
ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

123

 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL

 OF ADVANCED RESEARCH

RESEARCH ARTICLE

An Improved Sufferage Meta-Task Scheduling Algorithm in Grid Computing Systems

Naglaa M. Reda*

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

Manuscript Info Abstract

Manuscript History:

Received: 19 August 2015

Final Accepted: 29 September 2015

Published Online: October 2015

Key words:

Grid computing, Heuristic

algorithm, Task scheduling,

Resource utilization, Makespan,

Flow time.

*Corresponding Author

Naglaa M. Reda

Scheduling tasks on heterogeneous resources distributed over a grid

computing system is an NP-complete problem. Many scheduling algorithms

have been developed aiming at reaching optimality. The Sufferage algorithm

has shown a superlative performance over most meta-task scheduling

algorithms regarding resources selection. However, providing a full power

use of resources is still a challenge. In this paper, an improved heuristic

algorithm of Sufferage is proposed. Its goal is to maximizing the resource

utilization and minimizing the makespan. We adapt a new strategy for

selecting proper resources. The main two criteria are the sufferage value and

the minimum completion time. Our experimental results show that the

proposed algorithm outperforms other algorithms in terms of flow time,

utilization, and makespan.

Copy Right, IJAR, 2015,. All rights reserved

INTRODUCTION

Grid computing system [1, 2] is a distributed system that enables large-scale resource sharing among millions of

computer systems across a worldwide network such as the Internet. Grid resources are different from resources in

conventional distributed computing systems by their dynamism, heterogeneity, and geographic distribution. The

organization of the grid infrastructure involves four levels which are in ordering as follows. The foundation level

includes the physical components. The middleware level is actually the software responsible for resource

management, task execution, task scheduling, and security. The services level provides vendors/users with efficient

services. The application level contains the services such as operational utilities and business solutions/tools.

Task scheduling [3] is the main step of grid resource management. It manages tasks to allocate resources by

using scheduling algorithms and polices. In static scheduling, the information regarding all the resources in the grid

as well as all the tasks in an application are assumed to be known in advance. Furthermore, task is assigned once to a

resource. While in dynamic scheduling, the task allocation is done on the go as the application executes, where it is

not possible to find the execution time. The tasks are entering dynamically and the scheduler has to work hard in

decision making to allocate resources. The advantage of the dynamic over the static scheduling is that the system

need not possess the run time behavior of the application before it runs. Since scheduling directly influences the

performance of grid applications, it has become one of the major research objectives in grid to devise new methods

for improving computational efficiency.

The main contribution of this work is to introduce an efficient heuristic for scheduling tasks to resources

on computational grids with maximum utilization and minimum makespane. The proposed algorithm (M-

Safferage) depends on the sufferage value and the minimum completion time. Our algorithm overcomes the

weakness point of Sufferage when there is more than one task having the same maximum sufferage value.

Constrains to map the most appropriate task that increases the grid efficiency are formalized. Performance tests of

the proposed algorithm show a good improvement over the original Sufferage algorithm and others.

http://www.journalijar.com/

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

124

I. RELATED WORK
Since the late nineties, several heuristic algorithms for grid task scheduling (GTS) [4-6] have been developed to

improve grid performance. They are classified into meta-task algorithms where all tasks can run independently and

DAG algorithms where a DAG represents the partial ordering dependence relation between tasks execution. In the

following, most popular meta-task GTS algorithms are briefly introduced.

Opportunistic Load Balancing (OLB) algorithm [7] assigns each task in arbitrary order to the next available

resource regardless of its expected execution time. If two or more resources are idle, then a resource is selected

arbitrarily. This strategy takes small time for scheduling and keeps almost all the resources busy as possible all the

time. Thus, it gives rich resources utilization because it takes into account the load balancing. Its disadvantage is that

it has the worst case makespan because it doesn’t consider the task expected execution time.

Minimum Execution Time (MET) algorithm [8] assigns each task in arbitrary order to the resource with the

minimum execution time MET (that is the least time exhausted by the resource during task execution) without

considering resource availability. This method causes load imbalance that weaken grid resources utilization.

Minimum Completion Time (MCT) algorithm [8] assigns each task in arbitrary order to the resource with the

earliest completion time MCT (that is the smallest sum of the execution times on the selected resources and the

ready time). It combines the benefits of OLB and MET, while avoiding the circumstances in which they perform

poorly. Its weakness point is that some tasks may be assigned to resources that don’t have minimum execution time

for them which poorly consume some resources.

Min-Min algorithm [9] starts with computing the completion time for each task on each resource. Then, it

selects the resource with minimum expected completion time and assigns task with the minimum completion time to

it. After deleting the assigned task from the set of tasks and updating the completion time for unassigned tasks, it

repeats the same procedure until the unassigned task list get exhausted. This algorithm produces a smaller makespan

when most tasks have small execution time, since it maps them earliest and executes them faster. Nevertheless, if

there are a lot of small tasks, it will act badly resulting low utilization.

Max-Min algorithm [9] likewise computes the completion time for each task on each resource at first. After

that, the resource with minimum expected completion time is selected and the task with the maximum completion

time is assigned to it. This procedure is repeated until no unassigned task remains. This algorithm acts better than

Min-min when the number of tasks having little time is much more than the long ones and vice versa.

Switching Algorithm (SA) [9] is a combination of MCT and MET. It tries to overcome some limitations of both

methods by combining their best features. The MET algorithm can potentially create load imbalance across

resources by assigning many more tasks to some resources than to others, whereas the MCT heuristic tries to

balance the load by assigning tasks for earliest completion time. Essentially, the idea is to use MET till a threshold is

reached and then use MCT to achieve a good load balancing. This is done by combining MET and MCT cyclically

based on the workload of resources.

Sufferage algorithm [9] maps a resource to a task that would suffer most in terms of expected completion time

according to its sufferage value. It first computes the completion time for each task on each resource. Second, the

two consecutive minimum completion time for each task are found. The difference between these two values is

defined as the suffrage value. Third, the task with maximum suffrage value is assigned to a resource with minimum

completion time. Then the completion times for resources are updated and the above steps are repeated until the set

of tasks becomes empty. This strategy works perfectly, but it has one shortcoming in case of more than one task has

the same maximum suffrage value. It simply selects the first task without taking into account the other tasks which

may cause a starvation problem.

Switcher Algorithm [10] switches between the Max-Min and Min-Min algorithms and selects the best between

them while making each scheduling decision. The decision of applying which algorithm depends on the basis of

Standard Deviation (SD) of minimum completion time of unassigned tasks. A position in the list of unassigned tasks

where the difference in completion time between the two successive tasks is more than the value of SD is searched.

If it lies in first half of the list, then Min-Min algorithm is selected as the number of longer tasks is more, otherwise

Max-Min is chosen. If this position does not exist, then SD is compared with a threshold value. If SD is smaller than

threshold value, allocation of task to a resource is implemented using Min-Min strategy. Otherwise, Max-Min is

selected.

Resource Aware Scheduling Algorithm (RASA) [11] builds a matrix representing the completion time of each

task on every resource at the grid. If the number of available resources is odd, the Min-Min strategy is applied to

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

125

assign the first task, otherwise the Max-Min strategy is applied. The remaining tasks are assigned to their

appropriate resources by one of the two strategies, alternatively.

Min-mean heuristic [12] reschedules the Min-Min produced schedule by considering the mean makespan of all

the resources. It starts by assigning tasks based on the Min-min algorithm. Then, it takes the mean of all resource

completion time and selects the resource with the greatest value. After that, it reschedules the tasks assigned to the

selected resource to the resources whose completion time is less than the mean value. This algorithm deviates in

producing a better schedule than the Min-Min algorithm when the task heterogeneity increases.

Load Balanced Min-Min (LBMM) algorithm [13] has been proposed to reduce the makespan and increase the

resource utilization. It posses two-phases, in the first phase the traditional Min-Min algorithm is executed and in the

second phase the tasks are rescheduled to use the unutilized resources effectively. It chooses the resources with

heavy load and reassigns them to the resources with slight load. It chooses the resource with high makespan in the

schedule produced by Min-Min then, chooses the task with minimum execution time on that resource.

The completion time for that task is calculated for all resources in the current schedule. Then, the maximum

completion time of that task is compared with the makespan produced by Min-Min. When it is less than makespan

then the task is rescheduled in the resource that produces it, and the ready time of both resources are updated.

Otherwise, the next maximum completion time of that task is selected and the steps are repeated again.

Mact-min [14] algorithm starts by computing the completion time for each task on each resource. Then, the task

with the maximum average completion time is selected. Finally, it maps the selected task to the resource with

minimum completion time. The assigned task is deleted from the set of tasks and the completion times with average

completion time for all the remaining tasks are updated. This process is repeated until all tasks are mapped.

II. PROPOSED ALGORITHM

In this section, we give an efficient algorithm called M-Sufferage for scheduling a set of meta-tasks on a

computational grid system. The aim of this algorithm is to maximize the utilization and minimize the makespane.

Given a Grid of m resources G={𝑀1, 𝑀2 , … , 𝑀𝑚 } whose availability time R={𝑟1, 𝑟2, …….., 𝑟𝑚 }, and a set of n

tasks T={𝑇1, 𝑇2, …….., 𝑇𝑛}, where m, n  ℕ+, M-Sufferage algorithm can be viewed as a map S from T onto G

which is determined by:

 i [1 .. n]  j  [1 .. m] s.t. S (𝑇 𝑖) = 𝑀𝑗

Scheduling decision is based on the suffrage value of each task 𝑇𝑖 in T. A suffrage vector SF is computed for

all tasks by positive subtracting the two consecutive minimum completion time MCT1𝑖 and MCT2𝑖 for each task.

When there exists only one task having the maximum suffrage value, then S maps this task to the resource that

obtain the minimum completion time. Otherwise, all tasks having the same maximum suffrage values are gathered

in a set named by 𝑇𝑚𝑎𝑥 . Then, the average completion time for all tasks in 𝑇𝑚𝑎𝑥 is computed in terms of the

estimated completion time ETC.

Finally, S maps the task having the maximum average to the resource that obtain the minimum completion

time. These steps are repeated until all n tasks are distributed on m resources. In the following, the steps of

suggested algorithm are outlined. Assuming A and B are two sets of indices of unassigned tasks and indices of

resources, respectively; initialized by A = {1, 2, … , n} and B={1, 2, … , m}.

Algorithm: M-Sufferage

Input: Grid G, Meta-tasks T, Resources availability R, and Estimated computation time matrix ETC

Output: The scheduling mapping S

1: A  {1, 2, … , n} ; B  {1, 2, … , m}

2: while A ≠  do

3: for i  A do

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

126

4: for j  B do

5: Calculate the completion time 𝑐𝑖𝑗  𝑒𝑖𝑗 + 𝑟𝑗
6: end for j

7: Find MCT1 and MCT2

8: Calculate SFi  MCT2 – MCT1

9: end for i

10: Find the maximum suffrage value SF from { 𝑆𝐹𝑖 : i  A }

11: Collect indices i of all tasks having 𝑆𝐹𝑖 = SF in 𝑇𝑀𝐴𝑋

12: if 𝑇𝑀𝐴𝑋 has at least two elements then

13: for 𝑥 𝑇𝑀𝐴𝑋 do

14: Calculate the average value, 𝐴𝑉𝑥 
 𝑐𝑥𝑗

𝑚
𝑗=1

𝑚 , of 𝑇𝑥 completion time

15: end for x

16: Get u  𝑇𝑀𝐴𝑋 s.t. 𝑇𝑢 has the maximum average value 𝐴𝑉𝑥

17: else

18: Set u  x  𝑇𝑀𝐴𝑋

19: end if

20: Find the resource 𝑀𝑣 , 𝑣 𝐵 , that posses the minimum completion time

21: Set S (tu)  mv

22: Delete index u from the set A

23: Update the wait time 𝑟𝑣 of 𝑀𝑣 by 𝑟𝑣 = 𝑟𝑣 + 𝑐𝑢𝑣
24: end while

III. PERFORMANCE ANALYSIS

There are several performance metrics to evaluate the quality of a scheduling algorithm [3]. In this section, the

proposed algorithm is tested according to these criteria. As a case study, it considers a grid system with three

resources and four tasks whose ETC matrix is given in table (1). It presents in the following a comparison of most

recent and efficient algorithms against M-Sufferage in regard to each criterion for emphasizing its strength.

 m1 m2 m3

T1 27.5 10 7.5

T2 10 30 7.5

T3 10 25 7.5

T4 10 20 7.5

Table (1): The ETC Matrix

Computational complexity

The complexity is an essential metric in theoretical analysis of algorithms that asymptotically estimate their

performance. It determines the required time to solve the given computational problem using selected mathematical

notation such as the Big O notation. In our case, it indicates that the scheduling algorithm is approximately like

others in finding a feasible solution in a highly dynamic heterogeneous grid system. Table (2) presents the

complexity of M-Sufferage algorithm and other important ones when scheduling N tasks T on a heterogeneous grid

system G of M resources. It is clear from steps 2, 3, and 4 of M-Sufferage algorithm that its complexity is N
2
M.

Evidently, M-Sufferage has the same complexity as Sufferage and most promising algorithms.

Algorithm MET OLB Mact-min Max-min Min-mean Min-min Sufferage M-Sufferage

Complexity O(NM) O(NM) O(NM) O(N
2
M) O(N

2
M) O(N

2
M) O(N

2
M) O(N

2
M)

Table (2): Complexity Comparison

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

127

Flow time

One of the metrics used to measure the grid scheduling performance is the flow time. It is known as all the time

needed by all resources to finish all tasks. It is computed by the following summation.

Flowtime = 𝑟𝑗

𝑚

𝑗 =1

The flow time comparison between the proposed M-Sufferage algorithm and other scheduling algorithms is

given in Figure (1). Results show that M-Sufferage flow time is less than the Suffrage algorithm which means the

waiting time to start task execution is small.

Makespan

Makespan is an important performance criterion of scheduling heuristics in grid computing systems. It is defined as

the maximum completion time of application tasks executed on grid resources. Formally, it is computed by using the

following equation where C is the computed completion time matrix:

makespan = max 𝑐𝑖𝑗 𝑖 1..𝑛 , 𝑗[1..𝑚]

Figure (2) shows the Makespan Comparison between M-Sufferage and other algorithms for the above case

study. It is obvious that M-Sufferage is the best, as whenever the makespan decreases, the scheduler becomes better.

Resource Utilization

Resource utilization is the most essential performance metric for grid managers. The resource's utilization (MU) is

defined as the amount of time a resource is busy in executing tasks. And the grid’s resource utilization 𝑈 is the

average of resources' utilization. They are computed as follows:

𝑈 =
 𝑀𝑈𝑗

𝑚
𝑗=1

𝑀

where 𝑀𝑈𝑗 =
𝑟𝑗

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 ; 𝑗  [1 . . 𝑚]

Figure (3) illustrates that M-Sufferage maximizes the utilization by presenting its results against other

algorithms regarding the above studied case. It is clear that M-Sufferage is superlative, because more utilization

leads to improving the scheduling.

Figure (1): Comparison of Flow Time

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

128

Figure (2): Comparison of Makespan

Figure (3): Comparison of Resource Utilization

IV. CONCLUSIONS AND FUTURE WORK

This paper introduces an improved meta-task scheduling algorithm called M-Sufferage. It is based on the well-

known Sufferage algorithm. It is concerned with task execution time, resource utilization and makespan. It proposes

new mapping S for scheduling tasks using the main of minimum completion time. It overcomes the shortage of

Sufferage when handling more than one task having the same maximum sufferage value. Performance analysis

illustrates that M-Sufferage algorithm has the same complexity as Sufferage. It also shows that M-Sufferage

outperforms others with respect to flow time, minimizes the makespan, and maximizes the resource utilization.

For future work, experimental testing is planned to be performed using a simulation environment such as GridSim

toolkit, to compare and evaluate M-Sufferage with other algorithms practically.

REFERENCES
[1] Frédéric Magoulès, Jie Pan, Kiat-An Tan, & Abhinit Kumar (2009). Introduction to grid computing. CRC Press,

London, New York.

[2] George Amalarethinam, Dr.D.I., & Muthulakshmi, P. (2011). An Overview of the Scheduling Policies and

Algorithms in Grid Computing. International Journal of Research and Reviews in Computer Science (IJRRCS),

2(2), 280-294.

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 10, 123 -129

129

[3] Chandak, A., Sahoo, B., & Turuk, A. (2011). An Overview of Task Scheduling and Performance Metrics in

Grid Computing. Proc. of 2nd National Conference-Computing, Communication and Sensor Network, 30-33.

[4] Braun, R., Siegel, H., et al. (2001). A Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing System. Journal of Parallel and Distributed

Computing Systems, 61(6), 810-837.

[5] Tinghuai Ma, Qiaoqiao Yan, Wenjie Liu, Donghai Guan, & Sungyoung Lee (2011). Grid Task Scheduling:

Algorithm Review. IETE Technical Review, 28(2), 158-167.

[6] Elzeki, O.M., Rashad, M.Z., & Elsoud, M.A. (2012). Overview of Scheduling Tasks in Distributed Computing

Systems. International Journal of Soft Computing and Engineering, 2(2), 36-39.

[7] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., & Freund, R.F. (1999). Dynamic Matching and Scheduling

of a Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel and Distributed

Computing, 59(2), 107-131.

[8] Freund, R.F., Gherrity, M., et al. (1998). Scheduling resources in multi-user, heterogeneous, computing

environments with SmartNet. 7th IEEE Heterogeneous Computing Workshop, 184-199.

[9] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, “Dynamic mapping of a class of independent

tasks onto heterogeneous computing systems”, Journal of Parallel and Distributed Computing 59 (2) (1999)

107_131.

[10] Singh, M., & Suri, P.K. (2008). QPSMax −Min <>𝑀𝑖𝑛−𝑀𝑖𝑛 : A QoS Based Predictive Max Min, Min-Min

Switcher Algorithm for Job Scheduling in a Grid. Information Technology Journal, 7(8), 1176-1181.

[11] Parsa, S., Entezari-Maleki, R. (2009). RASA: A New Grid Task Scheduling Algorithm. International Journal of

Digital Content Technology and its Applications, 3(4), 91-99.

[12] Kamalam, G.K., & Muralibhaskaran,V. (2010). A New Heuristic Approach: Min-Mean Algorithm For

Scheduling Meta-Tasks On Heterogenous Computing Systems. International Journal of Computer Science and

Network Security, 10(1), 24-31.

[13] Kokilavani, T., & George Amalarethinam, Dr.D.I. (2011). Load Balanced Min-Min Algorithm for Static Meta-

Task Scheduling in Grid Computing. International Journal of Computer Applications, 20(2), 43-49.

[14] Fahd Alharbi (2012). Multi Objectives heuristic Algorithm for Grid Computing. International Journal of

Computer Applications, 46(18), 39-45.

[15] Soheil Anousha & Mahmoud Ahmadi (2013). An Improved Min-Min Task Scheduling Algorithm in Grid

Computing. Lecture Notes in Computer Science 7861, 103–113.

