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Introduction:-

Formulation of Problem:-
For determining a flow of liquid in confocal Paraboloidal ducts let us consider the flow in confocal Paraboloidal

coordinates (u, v, w). If q,, g, and g, be the components of( at any point (u, v, w) in confocal Paraboloidal
coordinates, then in order to make equation of Pressure distribution integrable we may consider the following cases.
Case: I- Let ¢, = 0, In this case equation of pressure distribution will be satisfied by a solution.

q,= Vww L (1)
»\/( w)(v-u)

L BV W)
\/( —u)(w-v)

Where, U(u), U,(u) are integrable functions of U,V (V)and W(W)the integrable functions of v and w
respectively, and A,B the constants.

For this fluid velocity, it can be shown that B can be represented by the gradient of a scalar quantity € given by
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_Aww] (LU ), B W] [l J(u)du | B[V, (u)] [AAUAULY

d (w=v) (v—u) - (w=v) (w—u) (w—u) (w=v)
| 2ABU (u)U, (u)W'(w),J(a* - w)(b* - w) J v (v)dv L ABU (), (u)V (v)(a* ~v)(b*-v)
(w-u) (W —v)\/(az—v)(bz—v) 2(v-u)
wwdw  AO@] www wdw
I(v—w)\/(az—w)(bz—w) (V-u) '[ (V-w) ”

Now, onwards we will represent U (u)),U, (u),V (v)by U,U,,V,W respectively and U’, U’1, V*, W’ represent

their differentials. By choosing different suitable sets of values of U, Uy, V and W we may get a number of self-
superposable fluid velocities. One of such Velocities can be obtained by taking

U,=U :\/(a2 —u)(b2 —u)
V= \/(az ~v)(b*-v)

......... 3)
W = \j(az —W)(b2 —W)
B=2A
The fluid velocity will become
g, =0
: =AJ<32“><b2“><a2W><b2W> ........ -
' (v—w)(v-u)

o [EI
G =2 \/ w—u)(w-v)

q- Az[(a2 —(\\'IVV)_(*\JIZ)—W) {(az erbz _leog(v_u)_uH
aav)(? ) {(aubz —leog (W_u)_u}

(w—v) 2
(a®—u)(b® —u)(w* - 4v? +4uv—uw)]

(w-u)(v-u)

If U, Uy, V, W are constants then

+

(8
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q,=0

qv=4(v_w)(v_u) ....... )

and @ = constant (6)

Case II:-(i) When (], = 0 In this case the self-superposable flows may be

— Ailel
i (u=v)(u—w)
quo ........ @)
_ BUY
SN o=y
| 2ABVVW \/(az —w)(b?-w) Udu
A 0= (w=v) J.(W—u)\/(az—u)(bz—u)
BV (U, AW AL B2U? [RARLY
) () () () o)) (o)
L AVE WW Y dw ABVVU, W,dw
(u—v)I (u-w)  2(u-v) \/( )b )'[(u—w)\/(az—w)(bz—w) ©
(i)
_, [(@=v)(b*—v)(a” —w)(b” ~w)
q“_Al\/ (u=v)(u-w)
quo ........ 9)
4= 2A J(aZ—U)((bVZV—E;EjVZ—VV))(bZ—V)
and
o 4(a2—u)(b2—u) a2+b2—w 0a (W) v +(a2—v)(bz—u)(4u2—wz—4uv—vw)
‘“{ R (e LR W—0)(a—Y)
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L& _(‘\’,Vv)_(zz)_w) {az szbz —ujlog(u—v)—vH ........ (10)

CZ

(U=v)(u—w)

(iii)
qu =

q,=0
DZ

= \j(w—u)(w—v)

and @ = Constant

........ (12)
Case Ill: When g, = 0 Some self-superposable flow may be
— ANV,
)W)
= BYW, L (13)
v wv-u)
g, =0
and ) BAW,? _[UBU Sdu ABV; 'szs\/(az _V)(bz _V) U,du
(v—w)* (v-u) (v-w) (v—u)\j(az—u)(bz—u)
ABY '3W3W2\j(a2 ~u)(b?-u) V,dv
(u-w) (u—v)\/(az—v)(bz—v)
AW VIV dv BUs fWW ' dw AV? (WW', dw 4
A e e e crmy "
(ii)
o (807 —v)(a* —w)(b® - w)
%= AQ\/ (u=v)(u-w)
@) (e*-u) (@ -w)(b* -w) N
q, = J (v—w)(v—u) ....... (15)
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B L NS LS W W

(W (v-0)
_(azizﬂﬁ;—V){w_[azzbz_ujmg(w_io}} ....... (16)

(iii)
C
g, = :
(u=v)(u-w)
q =——Ds 1)
” \/(v—u)(v—w) .......
q, =0
and é¢=Constant (18)
Case IV: When (@, =@, = 0a possible solution of equation of pressure distribution is given by
q, =0
=0 (19)
q, = A3U4V4
! \j(w—u)(w—v)
CASE V: When ¢, =0,q,, = Othe self-superposable flow is given by
q, = AV.W,
) (u=v)(u—w)
qv =0 < (20)
G, =0
CASE VI: When @, =0,0, =0 the flow is
g, =0
q, = AUMN, L 21
(v—u)(v—w)
G, =0

In all the above cases U,,V,,W, (n =1,2,3,4,....) are integrable functions of U, V and W respectively and

s Mno

A.B,.C,.D, (n =12734,.... )are constants which may be determined by boundary conditions.
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Superposable Fluid Motion
It has already been shown that the hydrodynamlc flows given by equations (1) and (20) are self —superposable It

can also easily be shown that if, ql and q2 be the two flows given by equations (1) and (20), then p for q1 * q2

can also be represented by the gradient of scalar quantities. Thus q1 and q2 will be mutually superposable and a
flow

is possible. The mass flow can be determined by mutually superposing the flows (7) and (21), (12) and (19).
Pressure Distribution:-

It is interesting to note that & is nothing but Bernoulli function given by
2

0= € +h+ P (23)
29 g
Where (, g, h,and p denote velocity, acceleration due to gravity height above some horizontal plane of reference
and the pressure head. It is a well known fact that for an incompressible fluid the pressure head P is given by

p= £ + constant

Po

where p is the pressure distribution.

Also if the motion of the fluid be steady and slow then the value of h can be taken without much loss of generality as
u for the flows (1), (4) and (7); v for the flows(9), (11) and (13) and w for (15), (17) and (19).Thus for the flow (7)
the pressure distribution is

1
2(u—v)(v—w)(w-

P=K, + - [ Ky (w=u)+K; (u=v)+Ku(u=-v)(v—w)(w-u)]....24)

Similarly for the flow (19) taking C; = D, we have
1
2(u—v)(v-w)(w-u)

p=K,+ [ Ks (U=v)+ K, (Ww=v)+Kw(u=-v)(v—w)(w=u)]......(25)

Where K (n=1,2,3,4,5,6,7,8......) are constants.

Similarly the pressure distribution for other flows can be determined.
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Vorticity of the Flow:-
It was shown by Ballah [3] that for a self-superposable flow, vorticity is constant along its stream lines. If T is a unit

tangent along a stream line.
Then Txq=0 (26)

By equations (16) and (25) it can be readily shown that

- (& -w)(t" ~w) (2 -u) (b -u) .
A a(@—w)(o—w)+ (2 —u)(o —u) " 4(a —w)( —w)+ (@ ) (o’ —u] | "

Hence, the vorticity of the flow (17) is constant along the curve represented by equation (27). Similarly, the curves
of constant velocity can also be found for other flows.

Irrotationality:-
Vorticity & for the flow (15) can be calculated as

B o NN e[RRI
E=4A 0=y * w-u) (u_v)(v_w)( b® —2u )i,

I GG 2
(u—v) (v—w)(w-u)( b*-2u)i, (28)

It is clear from equation (28) that flow (15) is not irrotational. For the flow (7) ;5 =0

Hence, the flow (7) isirrotational throughout.Similar conclusions can be drawn for the other flows discussed earlier.
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