
ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

426

Journal Homepage: - www.journalijar.com

Article DOI: 10.21474/IJAR01/14058

DOI URL: http://dx.doi.org/10.21474/IJAR01/14058

RESEARCH ARTICLE

A PROACTIVE APPROACH FOR DATABASE PERFORMANCE TUNING

Rajan B.

Performance Engineering Service Line, HCL Technologies.

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 10 November 2021
Final Accepted: 14 December 2021

Published: January 2022

Keyword:-
Database Performance Tuning Query

Tuning

The Oracle database is a trendsetter and highly tunable software

product. It’s very flexible to allow you to make small adjustments that

affect the database performance. By tuning you can tailor its

performance to best meet your needs. Performance tuning cannot be

performed best after a system is put into production. To achieve

performance targets of response time, and throughput, one must

proactively analyze database design, implementation and tune ahead in

the life cycle.
Copy Right, IJAR, 2022,. All rights reserved.

……………………………………………………………………………………………………....

Introduction:-
Oracle database tuning is a wide area and one who provides proactive solution would be successful. Performance

tuning is a large and complex area. There is a common question raised by a DBA that ―Where to start and what to

do for tuning the performance?‖ Here we go a proactive method on improving the performance of your database.

Please do not wait until someone reports a problem about slow or poor performance of an application. A most

common mistake made is, to spend effort for increasing the application performance in limited area like SQL tuning.

A DBA must be aware of other tuning areas, which needs attention and a defined tuning methodology, covering

each area, other than SQL tuning. SQL tuning can be a very successful method for increasing performance, but it

must be used as a part of a larger and more effective performance tuning methodology.

Here we are focusing on three major areas to improve the Oracle performance by a proactive approach.

1. Parameter Initialization

2. Space Management

3. SQL Tuning

I. Parameter Initialization

Across technologies, as configuration changes is critical factor for influencing better performance, Oracle database

instance needs initialization parameter configuration change in the init file. This configuration changes, influences

the behavior of running database which includes the performance as well.

The simplest way to manage instance memory is to allow the Oracle database instance to automatically manage and

tune it for you. To do that, target memory size initialization parameter (MEMORY_TARGET) and optionally a

maximum memory size initialization parameter (MEMORY_MAX_TARGET) needs to be configured. Oracle

instance automatically tunes to the target memory size, redistributing memory as needed between the SGA and

PGA. Since, the target memory initialization parameter is dynamic, it can be changed anytime without restarting the

database. The maximum memory size serves as an upper limit so that it does allow setting the target memory size,

above maximum memory size. As this configuration change automatically gives enough memory for Oracle instance

to operate, it does not require explicit manual change of increasing the total instance memory size. Certain SGA

Corresponding Author:- Rajan B.

Address:- Performance Engineering Service Line, HCL Technologies.

http://www.journalijar.com/

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

427

components, cannot easily shrink or must remain at a minimum size, the database instance prevents from setting up

the target memory size too low.

Find below the three steps to calculate the minimum value for MEMORY_TARGET as follows:

(i) Determine the current sizes of SGA_TARGET and PGA_AGGREGATE_TARGET by entering the

following SQL*Plus command:
 SHOW PARAMETER TARGET

SQL plus displays the values of all initialization parameters with the string TARGET in the parameter name
NAME TYPE VALUE

------------------------------ ----------- ----

archive_lag_target integer 0

db_flashback_retention_target integer 1440

fast_start_io_target integer 0

fast_start_mttr_target integer 0

memory_max_target big integer 0

memory_target big integer 0

pga_aggregate_target big integer 90M

sga_target big integer 272M

(ii) Run the following query to determine the maximum instance PGA allocated since the database was started:

select value from v$pgastat where name='maximum PGA allocated';

value in MB

120

(iii) Compute the maximum value between the query result from step 2b and PGA_AGGREGATE_TARGET.

Add SGA_TARGET to this value.
memory_target = sga_target + max(pga_aggregate_target,

 maximum PGA allocated)

From the above results:

Memory_Target = 272 + max (90,120)

 = 272 + 120 = 392 M

Hence the minimum MEMORY_TARGET should be 392 M based on the above results.

The below tables (table 1 & 2) has the necessary parameters which needs to be taken care during the installation of

the oracle database.

Table I:- Necessary Initialization parameters.

Parameter Description Recommendation

DB_NAME Name of the database This should match the ORACLE_SID

environment variable.

DB_DOMAIN Location of the database This should be in Internet dot notation

OPEN_CURSORS Limit on the maximum number

of cursors (active SQL

statements) for each session

The setting is application-dependent;

500 is recommended

CONTROL_FILES Configuration files Set to contain at least two files on

different disk drives to prevent failures

from control file loss.

DB_FILES Number of files assign to the

database

Set to the maximum number of files that

can assigned to the database.

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

428

Table II:- Important Initialization parameter which influences the performance

Parameter Description Recommendation

COMPATIBLE Specifies the release with which

the Oracle database must

maintain compatibility.

 If application designed for a specific

release and you are actually installing a

later release, then you might want to set

this parameter to the version of the

previous release.

DB_BLOCK_SIZE Sets the size of the blocks

stored in the database files and

cached in the SGA.

The range of values depends on the

operating system, but it is typically

8192 for transaction processing systems

and higher values for database

warehouse systems.

SGA_TARGET Specifies the total size of all

SGA components.

If SGA_TARGET is specified, then the

buffer cache DB_CACHE_SIZE,

JAVA_POOL_SIZE,

LARGE_POOL_SIZE,

SHARED_POOL_SIZE memory pools

are automatically sized.

PGA_AGGREGATE_TARGET Specifies the target aggregate

PGA memory available to all

server processes attached to the

instance.

PROCESSES Sets the maximum number of

processes that can be started by

that instance.

This is the most important primary

parameter to set, because many other

parameter values are deduced from this.

SESSIONS This is set by default from the

value of processes.

If you are using the shared server, then

the deduced value is likely to be

insufficient.

UNDO_MANAGEMENT Specifies the undo space

management mode used by the

database.

The default is AUTO. If unspecified,

the database uses AUTO.

UNDO_TABLESPACE Specifies the undo tablespace to

be used when an instance starts.

Few Oracle Hidden Parameters

In addition, to the above parameters, there are few Oracle hidden Parameters that help to boost the performance. The

below parameters, take advantage of hardware – specific performance features:
_in_memory_undo=false

_cursor_cache_frame_bind_memory = true

_db_cache_pre_warm = false

_in_memory_undo=false

_check_block_after_checksum = false

_lm_file_affinity

II. Space Management

When we talk about the space management in Oracle performance tuning, the following three parameters needs to

be taken care

1. Configuring Undo Space

2. Sizing Redo Log Files

3. Creating Temporary Tablespace

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

429

1. Configuring Undo Space:
Oracle needs undo space to keep information for read consistency, for recovery, and for actual rollback statements.

Oracle provides automatic undo management, which completely automates the management of undo data. A

database running in an automatic undo management mode transparently creates and manages undo segments. Oracle

Corporation strongly recommends using automatic undo management, because it significantly simplifies database

management and removes the need for any manual tuning of undo (rollback) segments.

Adding the UNDO TABLESPACE clause in the CREATEDATABASE statement sets up the undo tablespace. Set

the UNDO_MANAGEMENT initialization parameter to AUTO to operate your database in automatic undo

management mode.

The V$UNDOSTAT view contains statistics for monitoring and tuning undo space. Using this view, Oracle can

better estimate the amount of undo space required for the current workload. Oracle also uses this information to help

tune undo usage in the system. The V$ROLLSTAT view contains information about the behavior of the undo

segments in the undo tablespace.

2. Sizing Redo Log Files:

The size of the redo log files influence the performance, because the behavior of the database writer, and archived

processes depend on the redo log sizes. Generally, larger redo log files provide better performance. Undersized log

files increase checkpoint activity and reduce performance.

Although the size of the redo log files does not affect LGWR performance, it can affect DBWR and checkpoint

behavior. Checkpoint frequency is affected by several factors, including log file size and the value of the

FAST_START_MTTR_TARGET initialization parameter. If the FAST_START_MTTR_TARGET parameter is set

to limit the instance recovery time, Oracle automatically tries to checkpoint as frequently as necessary. Under this

condition, the size of the log files should be large enough to avoid additional checkpoints due to the under sized log

files. The optimal size can be obtained by querying the OPTIMAL_LOGFILE_SIZE column from the

V$INSTANCE_RECOVERY view. The below picture shows the REDO LOG structure with two disks

Fig. 1:- Redo Log Files.

Planning the Redo Log files:

1. Multiplexing Redo Log Files

2. Placing Redo Log Members on Different Disks

3. Planning the Size of Redo Log Files

4. Planning the Block Size of Redo Log Files

5. Choosing the Number of Redo Log Files

6. Controlling Archive Lag

It may not always be possible to provide a specific size recommendation for redo log files, but redo log files in the

range of a hundred megabytes to a few gigabytes are considered reasonable. Size your online redo log files

according to the amount of redo your system generates. A rough guide is to switch logs, once every twenty minutes.

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

430

3. Creating Temporary Tablespace:
Appropriately configuring the temporary tablespace helps optimize disk sort performance. Temporary tablespaces

can be dictionary-managed or locally managed. Oracle Corporation recommends the use of locally managed

temporary tablespaces with a UNIFORM extent size of 1 MB.

You should monitor temporary tablespace activity to check how many extents are being allocated for the temporary

segment. If an application extensively uses temporary tables, as in a situation when many users are concurrently

using temporary tables, the extent size could be set smaller, such as 256K, because every usage requires at least one

extent. The EXTENTMANAGEMENTLOCAL clause is optional for temporary tablespaces because all temporary

tablespaces are created with locally managed extents of a uniform size. The default for SIZE is 1M.

III. SQL Tuning

SQL tuning is the iterative process of improving SQL statement performance to meet specific, measurable and

achievable goals. SQL tuning implies fixing problems in deployed applications. In contrast, application design sets

the security and performance goals before deploying an application.

After identifying application problem, the below standard performance tuning implies

1. Reduce user response time

2. Improve throughput

SQL tuning involves the following basic steps:

1. Identifying high load or top SQL statements

2. Verifying that the execution plans produced by the query optimizer for these statements perform reasonably

3. Implementing corrective actions to generate better execution plans for poorly performing SQL statements

There are many areas to discuss when we talk about SQL tuning. As we focused on proactive tuning approach there

are few things that need to be taken care during development phase itself.

1. Index tuning

2. Table partitioning

3. Scalar sub-query

4. Hints usage

5. Session tuning

1. Index tuning is the major in proactive performance tuning to improve the speed of SQL queries. Oracle

includes many new indexing algorithms that dramatically increase the speed of the queries. There are below

indexing parts which helps to increase the speed of queries.

a. Bitmap index

b. Function based index

a. Bitmap Index: Oracle bitmap indexes are very different from standard b-tree indexes. In bitmap structures, a

two-dimensional array is created with one column for every row in the table being indexed. Each column represents

a distinct value within the bitmapped index. This two-dimensional array represents each value within the index

multiplied by the number of rows in the table. At row retrieval time, Oracle decompresses the bitmap into the RAM

data buffers so it can be rapidly scanned for matching values. These matching values are delivered to Oracle in the

form of a Row-ID list, and these Row-ID values may directly access the required information.

The real benefit of bitmapped indexing occurs when one table includes multiple bitmapped indexes. Each individual

column may have low cardinality. The creation of multiple bitmapped indexes provides a very powerful method for

rapidly answering difficult SQL queries.

For example, assume there is an insurance company database with numerous low-cardinality columns such as

customer_type, insurance_made_year etc. and each column contains less than 100 distinct values by themselves and

a b-tree index would be fairly useless in a database of 20 million insurers. However, combining these indexes

together in a query can provide blistering response times a lot faster than the traditional method of reading each one

of the 20 million rows in the base table. For example, assume we wanted to find Male Senior Citizen placed an

insurance in 2012:

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

431

Select name, Insurnace_no from Insurance where cust_type = 'Sr_Ctz' and Gender = 'M' and year = 2012;

Fig. 2:- Bitmap Index Flow.

b. Function based Index: One of the most important advances in Oracle indexing is the introduction of function-

based indexing. Function-based indexes allow creation of indexes on expressions, internal functions, and user-

written functions in PL/SQL and Java. Function-based indexes ensure that the Oracle designer is able to use an

index for its query.

Prior to Oracle8, the use of a built-in function would not be able to match the performance of an index.

Consequently, Oracle would perform the dreaded full-table scan. Example now you can do the following:

Create index emp_ix on emp (upper(name));... where upper(name) like 'SMITH%'

Now we have a way to get at the function modified data using an index. This is a benefit that makes this technique

really easy, that you can index expressions on the data. The logic being used in the where clause pretty much

matches the expression in the index. This means you can enable indexed access to data that previously you could

not. Consider questions like these:

(i) how do I find rows where values are null

select * from emp where release_date is null

 create index emp_ix on emp (decode(release_date,null,1,null));

 select * from emp where decode(release_date,null,1,null) = 1;

(ii) how do I find rows based on calculations

select * from line_item where nvl(total,0) - nvl(discount,0) - nvl(mgr_reduction,0) = 0

create index line_item_ix on line_item (nvl(total,0) - nvl(discount,0) - nvl(mgr_reduction,0));

(iii) how do I convert a range scan to an exact match query

select * from line_item where nvl(total,0) - nvl(discount,0) - nvl(mgr_reduction,0) > 0

create index line_item_ix on line_item (decode(sign(nvl(total,0) - nvl(discount,0) -

nvl(mgr_reduction,0)),1,1,null)));

select * from line_item where decode(sign(nvl(total,0) - nvl(discount,0) - nvl(mgr_reduction,0)),1,1,null))

= 1;

It would offer that function based indexes tend to be special purpose in nature. Its support specific pieces of code,

that needs them and not to try use them as generic performance enhancers. In numerous situations, function based

indexes yield stellar enhancements in performance.

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

432

2. Table Partitioning: Table partitioning is a divide-and-conquer approach to improving Oracle maintenance and

SQL performance. Anyone with un-partitioned databases over 500 gigabytes is courting disaster. Table partitioning

will increase the performance by following:

(a) Disk load balancing: Table and index partitioning allows to segregate portions of very large tables and indexes

onto separate disk devices, thereby improving disk I/O throughput and ensuring maximum performance.

(b) Improved query speed: The Oracle optimizer can detect the values within each partition and access only those

partitions that are necessary to service the query. Since each partition can be defined with its own storage

parameters, the Oracle SQL optimizer may choose a different optimization plan for each partition.

(c) Faster Parallel query: The partitioning of objects also greatly improves the performance of parallel query.

When Oracle detects that a query is going to span several partitions, such as a full-table scan, it can fire off parallel

processes. Each of processes will independently retrieve data from each partition. This feature is especially

important for indexes, since parallel queries do not need to share a single index when servicing a parallel query

(d) Before Partitioning: When data is stored in a non-partitioned table, without indexes, it always performs a full

table scan. Consider following code:

CREATE TABLE bom AS SELECT ROWNUM AS n_uniq,

 MOD(ROWNUM,10) AS n10,

 MOD(ROWNUM,100000) AS n100k,

 RPAD(rownum,1000,'A') AS filler

 FROM all_source, all_source

 WHERE rownum<= 100000;

SELECT COUNT(1) FROM bom;

COUNT(1)

 100000

Task completed in 3,449 seconds

SELECT COUNT(1) FROM bom WHERE n10 = 1;

COUNT(1)

 10000

Task completed in 1,328 seconds

(e) After Partitioning: With table partitioning, a table can be physically divided into multiple smaller tables, called

partitions, while logically it stays one table. This means that the code stays the same, but full partition scans will be

executed instead of a full table scan.

These partitions are created based on a key. Depending on which value a certain column has, the record will be

stored in a certain partition. It’s important to choose a column that is often used in queries as our key

CREATE TABLE bom_list

 PARTITION BY LIST(n10)

 (partition part1 VALUES (1),

 partition part2 VALUES (2,3,4),

 partition part3 VALUES (DEFAULT))

 AS SELECT * FROM bom;

SELECT table_name, tablespace_name, blocks, num_rows

 FROM user_tablesWHERE table_name LIKE 'BOM%';

TABLE_NAME TABLESPACE_NAME BLOCKS NUM_ROWS

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

433

---------- --------------- ------ --------

BOM USERS 14449 100000

BOM_LIST 14536 100000

SELECT table_name, partition_name, high_value, tablespace_name,blocks,

num_rows FROM user_tab_partitions WHERE table_name LIKE 'BIG_T%';

TABLE_NAME PARTITION_NAME HIGH_VALUE TABLESPACE_NAME BLOCKS NUM_ROWS

---------- --------------- ---------- --------------- ------ --------

BOM_LIST PART1 1 USERS 1461 10000

BOM_LIST PART2 2, 3, 4 USERS 4364 30000

BOM_LIST PART3 DEFAULT USERS 8711 60000

The big advantage of partitioning is the possibility for ―partition pruning‖. When we look for a value of ―1‖ in

column ―N10‖, we know we will only find this in partition ―PART1‖, so we don’t need to access the other

partitions, and our query will execute ten times as fast. When we need all values, it will scan all partition, and there

will only be a small overhead.

SELECT COUNT(1) FROM bom_list;

COUNT(1)

 100000

Task completed in 3,601 seconds

SELECT COUNT(1) FROM bom_list WHERE n10 = 1;

COUNT(1)

 10000

Task completed in 0,537 seconds

(f) Index partitioning: The partitioning of the indexes is transparent to all SQL queries. The great benefit is that

the Oracle query engine will scan only the index partition that is required to service the query, thus speeding up the

query significantly. In addition, the Oracle parallel query engine will sense that the index is partitioned and will fire

simultaneous queries to scan the indexes.

(g) Local partitioned indexes: Local partitioned index allows taking individual partitions of a table and indexes

offline for maintenance (or reorganization) without affecting the other partitions and indexes in the table.

In a local partitioned index, the key values and number of index partitions will match the number of partitions in the

base table.

CREATE INDEX year_idx

on all_fact (order_date)

LOCAL

(PARTITION name_idx1,

PARTITION name_idx2,

PARTITION name_idx3);

Oracle will automatically use equal partitioning of the index based upon the number of partitions in the indexed

table.

(h) Global partitioned indexes: A global partitioned index is used for all other indexes except for the one that is

used as the table partition key. Global indexes partition OLTP (online transaction processing) applications where

fewer index probes are required than with local partitioned indexes. In the global index partition scheme, the index

is harder to maintain since the index may span partitions in the base table.

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

434

CREATE INDEX item_idx

on all_fact (item_nbr)

GLOBAL

(PARTITION city_idx1 VALUES LESS THAN (100),

PARTITION city_idx1 VALUES LESS THAN (200),

PARTITION city_idx1 VALUES LESS THAN (300),

PARTITION city_idx1 VALUES LESS THAN (400),

PARTITION city_idx1 VALUES LESS THAN (500));

Here, we see that the item index has been defined with five partitions, each containing a subset of the index range

values. Note, that it is irrelevant that the base table is in three partitions. In fact, it is acceptable to create a global

partitioned index on a table that does not have any partitioning.

3. Scalar Sub-query: A scalar subquery expression is a subquery that returns exactly one column value from one

row. The value of the scalar subquery expression is the value of the select list item of the subquery. If the subquery

returns 0 rows, then the value of the scalar subquery expression is NULL. If the subquery returns more than one

row, then Oracle returns an error.

So now most of them will raise a question whether I can use a Scalar sub-query or a Join?

Answer to this always use Join based on the performance background Scalar sub-query takes more burdensome to

database.

Scalary sub-query
select (select t2.a from t2 where t2.c = t1.c),

 col_2,col_3,

 (select t2.b from t2 where t2.c = t1.c),

 (select t3.x from t3 where t3.d = t1.d),

from

User JOIN (outer join if need be) to T2 and T3, it would be:
select t2.a, col_2, col_3, t2.b, t3.x

from, T2, T3 where

and t2.c(+) = t1.c and t3.d(+) = t1.d -- outer join IF and ONLY IF

necessary

In this scalar sub-query caching which can change that slightly, but in general, you'll be running a query inside of

another query. You want to use SET processing and currently the optimizer does not roll/merge the scalar subquery

into the outer query.

Below are the statistics of a real scenario which is having scalar query and converted to join query. The scalar

subquery retrieves 198 records, took 12mins 30secs but after changing to join query it took just only 4secs. The

scalar query took more time because fetch more data unnecessarily. So if you are pulling data from more number of

data should not use scalar query.

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

435

FIG. 3:- Comparison Between Scalar Query And Normal Join Query.

4. Hints usage in query: Hints give specific information that we know about our data and application. A way to

override the default query optimization in the DBMS. Influence the execution plan of query

Why using hints?

Oracle comes with an optimizer that promises to optimize a query's execution plan. But it does not always choose

the best execution plan. Using hints may improve the performance by changing the execution plan oracle takes.

It really helps to improve the response time for few queries and Oracle recommends using the hints in some places

even though if the query is optimized.

For Example:

(i) FIRST_ROWS(n)

It is recommended to use the FIRST_ROWS(n) in cases where it requires the first n number of rows in the shortest

possible time. For example, consider the following PL/SQL block that uses a cursor to retrieve the first 10 hits of a

query and uses the FIRST_ROWS(n) hint to optimize the response time:
declare

cursor c is

select /* FIRST_ROWS(10) */ article_id from articles_tab

where contains(article, 'Oracle')>0 order by pub_datedesc;

begin

for i in c

loop

insert into t_s values(i.pk, i.col);

exit when c%rowcount> 11;

end loop;

end;

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

436

(ii) Parallel Queries :
SELECT /*+ PARALLEL(s,16) */ SUM(amount_sold)

FROM sales s WHERE s.time_id

BETWEEN TO_DATE('01-JAN-2005','DD-MON-YYYY')

AND TO_DATE('31-DEC-2005','DD-MON-YYYY');

5. Session Tuning: Before start troubleshooting for slow performance database, one has to first understand that the

database itself is never slow or fast—it has a consistent speed. The sessions connected to the database, however,

slow down when they hit a bump in the road. To resolve a session performance issue, you need to identify the bump

and remove it. Fortunately, it’s very easy to do in most of the cases.

The first step to resolving a session performance issue is to ascertain what the database session is doing at any

instant of time. An Oracle database session is always in one of three states:

Idle Not doing anything—just waiting to be given some work.

Processing Doing something useful—running on the CPU.

Waiting Waiting for something, such as a block to come from disk or a lock to be released.

You can query the database's current state using a view called V$SESSION.

How difficult is it to get information about what’s causing the session to stop? It’s actually very easy: Oracle

database is instrumented to talk about what the database sessions are doing. All you need to do is to listen attentively

or, more precisely, look for that information in the right place, and that place is a view called V$SESSION.

Everything you need for your analysis is in this view.

How to identify and solve the session issue?

Update in one table

Example:
update t1

set col2 = 'x' where col1 = 1;

The output will show ―1 row updated,‖ indicating that the row was updated. Do not issue a COMMIT after the

statement. By not committing, you will force the session to get and hold a lock on the first row of the T1 table. Now

go to the second session and issue the following SQL statement:

update t1 set col2 = 'y' where col1 = 1;

This statement will hang. Why? The answer is simple: the first session holds a lock on the row, which causes the

second session to hang and the user to complain that the session is slow. To know what the second session is doing,

the first thing one has to understand the need to check is the STATE column in V$SESSION:

Select sid, state from v$session

where username = ' DEERAJ';

SID STATE

———— ——————————————————

3346 WAITING

2832 WAITED KNOWN TIME

The important point is that session 2832 is not waiting for anything right now, meaning that it’s working

productively. To check what is blocking can view the EVENT column in the V$SESSION. Below query displays

state of the query.

Select sid, state, event from v$session

where username = ' DEERAJ';

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

437

SID STATE EVENT

————— ————————————————— ————————————————————————————

2832 WAITED KNOWN TIME SQL*Net message from client

3346 WAITING enq: TX - row lock contention

The session is waiting because it wants to lock one or more rows, but another session has already placed locks on

the row or rows. Unless that other session commits or rolls back the transaction, session 3346 will not get the lock it

needs and will have no choice but to wait.

Getting the amount of time a session has been waiting makes sense for sessions that are waiting right now, but what

about the sessions that are working now? Recall that the EVENT column shows not only the event a session is

experiencing now but also the last wait event the session has experienced. Another column—WAIT_TIME—in the

same V$SESSION view shows how long that wait lasted.

Below query to display the session, session state and wait details
col "Description" format a50

selectsid,

decode(state,'WAITING','Waiting','Working')state,

decode(state,'WAITING','So far '||seconds_in_wait,

 'Last waited '||wait_time/100)||' secs for

 '||event) "Description"

from v$session where username = 'DEERAJ';

Output:
SID STATE Description

———— ———————— —————————————————————————————————————

2832 Working Last waited 2029 secs for SQL*Net message from client

3346 Waiting So far 743 secs for enq: TX - row lock contention

4208 Waiting So far 5498 secs for SQL*Net message from Client

a. Diagnosis of Locking: The output of listing 2 provides enough information to enable you to make a diagnosis

about the performance of these three sessions. Session 4208 is idle, so any complaints that session 4208 is slow just

aren’t related to the database. Any performance issues related to this session could be related to a bug in the code

that’s going through an infinite loop or high CPU consumption on the application server. The performance

troubleshooting focus has to be redirected toward the application client.

The story of session 3346 is different. This session is truly a bottleneck to the application. Now that it is

understandable, to know why this session appears slow—it is waiting for a row lock—the next logical question is

which session holds that lock.

b. Session Parameter Tips: If processes and session value are set as 1000 and 1248 in the database respectively. If,

using 11.2.0.1, when DB is restarted, it shows sessions as 1524. It confuses to see higher value than the value set for

sessions:
SQL> alter system set processes=1000 scope=spfile;

SQL> alter system set sessions=1248 scope=spfile;

It is clear that, that the session parameter is derived as a function of the processes parameter

It looks like:

11R1 - sessions = (1.5 * PROCESSES) + 22

11R2 - sessions = (1.1 * PROCESSES) + 5

If sessions parameter was set as a low value, than the derived value, then Oracle automatically bumps it to above

derived value.

If session parameter was set higher value, than the derived value, Oracle will consider our set value.

ISSN: 2320-5407 Int. J. Adv. Res. 10(01), 426-438

438

Conclusion:-
Realizing the value of proactive tuning approach on database performance tuning, will bring out the true potential of

identifying and addressing the performance issue during application development cycle, well before any impact to

end users. There are many varieties of tools available in the market which can be used for performance tuning.

These tools are used to diagnose and proactively tune an Oracle database.

There are some key tools which used for proactive performance. Such as – SQL optimizer – can analyze for query

tuning, index tuning. Enterprise manager – can be used to monitor an Oracle database for performance related.

Spotlight – This is can be used to monitor for memory and also overall performance of Oracle database.

At HCLT, Performance Engineering Service Line group is providing exclusively various performance engineering

services not only to tune but also to identify and fix the various potential performance issues and application

stability related bottlenecks.

References:-
1. Tuning guide from Oracle Corporation -http://docs.oracle.com/cd/B19306_01/server.102/b14211/toc.htm

2. Tuning guide from Oracle DBA - http://www.dba-oracle.com

3. Oracle DBA forum - https://forums.oracle.com/thread/918658

4. Expert Indexing in Oracle Database 11g - Publisher Apress – Written by Sam Alapati, Darl Kuhn, Bill Padfield

5. Expert Oracle Database Architecture, 2nd Edition - Publisher Apress – Written by Sam Alapati, Darl Kuhn, Bill

Padfield

6. Oracle Performance Tuning, 2nd Edition – Publisher - O'Reilly Media – by Mark Gurry, Peter Corrigan.

http://www.dba-oracle.com/
https://forums.oracle.com/thread/918658

