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The variation and non-control of the overflow of the Mono River 

adversely affects the performance of the Nangbetohydropower plant to 

the point thatitcan no longermeet the increasinglyincreaseddemand for 

electricity. This studypresents the development of an operational model 

for forecastingdaily river flows for the plant's water retention. The 

overflow of the Mono River at the upstreamhydroelectric dam from 

1991 to 2019 wasanalyzed and modeled by the 

deterministicprocesswith R software in order to makepredictions. First, 

the flow serieswasanalyzed by the ARIMA model (18, 1, 2) then by a 

multiplicative model afterremoving the seasonal trends fromtheseseries 

by the movingaveragemethod. The calculatederror of the results of said 

model revealsthat the deterministic model integrates the input 

generationprocesseswith an error of the order of  𝑒𝑟 = 28.26% . 
Finally, an annual flow forecasting program has been developed as a 

planning tool for the operation of the dam, in order to meet production 

needs and to plan water releases. 

 
Copy Right, IJAR, 2021,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Today, the evolution of technologyallows the development of manyforecastingtools in severalfieldssuch as 

hydrology [1], meteorology [2], economics [4], water treatment [5], etc. Hydrologicalforecastingmodels are not 

onlyvery important for safety, especially in watershedswithhydroelectric installations with high water 

retentionpotential, but alsoallow an adequateand rapidresponse in crisis [6-7]. 

 

The energyfrom the hydroelectric dam, isvery important for the economicdevelopment of modern societies [8]. The 

countries of Benin and Togo chose this option and in 1987 built the Nangbetohydroelectric dam on the Mono river 

through the ElectricityCommunity of Benin (ECB) in order to induce a lasting economic impact on the energysupply 

[9]. However, the construction of large hydroelectricdams on watercourses leads to changes in the hydrological and 

sedimentologicalregimethatcan lead to changes in the balance of the environment and have negative impacts on the 

life of the populations and the local economy [10- 11]. The example of the Aswan dam in 

Egyptisparticularlystriking in this regard [12]. Thus, the typical case of the Nangbeto dam, erected on the Mono 
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river since 1987, drastically modifies the natural hydro-sedimentaryregime in the valley and at the mouth [13]. The 

Mono River drains a well-defined basin of about 30,000 𝑘𝑚2and emptiesinto the Atlantic Oceanthroughavast 

system of lagoons [14]. Eachyear, unexpectedfloods, oftencaused by dramatic water releases, are observed in local 

communitieswithlimited budgets alreadyaffected by cyclicalfloods [15-16]. The degradation and lack of climate 

control have favored in severalregions of the world deadlyfloodsfollowingdamsthat have collapsed and, in some 

cases, have caused the reduction of the integrity of their structure. 

 

To date, manyresearchers have alreadyresearched the dam deformation data predictionalgorithm, and 

manyconventional and efficient predictionalgorithms have been developed. The mostwidelyused model is the 

AutoregressiveIntegratedMovingAverage (ARIMA) model. The ARIMA algorithmis an algorithmproposed by Box 

and otherauthors in the last century [1]. The existingliteraturesystematicallydescribes the ARIMA model, the AR 

model and the MA model, and establishesthat the ARIMA model canwellpredict trends in time series. So itisused in 

variousfields to predict time series data and getinterestingresults. For example, G. Xu et al used the ARIMA model 

to predict an original time series of dam deformationwhile Wang Wei and JiancangXieused the ARIMA model to 

predict monitoring data from the Lijia-xiareservoir [34]. Likewise, GenmiaoYe and Mengqian Huang applied the 

ARIMA model to a hydropower plant. The model isshown to have clearadvantages for fitting and forecasting dam 

monitoring data. However, because the model cannotaccuratelyreflectnonlinearcharacteristicsbetween variables, as 

the predictionperiodincreases, the accuracy of the predictiongraduallydecreases. A preciseestimate of the available 

water and a good forecast of the dailyintake are therefore essential to efficientlyensure the production of 

electricalenergy. It willalso help to minimize water loss and damage fromdischarges. It istherefore important to 

establish a model describing the supplyflows of the dam and a program allowing the forecast. 

 

Description Of The Study Area 

The Nangbeto Dam isbuilt in the Mono watershed, located in the Gulf of Guinearegion. The Mono River rises in the 

northwest of Benin in the Koura Mountains of Bassilaregion. About 560 kilometers long, it serves as a natural 

border between Togo and Benin over its last 100 kilometers. Itswatershedcovers an area of27,870 𝑘𝑚2between 

latitudes6°16′and 9°20′North and longitudes0°42′and 2°45′East [20], sothatitisinscribed in a rectangle 

orientedNorth-South, with a length of 340 𝑘𝑚 and a width of 118 𝑘𝑚. The slightly uneven relief consists of coastal 

plains, plateaus, lagoons, and shallows. The vegetationis made up of dense semi-deciduousforests, riparianforests, 

galleryforests, savannahs, fallows, fields of crops, marshymeadows, and mangroves [9, 15, 21, 22].Severalethnic 

groups made up mainly of farmers and fishermen live in the watershed[23]. The population density varies 

between70 and 300 inhabitants /𝑘𝑚2.         

 

Materials and Methods:- 

Data Collection  

The monthly hydrological data cover a period of 25 years (Table 1). In total, three hydrometric stations were taken 

into account (Figure 1). Note that the Nangbeto flow measurement station was unique before the construction of the 

dam (1955-1987). Since then, measurements have been made upstream and downstream of the dam (1988-1999). 

 

Table 1:- Summary of data and characteristics of stations. 

Types of data Sources Area or Station Period Characteristics 

Latitude Longitude Altitude (m) 

 

Water flows 

CEB Upstream Nangbéto  

1991-2019 

7°25’N 1°26’E 150 

CEB Nangbéto downstream 7°25’N 1°26’E 150 

 

This studywascarried out using the R software (non-commercial version of S-plus). The data used in thisstudy are 

the dailyrawnaturalflowsmeasured in 𝑚3. 𝑠−1 over the period from 1991 to 2019, which show that the trend of this 

series varies very little and appearsmainlyconsisted of seasonal variations. The curvesrepresent the annualdaily 

contributions. Yearlyflows are from 1 July to 30 June of the followingyear and the contribution to Nangbeto Station 

has a cyclicevolution of 12 months. Figure 1 shows the evolution of dailynatural flow rates for the periodfrom 1991 

to 2019. Each cycle is made up of a succession of 2 phases: a flood phase thatextendsfrom July to October and a low 

water phase thatrunsfromNovember to June of the followingyear. The months of June and November are transition 

monthsbetweenthesetwo phases and therefore the yearisconsidered for the periodfrom July to June of the 

followingyear… 
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Figure 1:- Evolution of dailynatural flow rates for the periodfrom 1991 to 2019. 

 

Methodology:- 
The multiplicative deterministic model [40] wasused for the modeling and forecasting of flows.  

 

Modelling and forecasting of daily flow rates by ARIMA process 

The approachproposed by Box and Jenkins (1976)[25]isapplied to the flow rates series, a 28-year time series in 

which the frequency of observations isdaily, and the periodicitywasannual. This periodwas 365 days. 

 

Elimination of seasonal variations of the series by standardization 

This standardizationisgiven by the following formula: 

 

𝒁𝝂,𝒕 =  𝑿𝝂,𝒕 − 𝝁𝒕 𝝈𝒕  

 

where𝜈 = 1, 2,⋯ , 26 ; 𝑡 = 1, 2,⋯ , 365 ; 𝜈is the number of a year;𝑡 is the number of a day in a year; 𝑋𝜈 ,𝑡  is the flow 

rate of the day t in the year number v ; and  𝜇𝑡 is the empiricalaverage of the flow rates of the daynumber t over the 

26 years of observations, thatis:  

 

𝝁𝒕 =
𝟏

𝟐𝟔
 𝑿𝝂,𝒕

𝟐𝟔

𝜈=1

 

 

𝜎𝑡
2is the variance of the flow rates of the day number𝑡 over the 26 years of observations, that is: 

 

𝝈𝒕
𝟐 =  

𝟏

𝟐𝟔
 ( 𝑿𝝂,𝒕 − 𝝁𝒕)²

𝟐𝟔

𝒗=𝟏

 

 

 

Modeling and forecasting of daily flow rates by the multiplicative model 

The multiplicative model [24] implementedconsisted in characterizing the flowsfrom a seasonaladjustment of the 

series by the method of centeredmovingaverages. This descriptive statistical model involves the calculation of 

probabilities and supposes that the observation of the seriesat time t is a function of time t and of a variable 

𝜀𝑡centered in error on the model, representing the differencebetween the reality and the proposed model (seetable 2 

(1) 

(2) 

(3) 

(3) 
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of the calculation of adjustmenterrors). The variable 𝑋𝑡 iswritten in terms of error as the product of the trend by a 

component of the seasonality 

 

𝑿𝒕 = 𝑪𝒕𝑺𝒕𝝐𝒕𝒘𝒊𝒕𝒉𝒕 = 𝟏,𝟐,… ,𝒏 

 

 

Where𝑋𝑡 is the series of flow rates studied, C𝑡 is the trend component, 𝑆𝑡 is the seasonal component and 𝜀𝑡  is the 

residual or random component. 

 

Table 2:- Adjustmenterrors. 

ARIMA model 

(18,1,2) 

Number of days er (%) em (m
3
/s) Erm 

Adjustment 9490 24.74 56.87 0.27 

 

The trend of the series of flow rates varies verylittlebecauseitisalmostformed of seasonal variations. Thus, in order to 

expunge the series of itsperiodic intra-annual variations or in otherwords, to seasonallyadjust the series, we use as a 

mathematical technique the method of centeredmovingaverageswhich has the advantage of making no 

priorassumptions on the form of the tendency to estimate. The order of the movingaveragethatwe use to 

seasonallyadjust the seriesis 365. Indeed, the seasonality or period of thisseriesis 365 days. The trend wasestimated 

by regression of the seasonallyadjustedseries as a function of time. 

 

𝐗𝐭 =  𝛂+ 𝛃𝐭 ×   𝐒𝐢

𝟑𝟔𝟓

𝐢=𝟏

𝛄𝐭
𝐢 × 𝛆𝐭 ;𝐰𝐡𝐞𝐫𝐞𝛄𝐭

𝐢 =   
𝟏 , 𝐢𝐟𝐭𝐜𝐨𝐫𝐫𝐞𝐬𝐩𝐨𝐧𝐝𝐬𝐭𝐨𝐝𝐚𝐲𝒊

𝟎,   𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
  

The process𝜀𝑡 is then modeled by an ARIMA model  𝑝,𝑑,𝑎𝑛𝑑𝑞 . 
 

Results and Discussions:- 

Modeling and forecasting of dailyflows by multiplicative process 

The daily flow ismodeledfromaseasonalseparation of the data seriesusing the centeredmovingaveragemethod [27]. 

 

Identification of the composition scheme 

The regression line of the standard deviations as a function of the mean of the flows for eachyearstudiedisprovided 

by the followingequation: 

 

𝝈 = 𝟏.𝟖𝟑𝟑𝒕 − 𝟏𝟔.𝟖𝟎𝟏𝟔 

 

 

Where the coefficient 1.833 isverysignificant and itscriticalprobabilityis1,92 × 10−14 . This suggests the efficient 

adaptation of a multiplicative composition scheme for these daily flow rates. The generalform of the equation for 

this type of model is: 

 

𝒚𝒕 =  𝑪𝒕𝑺𝒕𝜺𝒕 
 

Where𝑦𝑡  is the series of flow rates to be studied, 𝐶𝑡  is the trend component, 𝑆𝑡  is the seasonal component and 𝜀𝑡  is 

the residual or random component. 

 

Seasonalseparation of the series 

The trend of the series of flow rates varies verylittlebecauseitisalmostformed of seasonal variations. Thus, in order to 

purge thisseries of itsperiodic intra-annual variations, or in otherwords, to seasonallyadjustthisseries, the method of 

centeredmovingaveragesisused. This method has the advantage of making no priorassumptions on the form of the 

tendency to estimate. The order of the movingaverageused to seasonally adjust tthis data seriesis 365. Indeed, the 

seasonality or period of thisseriesis 365 days. 

 

 

 

(4) 

(5) 

(6) 

(7) 
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Calculation of the seasonallyadjustedseries 

Figure 2 presents the seasonallyadjustedseries and an estimate of the long-termoverall trend of the series of flow 

rates. 

 
Figure 2:- Seasonallyadjustedseries. 

 

The seasonallyadjustedserieswhichis an estimate of the overall long-term trend of the dischargeseries (Figure 2) 

shows thatitisalmost constant. This trend wasestimated by regression of the seasonallyadjustedseries as a function of 

time. The equation for thisestimated trend is: 

 

𝑪𝒕  =  𝟎.𝟎𝟎𝟔𝟔𝟕𝒕 + 𝟏𝟎𝟔 

 

Where the coefficients 0.00667 and 106 have critical probabilities of 0.095 and 2 × 10−16  respectively. Thus, the 

slope of this line is not significant and intercept is very highly significant at the threshold of5%. The general 

equation of this model is: 

 

𝒚𝒕 =  𝜶+ 𝜷𝒕 ×   𝑺𝒊

𝟑𝟔𝟓

𝒊=𝟏

𝜸𝒕
𝒊 × 𝜺𝒕 ;𝐰𝐡𝐞𝐫𝐞𝜸𝒕

𝒊 =   
𝟏 , 𝒊𝒇𝒕𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒔𝒕𝒐𝒅𝒂𝒚𝒊

𝟎, 𝒐𝒕𝒉𝐞𝐫𝐰𝐢𝐬𝐞
  

 

Estimation and study of residuals 

Based on the precedingresults, thisestimated model has the followingform: 

𝒚 𝒕 = 𝟏𝟎𝟔 × ( 𝑺𝒊

𝟑𝟔𝟓

𝒊=𝟏

𝜸𝒕
𝒊) × 𝜺𝒕 

Where𝑆𝑖are the seasonal coefficients. 

 

To check whether the residualsresultingfrom the adjustment of flows by thisestimated model form a white noise the 

process𝜀𝑡is studied throughitsestimated values. 

(8) 

(9) 

(10) 
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Figure 3:- Graph of standardizedresiduals. 

 

Figure 3 shows the graph of the estimatedresiduals𝜀 𝑡 =  
𝑦𝑡

𝑦 𝑡
. The autocorrelation graph (Figures 4a and 4b) shows that 

the process 𝜀 𝑡 is not stationary (slow decay of autocorrelations). 𝜀 𝑡 is not white noise. 

 
Figure 4a:- ACF of standardizedresiduals. 
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Figure 4b:- ACF of standardized and differentiatedresiduals. 

 

By observing the correlogram and the partial correlogram of the process: 

 

𝒘𝒕 = (𝟏 − 𝑩)𝜺𝒕 
 

The process 𝑤𝑡  appears stationary (figure 6). Then 𝜀𝑡 is modelled by an ARIMA model (𝑝, 1,𝑞). The observation of 

auto-correlograms (Figure 14) enables to increase the possible pairs (𝑝,𝑞) by the pair (22, 4). After multiple 

modeling with different values of the couple (𝑝, 𝑞)satisfying this condition, we maintained the pair (20, 3) as the 

one for which the model’s AIC is minimal. The ARIMA model (20, 1, 3) verified by the 𝜀𝑡  the process has the 

general equation: 

 

  𝟏− 𝒂𝒓𝒊𝑩
𝒊  𝟏 − 𝑩 𝜺𝒕 = (𝟏+ 𝒎𝒂𝟏

𝟐𝟎

𝒊=𝟏

𝑩+  𝒎𝒂𝟐𝑩² +  𝒎𝒂𝟑𝑩
𝟑) 𝜼𝒕 

 

Where𝜂𝑡 is a white noise of variance, the estimatedparameters of this model as well as the corresponding confidence 

intervalsrecorded in Table 3 show that the coefficients𝑎𝑟20and 𝑚𝑎3are significant. By verifying the hypothesis of 

the white noise of the residues𝜂𝑡of this model, we observe that these residuals form indeed a white noise (Figure 

14). 

 

Table 3:- Coefficients of the multiplicative model. 

ARIMA 

model 

(18,1,3) 

2,5% coef 97,5% ARIMA 

model 

(18,1,3) 

2,5% coef 97,5% ARIMA 

model  

(18,1,3) 

2,5% 

ar1 -0.0521   0.1421 0.3364 0.0991 ar12 0.0163   0.0094 0.0352 0.0131 

ar2 0.5645   0.7656 0.9667 0.1026 ar13 0.0171   0.0087 0.0345 0.0132 

ar3 -0.0544   0.0142 0.0259 0.0205 ar14 0.0423   0.0165 0.0093 0.0132 

ar4 -0.0614   0.0263 0.0087 0.0179 ar15 0.0293   0.0035 0.0222 0.0131 

ar5 -0.0394   0.0098 0.0198 0.0151 ar16 0.0248   0.0008 0.0263 0.0130 

ar6 -0.0440   0.0165 0.0111 0.0141 ar17 0.0276   -0.002 0.0236 0.013 

ar7 -0.0251   0.0014 0.0279 0.0135 ar18 0.0017   0.0272 0.0528 0.0130 

(11) 

(12) 
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ar8 -0.0054   0.0206 0.0466 0.0133 ar19 0.0401   0.0149 0.0104 0.0129 

ar9 0.0077   0.0339 0.0602 0.0134 ar20 0.0153   0.0092 0.0337 0.0125 

ar10 -0.0279   0.0009 0.0261 0.0138 am1 1.1646 0.9706 -0.7766 0.0990 

ar11 -0.0505   0.0237 0.0031 0.0137 am2 0.9696  0.6473 0.3250 0.1644 

 
Figure 6:- Analysis of residuals of the ARIMA model(20, 1, 3). 

 

Summary of thismodeling 

In sum, the equation of the model verified by the dailynatural flow rates 𝑦𝑡  is: 

 

𝒚𝒕 = (𝜶+ 𝜷𝒕) × ( 𝜸𝒊

𝟑𝟔𝟓

𝒊=𝟏

𝑺𝒕
𝒊) × 𝜺𝒕 

 

Where𝜀𝑡 is a process that follows the ARIMA model (20, 1, 3) whose parameters are recorded in Table 2. This 

equation is used as the following expression to estimate the values of the series of these flow rates: 

 

𝒚 𝒕 = 𝜶 × ( 𝑺 𝒊

𝟑𝟔𝟓

𝒊=𝟏

𝜸𝒕
𝒊) × 𝜺 𝒕 

 

where the 𝜀 𝑡are the process values estimated by the ARIMA model (20, 1, 3). (Figure 7) shows the adjustment of 

this final model with the series of actual flow rates. 

(13) 

(14) 
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Figure 7:- Evolution of actual flow rates and adjustedflows rates by the multiplicative model. 

 

Table 4presents the quadraticerrorsrelated to thisadjustment. 

Table 4:- Quadraticerrorsrelated to thisadjustment. 

 Number of days Er(%) em(m
3
/s) ermoy 

Adjustment 9490 28.26 63.40 0.34 

 

The following formula provides the forecast of dailynatural flow rates for a fixedyeark, denoted by 𝑦 𝑡 : 
 

𝒚 𝒕 = 𝜶 × ( 𝑺 𝒊

𝟑𝟔𝟓

𝒊=𝟏

𝜸𝒕
𝒊) × 𝜺 𝒕 

 

Post-evaluation of the reliability of the model 

Table 5depicts the errors of the adjustments and post predictions of the multiplicative model.  

Table 5:- Errors of the adjustments and post predictions of the multiplicative model. 

Year Adjustment Prediction 

Number 

of days 

er (%) em (m3/s) Emoy 

(m3/s) 

Number 

of days 

er (%) em (m3/s) emoy 

(m3/s) 

2016 

2017 

8395  28.09  63.42  0.62 365  39.02  68.31 24.14 

2017 

2018 

8760  28.33  63.40  0.60 365  36.87  96.45 2.9 

2018 

2019 

9125  27.91  63.93  0.57 365  23.16  49.62 -1.27 

2019 

2020 

9490  27.86  62.69  0.553 365  35.98  74.35 -3.40 

Each graph in (figure 8) presents the curve of the actual flow rates on whichissuperimposed the one predicted by the 

multiplicative model. 

 

 

 

 

 

 

(15) 
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2016-2017                     2017-2018 

 
 

 2018-2019                          2019-2020 

 
Figure 8:- Curve of actual flow rates predicted flow rates by the multiplicative model. 

 

Conclusion:- 

The determination of the flow prediction model at the Nangbeto station iscarried out from the series of 

flowsrecordedfrom 1991 to 2019 (28 years of monitoring data). The deterministic model of the multiplicative type 

issuitable for the prediction of time series, afteraseasonalseparation of the data by the method of centeredmean. At 

the end of thisresearch, the prediction model obtainedisconsideredsatisfactory. However, an analysis of the quadratic 

and relative errors shows thatthey are somewhat high. A program wasthendrawn up on the basis of the ARIMA 

model and itwillallow water retention managers to makeannualforecasts. Theseforecastswillbeused for rational 

management of water retentionthroughbetter planning of discharges. 
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