Information Processing Systems, NIPS’95, (pp. 598–
604). Cambridge, MA, USA: MIT Press.
URL http://dl.acm.org/citation.cfm?id=2998828.2998913

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). Xnor-net: Imagenet classification using
binary convolutional neural networks. In European conference on computer vision, (pp. 525–542).
Springer.

Ravikumar, N., Gooya, A., Çimen, S., Frangi, A. F., & Taylor, Z. A. (2018). Group-wise similarity
registration of point sets using student’s t-mixture model for statistical shape models. Medical image
analysis, 44, 156–176.

Reichardt, J., & Bornholdt, S. (2004). Detecting fuzzy community structures in complex networks with
a potts model. Physical Review Letters, 93(21), 218701.

Reimer, M. (2012). Multivariate polynomial approximation, vol. 144. Birkhäuser.

http://dl.acm.org/citation.cfm?id=2998828.2998913

BIBLIOGRAPHY 203

Reynolds, D. (1995). Rc rose published a paper,“. Robust test-independent speaker identification using
Gaussian mixture Speaker models.” IEEE Transaction on Speech Audio Processing, 3, 72–83.

Rezende, D. J., & Viola, F. (2018). Generalized elbo with constrained optimization, geco. In Workshop
on Bayesian Deep Learning, NeurIPS.

Riccioni, J., & Cerqueti, R. (2018). Regular paths in financial markets: Investigating the benford’s law.
Chaos, Solitons & Fractals, 107, 186–194.

Richmond, P., & Solomon, S. (2001). Power laws are disguised boltzmann laws. International Journal
of Modern Physics C, 12(03), 333–343.

Riesen, K., Neuhaus, M., & Bunke, H. (2007). Bipartite graph matching for computing the edit distance
of graphs. In International Workshop on Graph-Based Representations in Pattern Recognition, (pp.
1–12). Springer.

Rigatti, S. J. (2017). Random forest. Journal of Insurance Medicine, 47(1), 31–39.

Rimer, M., & Martinez, T. (2004). Softprop: softmax neural network backpropagation learning. In 2004
IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), vol. 2, (pp.
979–983). IEEE.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical
statistics, (pp. 400–407).

Robbins, H., & Siegmund, D. (1971). A convergence theorem for non negative almost supermartingales
and some applications. In Optimizing methods in statistics, (pp. 233–257). Elsevier.

Robert, C. P., & Casella, G. (2005). Monte Carlo Statistical Methods (Springer Texts in Statistics).
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Robinson, A. J. (1994). An application of recurrent nets to phone probability estimation. IEEE trans-
actions on Neural Networks, 5(2), 298–305.

Rockafellar, R. T. (1993). Lagrange multipliers and optimality. SIAM review, 35(2), 183–238.

Roman, J., & Jameel, A. (1996). Backpropagation and recurrent neural networks in financial analysis of
multiple stock market returns. In Proceedings of HICSS-29: 29th Hawaii International Conference
on System Sciences, vol. 2, (pp. 454–460). IEEE.

Romano, G., Barretta, R., & Diaco, M. (2018). A geometric rationale for invariance, covariance and
constitutive relations. Continuum Mechanics and Thermodynamics, 30(1), 175–194.

Ross, A., & Doshi-Velez, F. (2018). Improving the adversarial robustness and interpretability of deep
neural networks by regularizing their input gradients. In Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32.

Rothganger, F., Lazebnik, S., Schmid, C., & Ponce, J. (2006). 3d object modeling and recognition using
local affine-invariant image descriptors and multi-view spatial constraints. International journal of
computer vision, 66(3), 231–259.

204 BIBLIOGRAPHY

Roy, D. (2003). The discrete normal distribution. Communications in Statistics-theory and Methods,
32(10), 1871–1883.

Roy, S. K., Manna, S., Dubey, S. R., & Chaudhuri, B. B. (2019). Lisht: Non-parametric linearly scaled
hyperbolic tangent activation function for neural networks. arXiv preprint arXiv:1901.05894.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Rukundo, O., & Cao, H. (2012). Nearest neighbor value interpolation. arXiv preprint arXiv:1211.1768.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. nature, 323(6088), 533–536.

Runxuan, Z. (2005). Efficient sequential and batch learning artificial neural network methods for clas-
sification problems. Singapore, 2, 825–845.

Russell, D. K. (1996). The boltzmann distribution. Journal of Chemical Education, 73(4), 299.

Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.

Ruttor, A., Kinzel, W., & Kanter, I. (2007). Dynamics of neural cryptography. Physical Review E,
75(5), 056104.

Ruttor, A., Kinzel, W., Shacham, L., & Kanter, I. (2004). Neural cryptography with feedback. Physical
Review E, 69(4), 046110.

Saad, D. (1998). Online algorithms and stochastic approximations. Online Learning, 5, 6–3.

Sabourin, A., & Naveau, P. (2014). Bayesian dirichlet mixture model for multivariate extremes: a
re-parametrization. Computational Statistics & Data Analysis, 71, 542–567.

Sahoo, D., Pham, Q., Lu, J., & Hoi, S. C. (2017). Online deep learning: Learning deep neural networks
on the fly. arXiv preprint arXiv:1711.03705.

Sak, H., Senior, A. W., & Beaufays, F. (2014). Long short-term memory recurrent neural network
architectures for large scale acoustic modeling.

Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted boltzmann machines for collaborative
filtering. In Proceedings of the 24th international conference on Machine learning, (pp. 791–798).

Salas, J., & Sokal, A. D. (1997). Dynamic critical behavior of the swendsen-wang algorithm: The
two-dimensional three-state potts model revisited. Journal of statistical physics, 87(1-2), 1–36.

Salimans, T., Kingma, D., & Welling, M. (2015). Markov chain monte carlo and variational inference:
Bridging the gap. In International Conference on Machine Learning, (pp. 1218–1226).

Salsburg, D. (2001). The lady tasting tea: How statistics revolutionized science in the twentieth century.
Macmillan.

Samal, A., & Edwards, J. (1997). Generalized hough transform for natural shapes. Pattern Recognition
Letters, 18(5), 473–480.

BIBLIOGRAPHY 205

Sanchez, E. N., & Perez, J. P. (1999). Input-to-state stability (iss) analysis for dynamic neural networks.
IEEE Transactions on circuits and systems I: Fundamental Theory and Applications, 46(11), 1395–
1398.

Schindler, A., Lidy, T., & Rauber, A. (2016). Comparing shallow versus deep neural network architec-
tures for automatic music genre classification. In FMT , (pp. 17–21).

Schmidt, M., Fung, G., & Rosales, R. (2007). Fast optimization methods for l1 regularization: A com-
parative study and two new approaches. In J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin,
D. Mladenič, & A. Skowron (Eds.) Machine Learning: ECML 2007, (pp. 286–297). Berlin, Heidel-
berg: Springer Berlin Heidelberg.

Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata
Journal, 20(1), 3–29.

Schwing, A. G., & Urtasun, R. (2015). Fully connected deep structured networks. arXiv preprint
arXiv:1503.02351.

Sebastien, B. (2013). Orf523: Oracle complexity, large-scale optimization.

Seck, I., Loosli, G., & Canu, S. (2019). L 1-norm double backpropagation adversarial defense. arXiv
preprint arXiv:1903.01715.

Seidel, W., & Ševčı́ková, H. (2004). Types of likelihood maxima in mixture models and their implication
on the performance of tests. Annals of the Institute of Statistical Mathematics, 56(4), 631–654.

Sejnowski, T. J. (2018). The deep learning revolution. Mit Press.

Selke, W., & Huse, D. A. (1983). Interfacial adsorption in planar potts models. Zeitschrift für Physik B
Condensed Matter, 50(2), 113–116.

Semenov, A., Boginski, V., & Pasiliao, E. L. (2019). Neural networks with multidimensional cross-
entropy loss functions. In International Conference on Computational Data and Social Networks,
(pp. 57–62). Springer.

Seo, J., Yu, J., Lee, J., & Choi, K. (2016). A new approach to binarizing neural networks. In 2016
International SoC Design Conference (ISOCC), (pp. 77–78). IEEE.

Sermanet, P., Chintala, S., & LeCun, Y. (2012). Convolutional neural networks applied to house num-
bers digit classification. In Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012), (pp. 3288–3291). IEEE.

Shamsi, J., Amirsoleimani, A., Mirzakuchaki, S., Ahmade, A., Alirezaee, S., & Ahmadi, M. (2015).
Hyperbolic tangent passive resistive-type neuron. In 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), (pp. 581–584). IEEE.

Shan, B., & Fang, Y. (2020). A cross entropy based deep neural network model for road extraction from
satellite images. Entropy, 22(5), 535.

Shang, Y., & Wah, B. W. (1996). Global optimization for neural network training. Computer, 29(3),
45–54.

206 BIBLIOGRAPHY

Sharma, K., Aggarwal, A., Singhania, T., Gupta, D., & Khanna, A. (2019). Hiding data in images using
cryptography and deep neural network. arXiv preprint arXiv:1912.10413.

Sharma, S. (2017). Activation functions in neural networks. Towards Data Science, 6.

Shaw, A. M., Doyle III, F. J., & Schwaber, J. S. (1997). A dynamic neural network approach to nonlinear
process modeling. Computers & chemical engineering, 21(4), 371–385.

Shawahna, A., Sait, S. M., & El-Maleh, A. (2018). Fpga-based accelerators of deep learning networks
for learning and classification: A review. IEEE Access, 7, 7823–7859.

Shen, J. J. (2006). A stochastic-variational model for soft mumford-shah segmentation. International
Journal of Biomedical Imaging, 2006.

Sherman, S. (1973). Markov random fields and gibbs random fields. Israel Journal of Mathematics,
14(1), 92–103.

Sherrington, D., & Kirkpatrick, S. (1975). Solvable model of a spin-glass. Physical review letters,
35(26), 1792.

Shibata, K., & Ito, K. (1999). Gauss-sigmoid neural network. In IJCNN’99. International Joint Confer-
ence on Neural Networks. Proceedings (Cat. No. 99CH36339), vol. 2, (pp. 1203–1208). IEEE.

Shoaib, M., Shamseldin, A. Y., Melville, B. W., & Khan, M. M. (2016). A comparison between wavelet
based static and dynamic neural network approaches for runoff prediction. Journal of hydrology, 535,
211–225.

Sholahudin, S., & Han, H. (2016). Simplified dynamic neural network model to predict heating load of
a building using taguchi method. Energy, 115, 1672–1678.

Shu, C., Pang, W., Liu, H., & Lu, S. (2019). High energy efficiency fpga-based accelerator for convo-
lutional neural networks using weight combination. In 2019 IEEE 4th International Conference on
Signal and Image Processing (ICSIP), (pp. 578–582). IEEE.

Sigtia, S., & Dixon, S. (2014). Improved music feature learning with deep neural networks. In 2014
IEEE international conference on acoustics, speech and signal processing (ICASSP), (pp. 6959–
6963). IEEE.

Silva, L. M., de Sá, J. M., & Alexandre, L. A. (2005). Neural network classification using shannon’s
entropy. In ESANN, (pp. 217–222). Citeseer.

Simões, J. M. d. C. (2019). Deep Learning for Dynamic Music Generation. Ph.D. thesis, Universidade
de Coimbra.

Simon, J. (2011). Prince: Computer vision: Models, learning, and inference.

Simons, T., & Lee, D.-J. (2019). A review of binarized neural networks. Electronics, 8(6), 661.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556.

BIBLIOGRAPHY 207

Sinclair, A., Srivastava, P., & Thurley, M. (2014). Approximation algorithms for two-state anti-
ferromagnetic spin systems on bounded degree graphs. Journal of Statistical Physics, 155(4), 666–
686.

Sivaram, G. S., & Hermansky, H. (2011). Sparse multilayer perceptron for phoneme recognition. IEEE
Transactions on Audio, Speech, and Language Processing, 20(1), 23–29.

Skurichina, M., & Duin, R. P. (2001). Bagging and the random subspace method for redundant feature
spaces. In International Workshop on Multiple Classifier Systems, (pp. 1–10). Springer.

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2017). Don’t decay the learning rate, increase
the batch size. arXiv preprint arXiv:1711.00489.

Smith, S. P., & Jain, A. K. (1982). Chord distributions for shape matching. Computer Graphics and
Image Processing, 20(3), 259–271.

Smyth, G. K. (2014). Polynomial approximation. Wiley StatsRef: Statistics Reference Online.

Snyder, D., Garcia-Romero, D., & Povey, D. (2015). Time delay deep neural network-based universal
background models for speaker recognition. In 2015 IEEE Workshop on Automatic Speech Recogni-
tion and Understanding (ASRU), (pp. 92–97). IEEE.

Soda, G., Usai, A., & Zaheer, A. (2004). Network memory: The influence of past and current networks
on performance. Academy of Management Journal, 47(6), 893–906.

Sokal, A. (1997a). Monte carlo methods in statistical mechanics: foundations and new algorithms. In
Functional integration, (pp. 131–192). Springer.

Sokal, A. (1997b). Monte Carlo methods in statistical mechanics: foundations and new algorithms. In
Functional integration (Cargèse, 1996), vol. 361 of NATO Adv. Sci. Inst. Ser. B Phys., (pp. 131–192).
Plenum, New York.

Solomonoff, R. J. (2006). Machine learning-past and future. Dartmouth, NH, July.

Soromenho, G. (1994). Comparing approaches for testing the number of components in a finite mixture
model. Computational Statistics, 9(1), 65–78.

Späth, H. (1979). Algorithm 39 clusterwise linear regression. Computing, 22(4), 367–373.
URL https://doi.org/10.1007/BF02265317

Spitzer, F. (1971). Markov random fields and gibbs ensembles. The American Mathematical Monthly,
78(2), 142–154.

Spoerer, C. J., McClure, P., & Kriegeskorte, N. (2017). Recurrent convolutional neural networks: a
better model of biological object recognition. Frontiers in psychology, 8, 1551.

Srebro, N. (2007). Are there local maxima in the infinite-sample likelihood of gaussian mixture estima-
tion? In International Conference on Computational Learning Theory, (pp. 628–629). Springer.

Srihari, S. N., & Govindaraju, V. (1989). Analysis of textual images using the hough transform. Machine
vision and Applications, 2(3), 141–153.

https://doi.org/10.1007/BF02265317

208 BIBLIOGRAPHY

Srinivas, S., Subramanya, A., & Venkatesh Babu, R. (2017). Training sparse neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, (pp.
138–145).

Srivastava, A., & Sutton, C. (2017). Autoencoding variational inference for topic models. arXiv preprint
arXiv:1703.01488.

Srivastava, M. S. (1965). On the complex wishart distribution. The Annals of mathematical statistics,
36(1), 313–315.

Stam, A. (1983). Generation of a random partition of a finite set by an urn model. Journal of Combina-
torial Theory, Series A, 35(2), 231–240.

Stanberry, L., Murua, A., & Cordes, D. (2008a). Functional connectivity mapping using the ferromag-
netic potts spin model. Human brain mapping, 29(4), 422–440.

Stanberry, L., Murua, A., & Cordes, D. (2008b). Functional connectivity mapping using the ferromag-
netic Potts spin model. Human Brain Mapping, 29, 422–440.

Steck, H., & Jaakkola, T. (2002). On the dirichlet prior and bayesian regularization. Advances in neural
information processing systems, 15, 713–720.

Steele, R. J., & Raftery, A. E. (2010). Performance of bayesian model selection criteria for gaussian
mixture models. Frontiers of statistical decision making and bayesian analysis, 2, 113–130.

Steger, C. (2002). Occlusion, clutter, and illumination invariant object recognition. International
Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A), 345–350.

Steinley, D., & Brusco, M. J. (2011). Evaluating mixture modeling for clustering: Recommendations
and cautions. Psychological Methods, 16(1), 63.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 62(4), 795–809.

Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rationale, application,
and characteristics of classification and regression trees, bagging, and random forests. Psychological
methods, 14(4), 323.

Stylianou, Y., Pantazis, Y., Calderero, F., Larroy, P., Severin, F., Schimke, S., Bonal, R., Matta, F., &
Valsamakis, A. (2005). Gmm-based multimodal biometric verification. In eINTERFACE’05-Summer
Workshop on Multimodal Interfaces.

Su, H., & Xu, H. (2015). Multi-softmax deep neural network for semi-supervised training. In Sixteenth
Annual Conference of the International Speech Communication Association.

Su, T., & Dy, J. G. (2007). In search of deterministic methods for initializing k-means and gaussian
mixture clustering. Intelligent Data Analysis, 11(4), 319–338.

Sudheer, K., & Jain, S. (2003). Radial basis function neural network for modeling rating curves. Journal
of Hydrologic Engineering, 8(3), 161–164.

BIBLIOGRAPHY 209

Suetake, N., Uchino, E., & Hirata, K. (2006). Generalized fuzzy hough transform for detecting arbitrary
shapes in a vague and noisy image. Soft Computing, 10(12), 1161–1168.

Sugiyama, M. (2015). Introduction to statistical machine learning. Morgan Kaufmann.

Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory networks. In Advances in
neural information processing systems, (pp. 2440–2448).

Sultana, F., Sufian, A., & Dutta, P. (2018). Advancements in image classification using convolutional
neural network. In 2018 Fourth International Conference on Research in Computational Intelligence
and Communication Networks (ICRCICN), (pp. 122–129). IEEE.

Sun, C., & Cai, R. (2009). Document image registration using geometric invariance and hausdorff
distance. In 2009 First International Workshop on Education Technology and Computer Science,
vol. 2, (pp. 725–728). IEEE.

Sun, C., Chen, S., & Huang, X. (2020). Double backpropagation for training autoencoders against
adversarial attack. arXiv preprint arXiv:2003.01895.

Sun, S., Chen, C., & Carin, L. (2017). Learning Structured Weight Uncertainty in Bayesian Neural
Networks. In A. Singh, & J. Zhu (Eds.) Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, vol. 54 of Proceedings of Machine Learning Research, (pp. 1283–1292).
Fort Lauderdale, FL, USA: PMLR.
URL http://proceedings.mlr.press/v54/sun17b.html

Sun, W., Shao, S., Zhao, R., Yan, R., Zhang, X., & Chen, X. (2016). A sparse auto-encoder-based deep
neural network approach for induction motor faults classification. Measurement, 89, 171–178.

Sun, Z., Huang, Y., Yu, W., Zhang, M., Shui, R., & Gao, T. (2015). How to break the configuration of
moving objects? geometric invariance in visual working memory. Journal of experimental psychol-
ogy: human perception and performance, 41(5), 1247.

Suprem, A., & Ruprem, M. (2013). A new composition algorithm for automatic generation of thematic
music from the existing music pieces. In Proceedings of the World Congress on Engineering and
Computer Science, vol. 2, (pp. 23–25).

Surden, H. (2014). Machine learning and law. Wash. L. Rev., 89, 87.

Sutherland, J. G. (1992). The holographic neural method. Fuzzy, holographic and parallel intelligence,
(pp. 30–63).

Sutskever, I., & Hinton, G. E. (2008). Deep, narrow sigmoid belief networks are universal approxima-
tors. Neural computation, 20(11), 2629–2636.

Sutton, C., Sindelar, M., & McCallum, A. (2005). Feature bagging: Preventing weight undertraining in
structured discriminative learning. Center for Intelligent Information Retrieval, U. of Massachusetts.

Suykens, J. A., & Vandewalle, J. (1999). Training multilayer perceptron classifiers based on a modified
support vector method. IEEE transactions on Neural Networks, 10(4), 907–911.

http://proceedings.mlr.press/v54/sun17b.html

210 BIBLIOGRAPHY

Svensén, M., & Bishop, C. M. (2005). Robust bayesian mixture modelling. Neurocomputing, 64,
235–252.

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random
forest: a classification and regression tool for compound classification and qsar modeling. Journal of
chemical information and computer sciences, 43(6), 1947–1958.

Svirsky, Y., & Sharf, A. (2020). A non-linear differentiable cnn-rendering module for 3d data enhance-
ment. IEEE Transactions on Visualization and Computer Graphics.

Sweeny, M. (1983). Monte carlo study of weighted percolation clusters relevant to the potts models.
Physical Review B, 27(7), 4445.

Swendsen, R. H., & Wang, J.-S. (1987). Nonuniversal critical dynamics in monte carlo simulations.
Physical review letters, 58(2), 86.

Szita, I., & Lörincz, A. (2006). Learning tetris using the noisy cross-entropy method. Neural computa-
tion, 18(12), 2936–2941.

Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured
long short-term memory networks. arXiv preprint arXiv:1503.00075.

Takeda, Y., Tamate, S., Yamamoto, Y., Takesue, H., Inagaki, T., & Utsunomiya, S. (2017). Boltzmann
sampling for an xy model using a non-degenerate optical parametric oscillator network. Quantum
Science and Technology, 3(1), 014004.

Tan, K., Wu, F., Du, Q., Du, P., & Chen, Y. (2019). A parallel gaussian–bernoulli restricted boltzmann
machine for mining area classification with hyperspectral imagery. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 12(2), 627–636.

Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural
language processing, (pp. 1422–1432).

Tannenbaum, A. (2006). Invariance and system theory: Algebraic and geometric aspects, vol. 845.
Springer.

Tantrum, J., Murua, A., & Stuetzle, W. (2003). Assessment and pruning of hierarchical model based
clustering. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, (pp. 197–205).

Tantrum, J., Murua, A., & Stuetzle, W. (2004). Hierarchical model-based clustering of large datasets
through fractionation and refractionation. Information Systems, 29(4), 315–326.

Tarter, M. E., & Lock, M. D. (1993). Model-free curve estimation, vol. 56. CRC Press.

Tayarani-Bathaie, S. S., Vanini, Z. S., & Khorasani, K. (2014). Dynamic neural network-based fault
diagnosis of gas turbine engines. Neurocomputing, 125, 153–165.

Thomaz, A. L., Breazeal, C., Barto, A. G., & Picard, R. (2006). Socially guided machine learning.

BIBLIOGRAPHY 211

Tibély, G., & Kertész, J. (2008). On the equivalence of the label propagation method of community
detection and a potts model approach. Physica A: Statistical Mechanics and its Applications, 387(19),
4982–4984.

Tödter, K.-H. (2009). Benford’s law as an indicator of fraud in economics. German Economic Review,
10(3), 339–351.

Tomita, Y., & Okabe, Y. (2001). Probability-changing cluster algorithm for potts models. Physical
Review Letters, 86(4), 572.

Tommiska, M. (2003). Efficient digital implementation of the sigmoid function for reprogrammable
logic. IEE Proceedings-Computers and Digital Techniques, 150(6), 403–411.

Tong, D. (2006). Lectures on quantum field theory. Part III Cambridge University Mathematics Tripos,
Michaelmas.

Tong, D. (2012). Statistical physics. Part II Cambridge University Mathematics Tripos, Michaelmas.

Tong, Z., & Zhang, H. (2016). A text mining research based on lda topic modelling. In International
Conference on Computer Science, Engineering and Information Technology, (pp. 201–210).

Torbati, A. H. H. N., & Picone, J. (2015). A doubly hierarchical dirichlet process hidden markov model
with a non-ergodic structure. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(1), 174–184.

Torgo, L., & da Costa, J. P. (2000). Clustered multiple regression. In H. A. L. Kiers, J.-P. Rasson, P. J. F.
Groenen, & M. Schader (Eds.) Data Analysis, Classification, and Related Methods, (pp. 217–222).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Torres-Mendez, L. A., Ruiz-Suarez, J. C., Sucar, L. E., & Gomez, G. (2000). Translation, rotation,
and scale-invariant object recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 30(1), 125–130.

Tosranon, P., Sanpanich, A., Bunluechokchai, C., & Pintavirooj, C. (2009). Gaussian curvature-based
geometric invariance. In 2009 6th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, vol. 2, (pp. 1124–1127). IEEE.

Toth, L. F., et al. (1987). Branko grunbaum and gc shephard, tilings and patterns. Bulletin (New Series)
of the American Mathematical Society, 17(2), 369–372.

Tsai, C.-H., Chih, Y.-T., Wong, W. H., & Lee, C.-Y. (2015). A hardware-efficient sigmoid function
with adjustable precision for a neural network system. IEEE Transactions on Circuits and Systems
II: Express Briefs, 62(11), 1073–1077.

Tsai, D.-M. (1997). An improved generalized hough transform for the recognition of overlapping ob-
jects. Image and Vision computing, 15(12), 877–888.

Tsoi, A. C. (1997). Gradient based learning methods. In International School on Neural Networks,
Initiated by IIASS and EMFCSC, (pp. 27–62). Springer.

212 BIBLIOGRAPHY

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., & Vlahavas, I. (2011). Mulan: A java library for
multi-label learning. Journal of Machine Learning Research, 12(Jul), 2411–2414.

Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., & Vlahavas, I. (2020). Datasets from mulan: A
java library for multi-label learning.
URL http://mulan.sourceforge.net/datasets-mtr.html

Tu, S. (2014). The dirichlet-multinomial and dirichlet-categorical models for bayesian inference. Com-
puter Science Division, UC Berkeley.

Tu, Y., Sadiq, S., Tao, Y., Shyu, M.-L., & Chen, S.-C. (2019). A power efficient neural network imple-
mentation on heterogeneous fpga and gpu devices. In 2019 IEEE 20th International Conference on
Information Reuse and Integration for Data Science (IRI), (pp. 193–199). IEEE.

Tüske, Z., Tahir, M. A., Schlüter, R., & Ney, H. (2015). Integrating gaussian mixtures into deep neural
networks: Softmax layer with hidden variables. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), (pp. 4285–4289). IEEE.

Tzortzis, G., & Likas, A. (2007). Deep belief networks for spam filtering. In 19th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2007), vol. 2, (pp. 306–309). IEEE.

Ueda, N., Nakano, R., Ghahramani, Z., & Hinton, G. E. (1999). Smem algorithm for mixture models.
In Advances in neural information processing systems, (pp. 599–605).

Ulrich, M., Steger, C., & Baumgartner, A. (2003). Real-time object recognition using a modified gen-
eralized hough transform. Pattern Recognition, 36(11), 2557–2570.

Upadhya, V., & Sastry, P. (2019). An overview of restricted boltzmann machines. Journal of the Indian
Institute of Science, 99(2), 225–236.

Uykan, Z. (2013). Fast-convergent double-sigmoid hopfield neural network as applied to optimization
problems. IEEE transactions on neural networks and learning systems, 24(6), 990–996.

Vaičiulytė, J., & Sakalauskas, L. (2020). Recursive parameter estimation algorithm of the dirichlet
hidden markov model. Journal of Statistical Computation and Simulation, 90(2), 306–323.

Vargas, R., Mosavi, A., & Ruiz, R. (2017). Deep learning: a review. Advances in Intelligent Systems
and Computing.

Varshney, K. R. (2019). Trustworthy machine learning and artificial intelligence. XRDS: Crossroads,
The ACM Magazine for Students, 25(3), 26–29.

Vehtari, A., & Lampinen, J. (1999). Bayesian neural networks for industrial applications. In SMCia/99
Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial
Applications (Cat. No.99EX269), (pp. 63–68).

Venables, W., & Ripley, B. (2002). Modern applied statistics (fourth s., editor) new york.

Venkatesan, P., & Anitha, S. (2006). Application of a radial basis function neural network for diagnosis
of diabetes mellitus. Current Science, 91(9), 1195–1199.

http://mulan.sourceforge.net/datasets-mtr.html

BIBLIOGRAPHY 213

Ventresca, M., & Tizhoosh, H. R. (2009). Improving gradient-based learning algorithms for large scale
feedforward networks. In 2009 International Joint Conference on Neural Networks, (pp. 3212–3219).
IEEE.

Verbeek, J. (2004). Mixture models for clustering and dimension reduction. Ph.D. thesis.

Verdu, S. (1996). The exponential distribution in information theory. Problemy peredachi informatsii,
32(1), 100–111.

Vermunt, J. K. (2011). K-means may perform as well as mixture model clustering but may also be much
worse: Comment on steinley and brusco (2011).

Villatoro, F. R., & Ramos, J. I. (1999). On the method of modified equations. i: Asymptotic analysis of
the euler forward difference method. Applied mathematics and computation, 103(2-3), 111–139.

Volná, E. (2000). Using neural network in cryptography. In The State of the Art in Computational
Intelligence, (pp. 262–267). Springer.

Volna, E., Kotyrba, M., Kocian, V., & Janosek, M. (2012). Cryptography based on neural network. In
ECMS, (pp. 386–391).

Volokitin, A., Roig, G., & Poggio, T. A. (2017). Do deep neural networks suffer from crowding? In
Advances in Neural Information Processing Systems, (pp. 5628–5638).

Vt, S. E., & Shin, Y. C. (1994). Radial basis function neural network for approximation and estimation
of nonlinear stochastic dynamic systems. IEEE transactions on neural networks, 5(4), 594–603.

Wagner, K. H., & McComb, S. (2019). Optical rectifying linear units for back-propagation learning
in a deep holographic convolutional neural network. IEEE Journal of Selected Topics in Quantum
Electronics, 26(1), 1–18.

Wagstaff, K. (2012). Machine learning that matters. arXiv preprint arXiv:1206.4656.

Wainwright, M. J. (2014). Structured regularizers for high-dimensional problems: Statistical and com-
putational issues. Annual Review of Statistics and Its Application, 1, 233–253.

Wang, B., Liakata, M., Zubiaga, A., & Procter, R. (2017). A hierarchical topic modelling approach for
tweet clustering. In International Conference on Social Informatics, (pp. 378–390). Springer.

Wang, D., Xu, K., Guo, J., & Ghiasi, S. (2020). Dsp-efficient hardware acceleration of convolutional
neural network inference on fpgas. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(12), 4867–4880.

Wang, H., & Raj, B. (2017). On the origin of deep learning. arXiv preprint arXiv:1702.07800.

Wang, J. (2001). Generating daily changes in market variables using a multivariate mixture of normal
distributions. In Proceeding of the 2001 Winter Simulation Conference (Cat. No. 01CH37304), vol. 1,
(pp. 283–289). IEEE.

Wang, J.-S., & Swendsen, R. H. (1990). Cluster monte carlo algorithms. Physica A: Statistical Me-
chanics and its Applications, 167(3), 565–579.

214 BIBLIOGRAPHY

Wang, S., Mazumder, S., Liu, B., Zhou, M., & Chang, Y. (2018). Target-sensitive memory networks
for aspect sentiment classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), (pp. 957–967).

Wang, Z., Wohlwend, J., & Lei, T. (2019). Structured pruning of large language models. arXiv preprint
arXiv:1910.04732.

Wanto, A., Windarto, A. P., Hartama, D., & Parlina, I. (2017). Use of binary sigmoid function and linear
identity in artificial neural networks for forecasting population density. IJISTECH (International
Journal of Information System & Technology), 1(1), 43–54.

Watrin, C., Struffert, R., & Ullmann, R. (2008). Benford’s law: an instrument for selecting tax audit
targets? Review of managerial science, 2(3), 219.

Watson, N. V., & Breedlove, S. M. (2012). The mind’s machine: Foundations of brain and behavior..
Sinauer Associates.

Weiss, I. (1993). Geometric invariants and object recognition. International Journal of Computer
11263on, 10(3), 207–231.

Wen, U.-P., Lan, K.-M., & Shih, H.-S. (2009). A review of hopfield neural networks for solving mathe-
matical programming problems. European Journal of Operational Research, 198(3), 675–687.

Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks. arXiv preprint arXiv:1410.3916.

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J. (2019). The what-
if tool: Interactive probing of machine learning models. IEEE transactions on visualization and
computer graphics, 26(1), 56–65.

Wiegerinck, W., & Kappen, B. (2000). Approximations of bayesian networks through kl minimisation.
New Generation Computing, 18(2), 167–175.

Wiesler, S., Li, J., & Xue, J. (2013). Investigations on hessian-free optimization for cross-entropy
training of deep neural networks. In Interspeech, (pp. 3317–3321).

Wijesiriwardana, C., & Firdhous, M. (2019). An innovative query tuning scheme for large databases.
In 2019 International Conference on Data Science and Engineering (ICDSE), (pp. 154–159). IEEE.

Wilamowski, B. M., Iplikci, S., Kaynak, O., & Efe, M. O. (2001). An algorithm for fast convergence
in training neural networks. In IJCNN’01. International Joint Conference on Neural Networks. Pro-
ceedings (Cat. No. 01CH37222), vol. 3, (pp. 1778–1782). Ieee.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning, vol. 2. MIT
press Cambridge, MA.

Williams, D., Hodge, V. J., Gega, L., Murphy, D., Cowling, P. I., & Drachen, A. (2019). Ai and
automatic music generation for mindfulness. In 2019 AES International Conference on Immersive
and Interactive Audio: Creating the Next Dimension of Sound Experience. York.

Williams, D. A., Hodge, V. J., Wu, C.-Y., et al. (2020). On the use of ai for generation of functional
music to improve mental health. Frontiers in Artificial Intelligence.

BIBLIOGRAPHY 215

Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in
statistics-Simulation and computation, 22(4), 1079–1106.

Wong, A. K., & You, M. (1985). Entropy and distance of random graphs with application to structural
pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, (5), 599–609.

Wu, J. (2017). Introduction to convolutional neural networks. National Key Lab for Novel Software
Technology. Nanjing University. China, 5, 23.

Wu, M., & Zhang, Z. (2010). Handwritten digit classification using the mnist data set. Course project
CSE802: Pattern Classification & Analysis.

Wu, W., Zhang, N., Li, Z., Li, L., & Liu, Y. (2008). Convergence of gradient method with momentum
for back-propagation neural networks. Journal of Computational Mathematics, (pp. 613–623).

Wu, Y., Li, J., Kong, Y., & Fu, Y. (2016). Deep convolutional neural network with independent soft-
max for large scale face recognition. In Proceedings of the 24th ACM international conference on
Multimedia, (pp. 1063–1067).

Wu, Y., Liu, L., Bae, J., Chow, K.-H., Iyengar, A., Pu, C., Wei, W., Yu, L., & Zhang, Q. (2019).
Demystifying learning rate policies for high accuracy training of deep neural networks. In 2019
IEEE International Conference on Big Data (Big Data), (pp. 1971–1980). IEEE.

Wu, Y., Zhao, H., & Zhang, L. (2014). Image denoising with rectified linear units. In International
Conference on Neural Information Processing, (pp. 142–149). Springer.

Xie, J., & Szymanski, B. K. (2011). Community detection using a neighborhood strength driven label
propagation algorithm. In 2011 IEEE Network Science Workshop, (pp. 188–195). IEEE.

Xie, J., & Szymanski, B. K. (2013). Labelrank: A stabilized label propagation algorithm for community
detection in networks. In 2013 IEEE 2nd Network Science Workshop (NSW), (pp. 138–143). IEEE.

Xie, Z., Huang, Y., Zhu, Y., Jin, L., Liu, Y., & Xie, L. (2019). Aggregation cross-entropy for sequence
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
(pp. 6538–6547).

Xiong, S., Guo, W., & Liu, D. (2014). The vietnamese speech recognition based on rectified linear
units deep neural network and spoken term detection system combination. In The 9th International
Symposium on Chinese Spoken Language Processing, (pp. 183–186). IEEE.

Xiong, Z., Zheng, T. F., Song, Z., Soong, F., & Wu, W. (2006). A tree-based kernel selection approach
to efficient gaussian mixture model–universal background model based speaker identification. Speech
communication, 48(10), 1273–1282.

Xu, L. (1993). Least mean square error reconstruction principle for self-organizing neural-nets. Neural
networks, 6(5), 627–648.

Xu, L., & Jordan, M. I. (1996). On convergence properties of the em algorithm for gaussian mixtures.
Neural computation, 8(1), 129–151.

216 BIBLIOGRAPHY

Xu, T., Zhang, Z., Philip, S. Y., & Long, B. (2008). Evolutionary clustering by hierarchical dirichlet
process with hidden markov state. In 2008 Eighth IEEE International Conference on Data Mining,
(pp. 658–667). IEEE.

Xu, Y., Kong, Q., Huang, Q., Wang, W., & Plumbley, M. D. (2017). Convolutional gated recurrent neural
network incorporating spatial features for audio tagging. In 2017 International Joint Conference on
Neural Networks (IJCNN), (pp. 3461–3466). IEEE.

Yadav, C., & Bottou, L. (2019). Cold case: The lost mnist digits. In Advances in Neural Information
Processing Systems, (pp. 13443–13452).

Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal
datasets for quality classification. In 2016 IEEE 6th International conference on advanced computing
(IACC), (pp. 78–83). IEEE.

Yamanashi, Y., Umeda, K., & Yoshikawa, N. (2012). Pseudo sigmoid function generator for a supercon-
ductive neural network. IEEE transactions on applied superconductivity, 23(3), 1701004–1701004.

Yamano, T. (2019). Some bounds for skewed α-jensen-shannon divergence. Results in Applied Mathe-
matics, 3, 100064.

Yamashita, T., Tanaka, M., Yoshida, E., Yamauchi, Y., & Fujiyoshii, H. (2014). To be bernoulli or to
be gaussian, for a restricted boltzmann machine. In 2014 22nd International Conference on Pattern
Recognition, (pp. 1520–1525). IEEE.

Yang, H., & Ni, J. (2005). Dynamic neural network modeling for nonlinear, nonstationary machine tool
thermally induced error. International Journal of Machine Tools and Manufacture, 45(4-5), 455–465.

Yang, J., & Ma, J. (2019). Feed-forward neural network training using sparse representation. Expert
Systems with Applications, 116, 255–264.

Yang, M.-S., Lai, C.-Y., & Lin, C.-Y. (2012). A robust em clustering algorithm for gaussian mixture
models. Pattern Recognition, 45(11), 3950–3961.

Yang, S., Cui, X., & Fang, Z. (2014). Bcrgt: a bayesian cluster regression-based genotyping algorithm
for the samples with copy number alterations. BMC bioinformatics, 15(1), 74.

Yang, X. (2017). Understanding the variational lower bound.

Yao, K., Cohn, T., Vylomova, K., Duh, K., & Dyer, C. (2015). Depth-gated recurrent neural networks.
arXiv preprint arXiv:1508.03790, 9.

Yarotsky, D. (2018). Universal approximations of invariant maps by neural networks. arXiv preprint
arXiv:1804.10306.

Yasuda, M. (2018). Learning algorithm of boltzmann machine based on spatial monte carlo integration
method. Algorithms, 11(4), 42.

Ye, L., Beskos, A., De Iorio, M., & Hao, J. (2020). Monte carlo co-ordinate ascent variational inference.
Statistics and Computing, (pp. 1–19).

BIBLIOGRAPHY 217

Yeung, D. S., Ng, W. W., Wang, D., Tsang, E. C., & Wang, X.-Z. (2007). Localized generalization error
model and its application to architecture selection for radial basis function neural network. IEEE
Transactions on Neural Networks, 18(5), 1294–1305.

Yeung, K. Y., Fraley, C., Murua, A., Raftery, A. E., & Ruzzo, W. L. (2001). Model-based clustering and
data transformations for gene expression data. Bioinformatics, 17(10), 977–987.

Yin, M., & Zhou, M. (2018). Semi-implicit variational inference. arXiv preprint arXiv:1805.11183.

Yingwei, L., Sundararajan, N., & Saratchandran, P. (1998). Performance evaluation of a sequential
minimal radial basis function (rbf) neural network learning algorithm. IEEE Transactions on neural
networks, 9(2), 308–318.

Yip, R. K. (2000). A hough transform technique for the detection of reflectional symmetry and skew-
symmetry. Pattern Recognition Letters, 21(2), 117–130.

You, Z., & Jain, A. K. (1984). Performance evaluation of shape matching via chord length distribution.
Computer vision, graphics, and image processing, 28(2), 185–198.

You, Z., Yan, K., Ye, J., Ma, M., & Wang, P. (2019). Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1909.08174.

Young, S. S., Scott, P. D., & Nasrabadi, N. M. (1997). Object recognition using multilayer hopfield
neural network. IEEE Transactions on Image Processing, 6(3), 357–372.

Yu, J., Chaomurilige, C., & Yang, M.-S. (2018). On convergence and parameter selection of the em and
da-em algorithms for gaussian mixtures. Pattern Recognition, 77, 188–203.

Yu, W., & Li, X. (2001). Some new results on system identification with dynamic neural networks.
IEEE Transactions on Neural Networks, 12(2), 412–417.

Yu, X., Efe, M. O., & Kaynak, O. (2002). A general backpropagation algorithm for feedforward neural
networks learning. IEEE transactions on neural networks, 13(1), 251–254.

Yuan, B. (2016). Efficient hardware architecture of softmax layer in deep neural network. In 2016 29th
IEEE International System-on-Chip Conference (SOCC), (pp. 323–326). IEEE.

Yuan, H., Xiong, F., & Huai, X. (2003). A method for estimating the number of hidden neurons in feed-
forward neural networks based on information entropy. Computers and Electronics in Agriculture,
40(1-3), 57–64.

Yuen, H., Princen, J., Illingworth, J., & Kittler, J. (1990). Comparative study of hough transform
methods for circle finding. Image and vision computing, 8(1), 71–77.

Yun, C., Sra, S., & Jadbabaie, A. (2018). Small nonlinearities in activation functions create bad local
minima in neural networks. arXiv preprint arXiv:1802.03487.

Yunpeng, C., Xiaomin, S., & Peifa, J. (2006). Probabilistic modeling for continuous eda with boltzmann
selection and kullback-leibeler divergence. In Proceedings of the 8th annual conference on Genetic
and evolutionary computation, (pp. 389–396).

218 BIBLIOGRAPHY

Zainuddin, Z., & Pauline, O. (2008). Function approximation using artificial neural networks. WSEAS
Transactions on Mathematics, 7(6), 333–338.

Zamanlooy, B., & Mirhassani, M. (2013). Efficient vlsi implementation of neural networks with hyper-
bolic tangent activation function. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
22(1), 39–48.

Zanella, G., et al. (2015). Random partition models and complementary clustering of anglo-saxon
place-names. The Annals of Applied Statistics, 9(4), 1792–1822.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

Zarepour, M., & Al Labadi, L. (2012). On a rapid simulation of the dirichlet process. Statistics &
Probability Letters, 82(5), 916–924.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In European
conference on computer vision, (pp. 818–833). Springer.

Zhai, K., Boyd-Graber, J., Asadi, N., & Alkhouja, M. L. (2012). Mr. lda: A flexible large scale topic
modeling package using variational inference in mapreduce. In Proceedings of the 21st International
Conference on World Wide Web, WWW ’12, (pp. 879–888). New York, NY, USA: ACM.
URL http://doi.acm.org/10.1145/2187836.2187955

Zhang, B., Zhang, C., & Yi, X. (2004). Competitive em algorithm for finite mixture models. Pattern
recognition, 37(1), 131–144.

Zhang, D., Jiang, Q., & Li, X. (2007). Application of neural networks in financial data mining. World
Academy of Science, Engineering and Technology, International Journal of Computer, Electrical,
Automation, Control and Information Engineering, 1(1), 225–228.

Zhang, G., Sun, S., Duvenaud, D., & Grosse, R. (2018a). Noisy natural gradient as variational inference.
In International Conference on Machine Learning, (pp. 5852–5861). PMLR.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., & Daniel, L. (2018b). Efficient neural network ro-
bustness certification with general activation functions. In Advances in neural information processing
systems, (pp. 4939–4948).

Zhang, J., Huang, Q., Wu, H., & Liu, Y. (2017). A shallow network with combined pooling for fast
traffic sign recognition. Information, 8(2), 45.

Zhang, S., Zhang, C., You, Z., Zheng, R., & Xu, B. (2013). Asynchronous stochastic gradient descent
for dnn training. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
(pp. 6660–6663). IEEE.

Zhang, X., Ben, K., & Zeng, J. (2018c). Cross-entropy: A new metric for software defect prediction.
In 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS), (pp.
111–122). IEEE.

Zhang, Z., & Sabuncu, M. (2018). Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 8778–8788.

http://doi.acm.org/10.1145/2187836.2187955

BIBLIOGRAPHY 219

Zhao, R., Li, Y., Sun, Y., et al. (2020). Statistical convergence of the em algorithm on gaussian mixture
models. Electronic Journal of Statistics, 14(1), 632–660.

Zhen, X., Yu, M., He, X., & Li, S. (2017). Multi-target regression via robust low-rank learning. IEEE
transactions on pattern analysis and machine intelligence, 40(2), 497–504.

Zhou, M., Favaro, S., & Walker, S. G. (2017). Frequency of frequencies distributions and size-dependent
exchangeable random partitions. Journal of the American Statistical Association, 112(520), 1623–
1635.

Zhou, R., & Hansen, E. A. (2006). Breadth-first heuristic search. Artificial Intelligence, 170(4-5),
385–408.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160.

Zhou, X.-H., Zhang, M.-X., Xu, Z.-G., Cai, C.-Y., Huang, Y.-J., & Zheng, Y.-J. (2019). Shallow and
deep neural network training by water wave optimization. Swarm and Evolutionary Computation, 50,
100561.

Zhu, Q., Wang, X., Keogh, E., & Lee, S.-H. (2009). Augmenting the generalized hough transform to
enable the mining of petroglyphs. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, (pp. 1057–1066).

Zhu, X., Sobihani, P., & Guo, H. (2015). Long short-term memory over recursive structures. In Inter-
national Conference on Machine Learning, (pp. 1604–1612).

Zhuang, B., Liu, J., Tan, M., Liu, L., Reid, I., & Shen, C. (2019). Effective training of convolutional
neural networks with low-bitwidth weights and activations. arXiv preprint arXiv:1908.04680.

Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2018). Towards effective low-bitwidth convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
(pp. 7920–7928).

Židek, M. (2020). Controlled music generation with deep learning.

Zinkevich, M. (2017). Rules of machine learning: Best practices for ml engineering. URL:
https://developers. google. com/machine-learning/guides/rules-of-ml.

Zinkevich, M., Weimer, M., Li, L., & Smola, A. J. (2010). Parallelized stochastic gradient descent. In
Advances in neural information processing systems, (pp. 2595–2603).

Zisserman, A., Forsyth, D., Mundy, J., Rothwell, C., Liu, J., & Pillow, N. (1995). 3d object recognition
using invariance. Artificial Intelligence, 78(1-2), 239–288.

Zivkovic, Z., & van der Heijden, F. (2004). Recursive unsupervised learning of finite mixture models.
IEEE Transactions on pattern analysis and machine intelligence, 26(5), 651–656.

Zorich, V. A. (2016). Mathematical analysis II. Springer.

220 BIBLIOGRAPHY

Appendix A

Other Experiments Results with the Shallow
Gibbs Models

Table A.1: RRMSE (%) and MSE Results with the shallow Gibbs Networks: B-sparse-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−3) 10 0.8 5 5 5 1542.67 422.17 399.11 2633.44
Slump 1 1 10e(−6) 10 0.8 5 5 5 1351.71 527.27 104.17 2622.03
Slump 1 1 10e(−6) 10 0.8 5 5 5 1815.48 778.58 117.12 2616.32
Slump 1 1 10e(−6) 10 0.8 5 5 5 3457.77 1479.01 175.50 716.58
EDM 1 1 10e(−4) 5 0.8 5 5 5 7.24 1.27 87.93 1160.06
EDM 1 1 10e(−3) 5 0.8 5 5 5 6.82 1.55 94.77 1143.09
EDM 1 1 10e(−3) 5 0.8 5 5 5 5.33 3.37 129.76 2414.18
EDM 1 1 10e(−5) 5 0.8 5 5 5 5.55 2.50 112.12 1155.88
EDM 2 1 10e(−5) 5 0.8 5 5 5 10.23 3.07 87.36 1549.87
EDM 10 1 10e(−5) 2 0.8 5 5 5 24.17 8.92 192.35 1299.76
Jura 1 10 10e(−3) 10 0.8 2 2 2 476.95 174.69 650.35 9833.41

SCPF 1 1 10e(−4) 5 0.8 5 5 5 470.14 147.33 48.07 2101.72
SCPF 1 1 10e(−3) 5 0.8 5 5 5 324.71 116.63 120.83 2083.83
SCPF 1 1 10e(−4) 5 0.8 5 5 5 312.39 130.77 91.36 4432.99
SCPF 1 2 10e(−3) 5 0.8 5 5 5 380.89 137.21 60.00 4560.25
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,

RRMSE=Relative Root Mean Squared Error; all without the DBS optimizer and the smoother δ

221

222 APPENDIX A. OTHER EXPERIMENTS RESULTS WITH THE SHALLOW GIBBS MODELS

Table A.2: RRMSE (%) and MSE Results with the shallow Gibbs Networks: B-sparse-Gibbs, with
different smoother δ applied

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−3) 10 0.8 5 5 5 82.47 50.24 83.74 493.65
Slump 1 1 10e(−6) 10 0.8 5 5 5 66.09 67.86 100.63 497.35
Slump 1 1 10e(−6) 10 0.8 5 5 5 66.87 68.13 100.00 491.90
Jura 1 1 10e(−3) 10 0.8 2 2 2 148.55 88.09 90.24 9312.22
Jura 1 1 10e(−2) 5 0.8 2 2 2 64.16 52.02 520.49 4305.73
Jura 10 1 10e(−2) 5 0.8 5 5 5 48.97 41.33 284.72 14395.23

SCPF 1 1 10e(−3) 5 0.8 5 5 5 142.82 40.06 87.93 1997.34
SCPF 1 1 10e(−4) 5 0.8 5 5 5 111.84 41.15 97.97 1980.34
SCPF 1 2 10e(−3) 5 0.8 5 5 5 380.89 137.21 60.00 4560.25
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,

RRMSE=Relative Root Mean Squared Error; with different smoother δ, without the DBS optimizer

Table A.3: RRMSE (%) and MSE Results with the shallow Gibbs Networks: Full-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump 1 1 10e(−3) 5 0.8 5 5 5 1433.99 482.73 45.64 1782.12
Slump 10 1 10e(−3) 5 0.8 5 5 5 3178.67 1330.54 934.75 2122.28
EDM 1 1 10e(−4) 5 0.8 5 5 5 7.24 1.27 87.93 1160.06
EDM 1 1 10e(−3) 5 0.8 5 5 5 6.82 1.55 94.77 1143.09
EDM 1 1 10e(−3) 5 0.8 5 5 5 5.33 3.37 129.76 2414.18
EDM 1 1 10e(−5) 5 0.8 5 5 5 5.55 2.50 112.12 1155.88
EDM 2 1 10e(−5) 5 0.8 5 5 5 10.23 3.07 87.36 1549.87
EDM 10 1 10e(−5) 2 0.8 5 5 5 24.17 8.92 192.35 1299.76
Jura 1 3 10e(−3) 2 0.8 5 5 5 75.12 50.64 102.82 5360.25
Jura 1 3 10e(−3) 2 0.3 5 5 5 32.94 35.99 100.0 1385.67

SCPF 1 1 10e(−4) 5 0.8 5 5 5 470.14 147.33 48.07
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,

RRMSE=Relative Root Mean Squared Error; all without the DBS optimizer and the smoother δ

223

Table A.4: RRMSE (%) and MSE Results with the shallow Gibbs Networks: Sparse-Gibbs

Shallow Gibbs settings Measure of fitness S-Gibbs Time (sec.)
Data sets NH ET LR NE BS SWbP PSY SPP RMSE RMSE RRMSE Time

Train Test -
Slump
EDM 1 1 10e(−4) 5 0.8 5 5 5 7.24 1.27 87.93 1160.06
EDM 1 1 10e(−3) 5 0.8 5 5 5 6.82 1.55 94.77 1143.09
EDM 1 1 10e(−3) 5 0.8 5 5 5 5.33 3.37 129.76 2414.18
EDM 1 1 10e(−5) 5 0.8 5 5 5 5.55 2.50 112.12 1155.88
EDM 2 1 10e(−5) 5 0.8 5 5 5 10.23 3.07 87.36 1549.87
EDM 10 1 10e(−5) 2 0.8 5 5 5 24.17 8.92 192.35 1299.76
SCPF 1 1 10e(−4) 5 0.8 5 5 5 470.14 147.33 48.07
*We have generated 5 Potts partitions with a shrinkage constraint of 5, RMSE=Root Mean Squared Error,

RRMSE=Relative Root Mean Squared Error; all without the DBS optimizer and the smoother δ

224 APPENDIX A. OTHER EXPERIMENTS RESULTS WITH THE SHALLOW GIBBS MODELS

Appendix B

Some Statistical Tables

225

Table of Common Distributions

taken from Statistical Inference by Casella and Berger

Discrete Distrbutions

distribution pmf mean variance mgf/moment

Bernoulli(p) px(1− p)1−x; x = 0, 1; p ∈ (0, 1) p p(1− p) (1− p) + pet

Beta-binomial(n, α, β) (nx)
Γ(α+β)

Γ(α)Γ(β)
Γ(x+α)Γ(n−x+β)

Γ(α+β+n)
nα
α+β

nαβ
(α+β)2

Notes: If X|P is binomial (n, P) and P is beta(α, β), then X is beta-binomial(n, α, β).

Binomial(n, p) (nx)p
x(1− p)n−x; x = 1, . . . , n np np(1− p) [(1− p) + pet]n

Discrete Uniform(N) 1
N ; x = 1, . . . , N N+1

2
(N+1)(N−1)

12
1
N

∑N
i=1 e

it

Geometric(p) p(1− p)x−1; p ∈ (0, 1) 1
p

1−p
p2

pet

1−(1−p)et

Note: Y = X − 1 is negative binomial(1, p). The distribution is memoryless: P (X > s|X > t) = P (X > s− t).

Hypergeometric(N,M,K)
(Mx)(N−M

K−x)

(N
K

)
; x = 1, . . . ,K KM

N
KM
N

(N−M)(N−k)
N(N−1) ?

M − (N −K) ≤ x ≤M ; N,M,K > 0

Negative Binomial(r, p) (r+x−1
x)pr(1− p)x; p ∈ (0, 1) r(1−p)

p
r(1−p)
p2

(
p

1−(1−p)et
)r

(y−1
r−1)pr(1− p)y−r; Y = X + r

Poisson(λ) e−λλx

x! ; λ ≥ 0 λ λ eλ(et−1)

Notes: If Y is gamma(α, β), X is Poisson(xβ), and α is an integer, then P (X ≥ α) = P (Y ≤ y).

1

Continuous Distributions
distribution pdf mean variance mgf/moment

Beta(α, β) Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1; x ∈ (0, 1), α, β > 0 α
α+β

αβ
(α+β)2(α+β+1) 1 +

∑∞
k=1

(∏k−1
r=0

α+r
α+β+r

)
tk

k!

Cauchy(θ, σ) 1
πσ

1
1+(x−θσ)2

; σ > 0 does not exist does not exist does not exist

Notes: Special case of Students’s t with 1 degree of freedom. Also, if X,Y are iid N(0, 1), XY is Cauchy

χ2
p

1

Γ(p2)2
p
2
x
p
2−1e−

x
2 ; x > 0, p ∈ N p 2p

(
1

1−2t

) p
2

, t < 1
2

Notes: Gamma(p2 , 2).

Double Exponential(µ, σ) 1
2σ e
− |x−µ|σ ; σ > 0 µ 2σ2 eµt

1−(σt)2

Exponential(θ) 1
θ e
− xθ ; x ≥ 0, θ > 0 θ θ2 1

1−θt , t <
1
θ

Notes: Gamma(1, θ). Memoryless. Y = X
1
γ is Weibull. Y =

√
2X
β is Rayleigh. Y = α− γ log X

β is Gumbel.

Fν1,ν2

Γ(ν1+ν2
2)

Γ(
ν1
2)Γ(

ν2
2)

(
ν1

ν2

) ν1
2 x

ν1−2
2(

1+(
ν1
ν2

)x
) ν1+ν2

2

; x > 0 ν2

ν2−2 , ν2 > 2 2(ν2

ν2−2)2 ν1+ν2−2
ν1(ν2−4) , ν2 > 4 EXn =

Γ(
ν1+2n

2)Γ(
ν2−2n

2)

Γ(
ν1
2)Γ(

ν2
2)

(
ν2

ν1

)n
, n < ν2

2

Notes: Fν1,ν2
=

χ2
ν1
/ν1

χ2
ν2
/ν2

, where the χ2s are independent. F1,ν = t2ν .

Gamma(α, β) 1
Γ(α)βαx

α−1e−
x
β ; x > 0, α, β > 0 αβ αβ2

(
1

1−βt

)α
, t < 1

β

Notes: Some special cases are exponential (α = 1) and χ2 (α = p
2 , β = 2). If α = 2

3 , Y =
√

X
β is Maxwell. Y = 1

X is inverted gamma.

Logistic(µ, β) 1
β

e
− x−µ

β[
1+e

− x−µ
β

]2 ; β > 0 µ π2β2

3 eµtΓ(1 + βt), |t| < 1
β

Notes: The cdf is F (x|µ, β) = 1

1+e
− x−µ

β

.

Lognormal(µ, σ2) 1√
2πσ

1
xe
− (log x−µ)2

2σ2 ; x > 0, σ > 0 eµ+σ2

2 e2(µ+σ2) − e2µ+σ2

EXn = enµ+n2σ2

2

Normal(µ, σ2) 1√
2πσ

e−
(x−µ)2

2σ2 ; σ > 0 µ σ2 eµt+
σ2t2

2

Pareto(α, β) βαβ

xβ+1 ; x > α, α, β > 0 βα
β−1 , β > 1 βα2

(β−1)2(β−2) , β > 2 does not exist

tν
Γ(ν+1

2)

Γ(ν2)
1√
νπ

1

(1+ x2

ν)
ν+1

2

0, ν > 1 ν
ν−2 , ν > 2 EXn =

Γ(ν+1
2)Γ(ν−n2)√
πΓ(ν2)

ν
n
2 , n even

Notes: t2ν = F1,ν .

Uniform(a, b) 1
b−a , a ≤ x ≤ b b+a

2
(b−a)2

12
ebt−eat
(b−a)t

Notes: If a = 0, b = 1, this is special case of beta (α = β = 1).

Weibull(γ, β) γ
βx

γ−1e−
xγ

β ; x > 0, γ, β > 0 β
1
γ Γ(1 + 1

γ) β
2
γ

[
Γ(1 + 2

γ)− Γ2(1 + 1
γ)
]

EXn = β
n
γ Γ(1 + n

γ)

Notes: The mgf only exists for γ ≥ 1.

2

	General Introduction
	Statistical topics
	Mixture Models
	Example of Gaussian Mixture Model mclachlan1988mixture
	Notes on Dirichlet Mixture Models

	Major learning ingredients
	Cholesky Decomposition
	 Markov Random Fields
	Gradient, Stochastic Gradient and batch learning
	Notes on Divergence Metrics for Distributions
	Never forget Bayes if your frequent likelihood get hard...

	The Potts Model with Complete Shrinkage
	The Potts Clustering
	The Bernouilli bonds

	Notes on Standard Application: Random Partitions Models
	The Potts Clustering Model with Complete Shrinkage
	Effective Python Implementation
	Experiments
	Extended Research on the Components size distribution
	Frequency of frequencies distribution
	Objective
	Methodology and combinatorial approach to the count vector
	The conditional bonds distribution (given the size constraint)
	Fast-Algorithm to find Sc-list
	Finding the most probable configuration among Sc-list given a label assignment

	Deep learning and the Classical Neural Networks
	The General Multi-Layer FeedForward Neural Network: Definitions & Concepts
	The Hold on Neural networks and the WHY

	Classification of neural networks
	Activation function and Loss function types
	Notes on The Geometry of the loss function
	The non-convexity problem
	Level Sets

	The Science of Gradients and Backpropagation in Deep learning
	Talks on Deep Learning common regularization methods
	A short example: The How it works
	Extended Notes on Pruning Method
	Effective Python Implementation of the model
	Performance and Comparison with Random Forest
	The odds and the Even of neural networks

	Shallow Potts Neural Network Mixture Models
	Efficiency of regression clustering
	Combination of neural network regression and Potts clustering model

	Shallow Gibbs networks
	The sparse-Gibbs network
	Compound symmetry Gibbs network

	The random-Potts partition model
	Some practical considerations

	The shallow Potts Gibbs-network mixture model
	Bayesian variational inference
	Regularization on the CS-Gibbs model
	Keeping positive definiteness on the precision Matrix

	Predictive Posterior
	On Double backpropagation

	Experimental evaluation
	The Results
	Convergence of the DBS optmizer.

	Nearest Neighbor Multivariate Interpolation (NNMI)
	Interpolation as a Machine learner
	Multivariate Interpolation
	Data Augmentation for Empirical Differentiation (DAED)
	Generalization Method

	Generalization of similarity measure using Metric Learning
	The Problem of Occlusions, Clutter and Noise
	Geometric Invariance
	Invariance descriptors and related works
	Holographic Nearest Neighbor (HNN)
	Shape Context
	Hough transformations features
	Fourier descriptors

	Other Invariance researches
	Chord distribution
	Moment invariants method

	Open Research Framework

	Convolutional Neural Network Gibbs Model
	Simple talks about Convolution
	Convolutional neural networks (CNNs)
	Pruned and Quantized CNNs for sparsity and model compression
	Pruning a Convolutionnal Neural Network: computation speed and model size reduction
	Other Proof-based and advanced Pruning methods

	Quantized Convolutional Neural Networks
	Binarized Neural Networks (BNNs)

	Our CNN architecture
	Our 4-type CNN Gibbs Model
	The CIFAR-10 Photo classification dataset for experiments
	Two additional layers and Invariants Networks as (universal) approximators

	Concluding Remarks, Discussion notes & Applications
	On the mixture models.
	Extension to a Mixture of music composers.
	The Multilayer feedforward Neural Network.
	Notes on the Potts Models with Complete Shrinkage.
	Concluding remarks on the Shallow Gibbs Structure.
	 A Generalized Double Back-Propagation Scheme (GDBS) for any parametric model
	The Infinite Zelda Stochastic Game.
	Other potential researches.

	Bibliography
	APPENDICES
	Other Experiments Results with the Shallow Gibbs Models
	Some Statistical Tables

