

RESEARCH ARTICLE

AWARENESS OF ANEMIA AMONG RURAL PREGNANT WOMEN IN BAGERHAT DISTRICT OF BANGLADESH

Md. Abu Borhan¹ and Md. Ayub Ali²

- 1. MPSc in Applied Statistics, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh.
- 2. Professor, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh.

Manuscript Info

Abstract

Manuscript History Received: 10 October 2021 Final Accepted: 14 November 2021 Published: December 2021

Key words:-

Awareness, Anemia, Pregnant Women, Correspondence Analysis, Phi Correlation and Cramer's V **Background:** Anemia in pregnancyis a decrease in the total red blood cells (RBCs) or hemoglobin in the blood duringpregnancyor in the period following pregnancy. It is the condition of having a lower-thannormal number of red blood cells or quantity of hemoglobin. Anemia diminishes the capacity of the blood to carry oxygen. Patients with anemia may feel tired, fatigue easily, appear pale, develop palpitations, and become shortness of breath.

.....

Objectives: The purpose of the present study was to investigate about the awareness of anemia among rural pregnant women in Bagerhat district of Bangladesh

Materials and Method: A sample of 29 pregnant women (PW) from a total of listed 111 women from three upazilas of Bagerhat district was considered for assessing the awareness of Anemia. Those three upazilas were taken at random first from the nine upazilas of Bagerhat district.Data on different variables were collected directly from the selected women through a prescribed questionnaire. Descriptive statistics e.g., maximum, minimum, mean, standard deviation, skewness, kurtosis, etc. of the variables together with their standard error of their estimates were considered foranalyzing sample characteristics of the study. The relationship between two nominal variables is assessed by cross tabulation with test statistics Phi and Cramer's V. The bootstrapresampling method was used to understand the population parameters.

Results: About86% pregnant women have no idea about anemia and also their causes. All respondents feel weakness that indicates they have the symptom of anemia. The phi andcramer'sV imply that the relationship between heard about anemia and the source of information is highly significant (p= 0.000). Among the awarded women in Bagerhat district, probability of getting awareness from service provider was0.917 and that from relatives was 0.083. Among the population, the probability of contribution of the service provider was0.379. Probability of unknown was 0.586 indicating much populationin Bagerhat district werenot aware about anemia. Probability of getting information of anemia from mother was zero indicating very recently service providers have started their program in Bagerhat district.

Conclusion: Probability of getting information of anemia from mother is zero indicating very recently service providers have started their program in Bagerhat district. Therefore, this program should be continued until the probability of getting information from mother will be closed to 1.

Recommendation: Government as well as the NGOs should continue & enhance the present awareness program in Bagerhat district.

Copy Right, IJAR, 2021,. All rights reserved.

Introduction:-

Anemiais the condition of having a lower-than-normal number of red blood cells or quantity of hemoglobin that diminishes the capacity of the blood to carry oxygen. Patients with anemia may feel tired, fatigue easily, appear pale, develop palpitations, and become short of breath. Anemia in pregnancy is a decrease in the total red blood cells (RBCs) or hemoglobin in the blood during pregnancy or in the period following pregnancy. Awareness of anemia is the knowledge or perception on anemia or the ability to directly know and perceive, to feel, or to be cognizant of anemia.

Anemia is an amazingly basic condition in pregnancy and postpartum around the world, giving various wellbeing dangers to mother and youngster(Pavord et al., 2012). Maternal signs and symptoms are usually non-specific, but can include: fatigue, pallor, dyspnea, palpitations and dizziness. Awareness of anemia to take control behavior, emotions and give thespecific knowledge on anemia and making change in the direction of pregnant women pregnancy life and also very important because when pregnant women will have better understanding on anemia then they will know about the disadvantage of anemiaandpregnantwomen can save themselves from the adverse effect of anemia and the baby in the womb will be healthy and to make improvements in human life. Diminishing iron deficiency is perceived as a significant part of the well-being of women and kids, and the second worldwide sustenance focus for 2025 requires a half decrease of women anemia of contraceptive age(World Health Organization, 2011).

Children and women of regenerative age have the most elevated paces of anemia and among women of reproductiveage, non-pregnant women, in numbers, are the most influenced by frailty (~468 million); in any case, pregnant women have the most elevated commonness rates(McNulty et al., 2000).Worldwide figures for the predominance of anemia among non-pregnant and pregnant women are 35% and 51%, individually (McNulty et al., 2000).

The Tabuk locale pregnant knowledge, attitude, practices on IDA who go to in primary health centers. About 25.0% of the pregnant women had history of pallor before pregnancy, 66.7% of them had poor knowledge, and 70.0 % of them had nonpartisan mentality toward iron inadequacy anemia. Furthermore, 40.0 % of them got poor practices score with respect to avoidance of iron deficiency anemia (Aboud, et al., 2019). Pregnant women saw supplementation emphatically yet refereed to absence of information on advantages and dangers, neglect, and conflicting IFA supply as difficulties. Despite the fact that information and consciousness of anemia and IFA supplements were across the board, preeclampsia was for the most part obscure (Birhanu et al., 2016). Maternal anemia among pregnant womenwho went to get antenatal consideration at center in Dhaka city, about 63% of the subjects had typical degree of hemoglobin, and 37% were anemic followed by 26 % mild and 11 % moderate(Chowdhury et al., 2015).Directed nutritional status of pregnant women in south-west area of Bangladesh, 66.25% pregnant women were supported (counting ordinary 39.62%, over weighted 21.50% and obesed 5.13%), 24.75% were moderately malnourished. Especially about 59.50% pregnant women are anemia deficient who were hazard to convey their child. Urban pregnant ladies 68.57% were similarly all around supported than rural pregnant women 61.54% (Rahman et al., 2013). The extent of births at the EmOC (Emergency obstetric consideration) facilities increased 119% from 5.3% to 11.7% addressed issue expanded 141% from 11.1% to 26.6%, and cesarean section as an extent of every normal birth, expanded 151% from 0.5% to 1.3%, while the general case casualty rate decreasedby 51% (Islam, et al., 2005). Toteja and her colleagues found that the prevalence of anemia ranges from 33% to 89% among pregnant women and it was more than 60% among adolescent girls (Toteja et al., 2006).

Research on awareness of anemia among pregnant women in Bagerhat district is rare. Thus, the purpose of the present study is to investigate the awareness of anemia among pregnant women in Bagerhat district.

Materials and Methods of the Study:-

A sample of 29 pregnant women (PW) from a total of listed 111 women from three upazilasofBagerhat district was considered for assessing the awareness of anemia. Those three upazilas were taken at random first from the nine upazilas of Bagerhatdistrict.Data on different variables were collected directly from the selected women through a questionnaire. The variables were household size, occupation of the husband, source of income, age, education, occupation, gravida, knowledge about anemia, and different experiences on anemia of the pregnant women. The resampling technique, namely bootstrap method, was applied as the sample size was small.

Descriptive statistics e.g., maximum, minimum, mean, standard deviation, skewness, kurtosis, etc. of the variables together with their standard error of estimates were considered foranalyzing sample characteristics of the study. The relationship between two nominal variables is assessed by cross tabulation with statistics Phi and Cramer's V (Yule GU, 1919).Probability of getting awareness was assessed by correspondence analysis (Greenacre, M,2007, Izenman, 2008).

Results:-

Frequency distribution and descriptive statistics like, sample size, range, maximum, minimum, mean, standard deviation, skewness, andkurtosis of the variables household size, occupation of the husband, source of income, age, education, occupation, gravida, knowledge about anemia, and different experiences on anemia of the pregnant women are shown in the following Table 1 and Table 2, respectively. Table 1a shows that about 34.5% husband of pregnant women were farmer, followed by 10.3% were woodmaker17.2% were van driver, 17.2% were business men, 17.2% were job holder, and 3.4% were masonry. Therefore, the study area may be treated as lower middle income areashows that all the pregnant women were house wife, i.e., they have no job other than house work and shows heard about anemia 41.4% in andnot heard about anemia 58.6% out of total number of pregnant women inthe study. The frequency table shows among the pregnant women who haveknown or heard about anemia from service provider 37.9% andrelatives 3.4%.

		В	ootstraj Percen) for ta	0				В	ootstrap Percent	for a	So		Boo for Po	tstra ercei	ıp nta
Occupation of the	0/0		95 Confi Inte	idence erval	ccupation	0/0	Heard about	0/0		95 Confie Inte	% dence rval	ource of I	0/0	92 Conf Int	5% iden erva	ice l
husband of PW	, o	Bias	Low er	Uppe r	of the PW		Anemi a	70	Bias	Lower	Upper	nformation	70	Bias	Lower	Upper
Farmer	34. 5	- 3	17. 2	51.7			Yes	41.4	.2	24.1	58. 6	Service provider	37.9	:3	20.7	55.2
Wood maker	10. 3	1	.0	24.1	House v	100.0						Relatives	3.4	1	.0	10.3
van Driver	17. 2	1	3.4	31.0	vife		No	58.6	2	41.4	75. 9	Unkno	58.6	2	41.4	75.9
Business	17. 2	1	3.5	31.0								iwn				
Job	17.	•	6.9	31.0												

Table 1:- Frequency distribution of different variables.

	2	1														
Masonry	3.4	0	.0	10.3												
Total	100.0	0	100.0	100.0	Total	100.0	Total	100.0	.0	100.0	100.0	Tot al	100.0	.0	100.0	100.0

Source of data: Primary data collected and compiled by the authors.

Symptoms of Anemia Table 1(b)

Symptoms of anemia	%	Boot	strap for P	ercent	Eye yellow	%	Bo	otstra Perce	np for ntª	Skin	%	Bo	otstrap Percent	for	Ve	₽ %	95%	Confid Interval	ence
(central)		Bias	95% Confide Interval	nce	ing		Bias	95% Con e Int	fidenc erval			Bias	95% Confid Interva	lence al	ssels	od l	Bia s	95% Confid Interva	lence al
			Lower	Upper				Lower	Upper				Lower	Upper				Lower	Upper
Fatigue	13.8	2	3.4	27.6	Yes	34.5	3	17.2	51.7	Paleness	6.9	2	.0	17.2	pressure	89.7	1	75.9	100.0
Dizziness	10.3	1	.0	20.7	No		- 3			Coldnes s	3.4	.0	.0	10.3	No		.1	.0	24.1
both fatigue and dizziness	65.5	.3	48.3	82.8		65.5		48.3	82.8	yellowin g	24.1	1	10.3	41.4					
No	10.3	.1	.0	24.1						No	65.5	i.J	48.3	82.8		10.3			
Total	100.0	.0	100.0	100.0	Total	100.0	0	100.0	100.0	Total	100.0		100.0	100.0	Iotai	100.0	-4,5	.0	100.0

Symptoms of anemia heart	%	Boo P	tstrap f ercent	for	7	%	Bootstrap for Percent [®]			%		%		Bootstrap for Percent [®]			%	Boo	otstrap Vercen	o for It	
		Bias	95% Confi e Inte	denc rval	lespirator		Bias	95% Confi e Inte	denc rval	Muscular	Intestinal				95% Confi Interv	dence /al	spleen			95% Conf ce Inter	iden val
			Lower	Upper	~			Lower	Upper					Bias	Lower	Upper			lias	Lower	Upper
Palpitation	17.2	.1	3.4	31.0	Shortness of breath	51.7	5	31.0	69.0			Change stool color	51.7	.5	34.5	69.0	Enlargement	6.9	.2	.0	17.2
Rapid Heart Rate	37.9	.1	20.7	55.2	No		.5			Weakn	100.	No		5			No				
Palpitation and Rapid Heart Rate	37.9	.0	20.7	55.2		48.3		31.0	69.0	ss			48.3		31.0	65.5		93.1	ż	82.8	100.0
No	6.9	2	.0	17.2																	
Total	100.0	.0	100.0	100.0	Total	100.0	.0	100.0	100.0	Total	100.0	Total	100.0	.0	100.0	100.0	Total	100.0	-13.0	.0	100.0

The respondents according to their symptoms of anemia (central)is shown in table 1b that divulgedfatigue 13.8%, dizziness 10.3%, both fatigue and dizziness 65.5% and no symptoms of anemia (central) 10.3%.

The table 1b shows that symptoms of anemia (Eye yellowing) among the total respondents, 34.5% have eye yellowing and 65.5% have no eye yellowing, While for symptoms of anemia (Skin) among the total respondents, 6.9% have paleness in addition bootstrapped percentiles lower 0% and upper 17.2%, 3.4%, 24.1% have yellowingand 65.5% have no symptoms of anemia (skin). This Table also shows that symptoms of anemia blood vessels among the total respondents, 89.7% have low blood pressure in addition bootstrapped percentiles lower 75.9% and upper 100%, 10.3% have no low blood pressure. Also, symptoms of anemia heart among the total respondents, 17.2% have palpitation, 37.9% have rapid heart rate37.9% have both palpitation and rapid heart rateand, 6.9% have no symptoms of anemia heart. In the symptoms of anemia respiratory among the total respondents, 51.7% have shortness of breathand 48.3% have no shortness of breath. For symptoms of anemia muscular, all respondents are felling weakness. For symptoms of anemia intestinal among the total respondents, 51.7% have changed stool colorand 48.3% have no change of stool color. For symptoms of anemia spleen among the total respondents, 6.9% have enlargement of spleenand 93.1% have no enlargement spleen.

						Table 1 (c)									
	Knowle	dge cau	ses of a	nemia		Nutritious feeding	Nutritious feeding system of the pregnant women								
	%	Bias	Std. Error	Lower	Upper		%	Bias	Std. Error	Lower	Upper				
lron deficiency	13.8	2	6.4	3.4	27.6	should take 3 regular meals and 2 snacks with more nutritious food	10.3	1	5.9	.0	20.7				
Don't Know	86.2	.2	6.4	72.4	96.6	Should take fish, meat, egg, milk, liver, thick lentil, deep green vegetable, seasonal food.	34.5	.1	8.4	17.2	51.7				
						should take 3 regular meals and 2 snacks with more nutritious food and should take fish ,meat, egg(1 & 2)	17.2	2	7.0	3.4	31.0				
						should take 3 regular meals and 2 snacks with more nutritious food and should take IFA (1& 3)	3.4	.0	3.4	.0	10.3				
	10					Don't know	34.5	.2	8.7	17.3	51.7				
Total	0.0	-1.5	12.2	100.0	100.0	Total	100.0	.0	.0	100.0	100.0				

The Table 1cshow that knowledge causes of anemia among the total respondents 13.8% addressed iron deficiency and 86.2% didn't knowabout causes of anemia. This table shows nutritious feeding system of the pregnant women among the total respondents, 10.3% should take 3 regular meals and 2 snacks with more nutritious food, 34.5% Should take fish, meat, egg, milk, liver, thick lentil, deep green vegetable, seasonal food, 17.2% should take 3 regular meals and 2 snacks with more nutriticate green vegetable, seasonal food, 3.4% should take 3 regular meals and 2 snacks with more nutritious food with should take fish, meat, egg, milk, liver, thick lentil, deep green vegetable, seasonal food, 3.4% should take 3 regular meals and 2 snacks with more nutritious food and should take IFA and 34.5% don't knowabout nutritious feeding system of the pregnant women. To overcome the problem of small sample size, resampling technique, named bootstrap, was applied for each variable and the results shown in

table no. 1, 1(a), 1(b) from this result, it is observed that biases are very small that indicates our sample statistics are useful for inference.

Descriptive statistics, e.g., sample size, range, and minimum, maximum, mean, variance, skewness, kurtosis and the standard error of the statistics are shown in Table 2. This table divulges that on average the family size under the study area is about 4 with very insignificant standard error of the estimate.

On the basis of the sample, the age of the pregnant women for the whole Bagerhat district will be in the age interval $((24\pm1.13)\pm5.9)$. It is for schooling year of pregnant women, the limits are $((8.41\pm.37)\pm1.97)$ indicating education level of the pregnant women of Bagerhat district laying within secondary school certificate level. For number of pregnancy (gravida), the estimated population mean is $((1.97\pm.0.19)\pm1.02)$ implying that the gravida in Bagerhat district is 1 to 3, on average. Positive skewness of household size, age and gravida indicate that their average has a tendency towards left while it is towards right for negative skewness of schooling year of the pregnant women. The value of kurtosis implies that the variables household size, school year and gravida of the pregnant women are more condensed towards mean that age of them.

Table 2:- Descriptive Statistics for pregnant women.

	N	Minimum	Maximum	Maximum Mean S		Std. Deviation Skewness			Kurtosis		
	Statistic	Statistic	Statistic	Statistic	SE	Statistic	Statistic	Std. Error	Statistic	SE	
Number of house hold members	29	2	10	4.03	.300	1.614	1.910	.434	8.537	. <mark>8</mark> 45	
Age of the pregnant women(Years)	29	16	34	24.00	1.103	5.940	.273	.434	2.499	. <mark>84</mark> 5	
Schooling year of the pregnant women	29	3	12	8.41	.366	1.973	356	.434	4.236	. <mark>84</mark> 5	
Number of the pregnancy	29	1	5	1.97	.189	1.017	.948	.434	3.967	.845	

Table 3:- Relationshipbetween heard about anemia and source of information.

		Value	p value
	Phi	1.000	.000
Nominal by Nominal	Cramer's V	1.000	.000
	Contingency Coefficient	.707	.000
N of Valid Cases		29	

The phi, cramer's V and contingency coefficient (in Table 3) implythat the relationship between heard about anemia and source of information is highly significant (p=0.000).

Correspondence Analysis

Table 4:- Probabilities getting from Correspondence analysis.

Heard about Anemia		Sou	rce of Informat	tion	
	Service provider	Parents	Relatives	Unknown	Active Margin
Yes	.917	.000	.083	.000	1.000
No	.000	.000	. <mark>000</mark> .	1.000	1.000
Mass	.379	.000	.034	.586	1.00

From Table 4, the row profile show in the Bagerhat district among the awarded women probability of getting awareness from service provider is 0.917 and from relatives 0.083. Among the population the contribution the service provider is 0.379. Probability of unknown is 0.586 indicating much population in Bagerhat district does not know what is anemia. Probability of getting information of anemia from mother is zero indicating very recently service providers have started their program in Bagerhat district. Therefore, this program should be continued until the probability of getting information will be closed to 1.

Discussion:-

Table 5:- Compari	son between	present and	previous	studies.
-------------------	-------------	-------------	----------	----------

Authors	Ethnic	Variable Selected	Method	Key Results	Concluding
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Group		Applied		Remarks
de SÃ; et al.( 2015)	pregnant women in Brazil	Age,education, menarche, gynecologicalage, gestational age, supplementation pre- gestational, weight gain prenatal	Anthropo metric measure, Blood test,test of umbilical cord	53.7% mother and 32.6% newborns were affected with anemia Half the newborns were anemic children of anemic mothers 79.3% of the anemic pregnant women had mild anemia and	Mild anemia is foundNutritional status is not associated.
		gestational BML.current BMI	mean, SD	20.7% had moderate	
Imdad, A et al. (2012)	Pregnant women in different countries	A low-energy drink, nutritional education only, socaloric protein-energy supplementation, high protein-energy supplement, malnourished women, adequately nourished women.	Meta analysis	Balanced protein-energy supplementation is an effective intervention to reduce the prevalence of LBW and small- for-gestational-age births, especially in undernourished women.	Supplementation is predominant of LBW and little for-gestational-age births in undernourished women.
Merrill, R. D. et al.(2012 )	Pregnant women in rural Bangladesh	Age, Parity, Education WealthIndexAnthropo metryBiochemical Status	Stratified and Adjusted Analysis	Parity was associated with anemia who have thalassemia (28% prevalent).	Sources of iron and the role of thalassemia is contributing anemia.
Ahmed, et al.(2000 )	Teenager (Female) urban Bangladesh	Age Body Mass Index (BMI) Midupper arm circumference (MUAC) Triceps skin fold	Double – blindHem oglobintes tANOVA test	Those with the lowest baseline hemoglobin had the greatest increase in hemoglobin. Compared with the placebo, iron + folic acid + vitamin A reduced	Enhances the nutritional status of iron, folate, and vitamin is essential for

		thickness Income Food expenditure Family size		anemia by 92%, iron deficiency by 90%, and vitamin A deficiency by 76%.	pregnant.
Khamba lia, et al (2009)	Pregnant women rural Bangladesh , Kaliganjsu bdistrictBa ngladesh	Age, Age of marriage, education, socio economic condition, previous miscarriage	Double blinded,Q uartile t testschi- square tests logistic regression	11% were iron deficient and anemic, and 81% were estimated to have, 500 mg of iron stores. Risk of anemia was 4 times greater among nonstudents than students compared with adults.	80% will have inadequate iron stores, and more than one-tenth will be folate deficient.
Vannest e, A. M et al (2000).	Pregnant Women Matlab , Bangladesh	maternal age, obstetric history, height, moderate and severe anemia, jaundice fever, BP, tribal oedema, diagnosis of twins, height	Pooling Sample method	This population-based cohort study was undertaken to assess whether prenatal screening can identify women at risk of severe labour or delivery complications in a rural area in Bangladesh.	Insignificant differences labor delivery with and without care
Ahmed, Fet al.(2000)	Adolescent schoolgirls in Dhaka	Body weight, height, hemoglobin, serum iron, occupancy, consumption.	one-way ANOVA followed by DMRT Pearson's	The prevalence of anaemia among the participants was 27%. Seventeen percent had depleted iron stores. Of all anaemic girls, 32% had iron deficiency anaemia (Hb<120 g=1	Iron deficiency couldn't be explain
Kamruz zaman et al.(2015 )	Non pregnant women in Bangladesh	Demographic, socio economic and nutritional factor	Multilevel logistic regression analysis.	The prevalence of anemia among non-pregnant, ever- married women was 41.3 % (urban: 37.2 % and rural:43.5 %).	The prevalence of anemia is high.
Lindstr à et al.(2011 )	Pregnant women, Matlab, Bangladesh	Age, BMI, gestational age, education	Survey, ANOVA, ANCOVA , Logistics regression	28% women have anemia	Early pregnancy developed iron deficiency.
Islam et al (2001)	Pregnant, non pregnant and lactating in Dhaka and Mymensig n	Socio economic information, BMI, blood haemoglobin, serum iron, serum ferrintin	Chi square two way (ANOVA) . Post-hoc test The Mann Whitney U-test	The prevalence of anaemia and iron deficiency (70 and 35% for sub-group L2; 66 and 32% for sub-group H2, respectively) were similar in the pregnant subjects of the two groups.	The pregnant subjects in the two groups was similar as regards iron status.
Present study	Pregnant women in Bagerhat district	Household size, occupation, source of income, age, education, gravida, knowledge about anemia, and different experiences on anemia of the pregnant women.	Descriptiv e statistics Phi, Cramer's V, coefficient of contingen cy	About 86% pregnant women have no idea about anemia and also their causes. All respondents fell weakness that indicates they have the symptom of anemia.	Awareness program should be extended.

Anemia of pregnant women is the big problem in the world. A meta-analysis with different ethnic group in the world suggest thatbalanced protein-energy supplementation is an effective intervention to reduce the prevalence of LBW and small-for-gestational-age births, especially in undernourished women(Imdad, A et al., 2012).

Bangladesh is also facing a great problem with this disease (From Table 5). Present study found that 58.6% pregnant women have noidea about anemia but they are suffering different type of anemia symptoms. Anemia is the causes and nutritional deficiencies during the pregnancy and the level of maternal anemia was 53.7% and newborns 20.7%. About 79.3% suffered mild anemia and 20.7% moderate of pregnant women.

Anemia may not be a direct cause of poor pregnancy outcomes, except in the case of maternal mortality resulting directly from severe anemia due to hypoxia and heart failure. Preventing or treating anemia, whether moderate or severe, is desirable. Because iron deficiency is a common cause of maternal anemia, iron supplementation is a common practice to reduce the incidence of maternal anemia. The nutritional status of a woman before and during pregnancy is important for a healthy pregnancy outcome. Maternal malnutrition is a key contributor to poor fetal growth, low birthweight (LBW) and short- and long-term infant morbidity and mortality.

Nutritional deficiencies are still a common problem during pregnancy causing anemia. Gestational anemia is still considered a public health problem in Brazil, because it is hazardous to both mother and fetus, and is associated with increased risk of maternal-fetal morbidity, as well as the nutritional status of child. A high frequency of mild anemia in pregnant women and in newborns is found, but the maternal nutritional status is not associated with the development of anemia in both mother and child at birth in Brasil(de S $\tilde{A}_i$  et al., 2015).

Maternal hunger is a key supporter of poor fetal development, low birth weight (LBW) and short-and long term infant morbidity and mortality(Imdad et al., 2012). Gestational anemia is as yet viewed as a general medical issue in Brazil, since it is unsafe to both mother and baby, furthermore, is related with expanded danger of maternal-fetal dreariness, just as the nourishing status of youngster.Iron inadequacy was missing in an ongoing population evaluation of rural Bangladeshi women exhibiting anemia(57%), proposing different reasons for low hemoglobin. The relative effect on anemia of thalassemia,groundwater arsenic and iron, and diet among women of reproductive age living in rural Bangladesh were significantly found (Merrill, et al., 2012). Anemia among these pre-adult students in peri-urban Bangladesh can't be clarified by iron deficiency alone, and different causes may likewise exist in this populace(Ahmed, et al., 2000).Recent evidence suggests that poor fetal growth is associated with preconception anemia and first trimester iron deficiency (Khambalia, et al. 2009). The low predictability of antenatal markers for adverse maternal outcomes has led some to reject antenatal care as an efficient strategy in the fight against maternal and parental mortality(Vanneste, et al., 2000).

The present study reflected in accord with the previous studies. Our study area is more or less poor, less educated and lack of awareness of anemia. The phi andcramer'sV imply that the relationship between heard about anemia and source of information is highly significant (p=0.000). Much population in Bagerhat district does not know what is anemia.

#### **Conclusion:-**

The study area is lower middle income area where all the pregnant women were house wife, i.e., they have no job other than house work and58.6% of them didn't hear about anemia. According to their symptoms of anemia (central)is both fatigue and dizziness 89.7%.Symptoms of anemia for skin,among the total respondents6.9% paleness, 3.4% coldness 24.1% yellowing and 65.5% have no symptom. For symptom of anemia in blood vessels, among the total respondents89.7% low blood pressure. For symptoms of anemia of heart, among the total respondents 17.2% have palpitation, 37.9% have rapid heart rate, 37.9% have palpitation & rapid heart rateandonly 6.9% have no symptom. For symptoms of anemia of respiratory, among the total respondents 51.7% have shortness of breath and but 48.3% have no shortness of breath. Forsymptom of anemia of muscular, all the respondents were felling weakness. For symptomof anemia of intestinal, among the total respondents51.7% have change of stool color. For symptom of anemia of spleen, among the total respondents6.9% have enlargement of spleen.

For knowledge causes of anemia, among the total respondents 13.8% have iron deficiency and 86.2% don't knowabout causes of anemia.

The phi and cramer's V imply that the relationship between heard about anemia and source of information is highly significant (p=0.000). Among the awarded women in Bagerhat district, probability of getting awareness from

service provider is 0.917 and that from relatives is 0.083. Among the population, the contribution the service provider is 0.379. Probability of unknown is 0.586 indicating much population in Bagerhat district does not know what is anemia. Probability of getting information of anemia from mother is zero indicating very recently service providers have started their program in Bagerhat district. Therefore, this program should be continued until the probability of getting information from mother will be closed to 1.

#### Acknowledgements:-

The authors cordial thank to the Department of Statistics, University of for giving the opportunity to present this research in the International conference titled Data science and SDGs: Challenges, Opportunities and Realities. Thanks and regards to those pregnant women who were kind enough to give the information and cooperation during data collection. The authors gratefully acknowledge to service providers for their cordial cooperation.

#### **References:-**

- Aboud, S. A. E. H., El Sayed, H. A. E., & Ibrahim, H. A.-F.(2019) Knowledge, Attitude and Practice Regarding Prevention of Iron Deficiency Anemia among Pregnant Women in TabukRegion.International Journal of Pharmaceutical Research & Allied Sciences, 8(2).87-97
- 2. Ahmed, F., Khan, M. R., Islam, M., Kabir, I., & Fuchs, G. J. (2000). Anaemia and iron deficiency among adolescent schoolgirls in peri-urban Bangladesh. European journal of clinical nutrition, 54(9), 678-683
- 3. Birhanu, Z., Chapleau, G. M., Ortolano, S. E., Mamo, G., Martin, S. L., &Dickin, K. L. (2016)Ethiopian women's perspectives on antenatal care and iron folic acid supplementation: Insights for translating global antenatal calcium guidelines into practice. Maternal & child nutrition, 14, e12424.
- 4. Chowdhury, H. A., Ahmed, K. R., Jebunessa, F., Akter, J., Hossain, S., &Shahjahan, M.(2015) Factors associated with maternal anaemia among pregnant women in Dhaka city. BMC women's health, 15(1), 77.
- 5. de SÃ_i, S. A., Willner, E., Pereira, T. A. D., de Souza, V. R., Boaventura, G. T., & de Azeredo, V. B.(2015) Anemia in pregnancy: impact on weight and in the development of anemia in newborn. Nutricionhospitalaria, 32(5), 2071-2079.
- 6. Greenacre, M (2007) CorrespondenceAnalysisinPractice. Taylor & Francis Group, New York.
- 7. Imdad, A., &Bhutta, Z. A. (2012) Maternal nutrition and birth outcomes: Effect of balanced protein energy supplementation. Paediatric and Perinatal Epidemiology, 26, 178-190.
- 8. Islam, M. Z., Lamberg-Allardt, C., Bhuyan, M. A. H., &Salamatullah, Q. (2001). Iron status of premenopausal women in two regions of Bangladesh: prevalence of deficiency in high and low socio-economic groups. European journal of clinical nutrition, 55(7), 598-604
- Islam, M. T., Hossain, M. M., Islam, M. A., &Haque, Y. A. (2005). Improvement of coverage and utilization of EmOC services in southwestern Bangladesh. International Journal of Gynecology & Obstetrics, 91(3), 298-305.
- 10. Izenma A.J. (2008) Modern Multivariate Techniques. Springer, New York. DOI: 10.1007/978-0-387-78189-1.
- 11. Kamruzzaman, M., Rabbani, M. G., Saw, A., Sayem, M. A., &Hossain, M. G. (Hossain) Differentials in the prevalence of anemia among non-pregnant, ever-married women in Bangladesh: multilevel logistic regression analysis of data from the 2011 Bangladesh Demographic and Health Survey. BMC women's health, 15(1), 54.
- LindstrĶm, E., Hossain, M. B., LĶnnerdal, B. O., Raqib, R., El Arifeen, S., &EkstrÄ–M, E. C.(2011) Prevalence of anemia and micronutrient deficiencies in early pregnancy in rural Bangladesh, the MINIMattrial.Actaobstetricia et gynecologicaScandinavica, 90(1), 47-56.
- 13. McNulty, H., Cuskelly, G. J., & Ward, M. (2000). Response of red blood cell folate to intervention: implications for folate recommendations for the prevention of neural tube defects. The American journal of clinical nutrition, 71(5), 1308S-1311S.
- 14. Merrill, R. D., Shamim, A. A., Ali, H., Labrique, A. B., Schulze, K., Christian, P. (2012) High prevalence of anemia with lack of iron deficiency among women in rural Bangladesh: a role for thalassemia and iron in groundwater. Asia Pacific journal of clinical nutrition, 21(3), 416.
- 15. Pavord, S., Myers, B., Robinson, S., Allard, S., Strong, J., Oppenheimer, C., (2012) UK guidelines on the management of iron deficiency in pregnancy.British journal of haematology, 156(5), 588-600.
- Rahman, M. H., Islam, M. M., Karim, M. R., Ud-Daula, A., Hossain, M. I., Sabir, M. (2013) A Study on Nutritional Status of Pregnant Woman in South-West Region of Bangladesh.Hemoglobin (Hb), 29(12), 3.00.
- 17. Toteja, G. S., Singh, P., Dhillon, B. S., Saxena, B. N., Ahmed, F. U., Singh, R. P. (2006) Prevalence of anemia among pregnant women and adolescent girls in 16 districts of India.Food and Nutrition Bulletin, 27(4), 311-315.
- 18. Vanneste, A. M., Ronsmans, C., Chakraborty, J., & De Francisco, A. (2000). Prenatal screening in rural Bangladesh: from prediction to care. Health policy and planning, 15(1), 1-10.
- 19. World HealthOrganization (2011) The global prevalence of anaemia in 2011.
- 20. Yule GU (1919) An Introduction to the Theory of Statistics. Charles Griffin and Company Ltd. London.