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In this paper, we develop the adaptive algorithm for system 

identification where the model is sparse. The classical configurations of 

adaptive filtering are system identification, prediction, noise 

cancellation. The low-complexity adaptive filtering algorithms are 

developed which exploit the sparsity of signals and systems are 

designed. We design and develop the adaptive algorithm which we 

term least mean square (LMS), normalized least mean square and zero 

attractors normalized LMS, These algorithms are analysed and applied 

to the identification of sparse systems. The reweighted ZA-NLMS 

(RZA-NLMS) are developed to improve the filtering performance. In 

common sensing, the    relaxation is applied to improve the 

performance of adaptive LMS type filtering. The ZA-LMS is 

developed by combining the quadratic LMS cost function and 

a    norm penalty, which helps to generate a zero attractor in the LMS 

algorithm. This results in two new algorithms, the Zero-Attracting 

LMS (ZA-LMS) and the Reweighted Zero-Attracting LMS (RZA-

LMS). During the filtering process, this zero attractor proposed sparsity 

in taps and therefore the speed of convergence increased in the sparse 

system identification process. 
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Introduction:- 
Adaptive filters are the significant part of signal processing. Filtering is a process of removing noise or some 

unwanted components from a signal. An adaptive filter is a digital filter with self-learning or self-adjusting 

characteristics. There are different applications of adaptive filtering like system identification noise cancellation, 

linear prediction, and adaptive inverse system. Adaptive filters are the significant part of signal processing. Filtering 

is a process of removing noise or some unwanted components from a signal. An adaptive filter is a digital filter with 

self-learning or self-adjusting characteristics. There are different applications of adaptive filtering like system 

identification noise cancellation, linear prediction, and adaptive inverse system. Adaptive filtering algorithms have 

become a popular tool to cope with those unwanted noises present in the signal. In particular, the least mean square 

(LMS) and recursive least squares (RLS) algorithms are the most widely known. Indeed, the LMS is quite used due 

to its computational 

 

simplicity, whereas the RLS provides faster convergence.[4] the poor performance can be explained by observing 

two aspects: (a) slow convergence of the filter taps to their steady-state values since the convergence rate of the 

algorithm is proportional to the total filter length; (b) high steady-state misadjustment due to the estimation noise 
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that inevitably occurs during the adaptation of the so-called inactive filter taps (i.e., taps with zero or close to zero 

values at steady state) [5]. Impulse responses of unknown systems can be assumed to be sparse, containing only a 

few large coefficients interspersed among many negligible ones. Using such sparse prior information can improve 

the filtering/estimation performance. However, standard LMS filters do not exploit such information. In the past 

years, many algorithms exploiting sparsity were based on applying a subset selection scheme during the filtering 

process, which was implemented via statistical detection of active taps or sequential partial updating. Other channel 

estimation adaptive algorithms are developed as zero-attracting algorithms which is combination of the LMS 

algorithm and common sensing (CS) theory [8], and this are known as zero attracting LMS (ZA-LMS).Further 

developed algorithm is reweighted zero attractor (RZA-LMS).The convergence speed of zero attracting LMS can be 

improved with expanded techniques in APA which are denoted as zero attracting APA (ZA-APA) and reweighted 

zero attracting APA (RZA-APA).So as a result ,we get convergence speed faster with zero attracting APA than 

those ZA-LMSs due to improvement in algorithm. These zero attracting algorithms are released by incorporating a 

   norm into the cost functions of the standard LMS and APA, respectively. [6] Furthermore these    norm penalty 

algorithms insists to make the active taps very small as compared to the number of inactive channel taps. 

 

Adaptive Filters:- 
The purpose of an adaptive filter is to adjust its parameters according to its output so that we get a meaningful result 

with no error. The adaptive filter coefficients adjust themselves to achieve the desired result such as identifying an 

unknown filter or cancelling noise in the input signal. Adaptive filters self-learn. The closed- loop adaptive filter 

uses feedback in the form of an error signal to refine its transfer function. [1] Usually, adaptive algorithms are 

known for its approximation, simplicity in calculations they do not require previous knowledge of the signal. 

Adaptive filters are good for real-time applications when there is no time for statistical estimation. 

  

The applications of the adaptive filter are different in nature, But one common thing about all application is an input 

vector and desired results are computed an approximate error. So there are four classes of the adaptive filter which 

are given in the following table. 

 

Class of adaptive filtering Applications  

1. Identification System identification Layered earth modelling. 

2.  Interference cancelling Echo Cancelation Adaptive beamforming 

3. Prediction Linear predictive coding Signal detection 

4. Inverse modelling Predictive deconvolution Adaptive equalization 

Table 2.1.Applications of adaptive filters 

 

System Identification:- 
System identification is the process of modelling a plant. In this process of implementation of a plant, it involves 

different steps like experimental planning, selection of a model structure, parameter estimation, and model 

validation system identification is the process of modelling a plant. [1]. 

 

 
Figure 1.1:- Block diagram of System Identification. 

 

In this, we have an unknown plant which is linear and time-varying. The plant is consists set of discrete-time 

measurements which describe the changes in plant output to a known input.[9,10] In the field of communication, as 

a category of adaptive filtering system identification is popular method and also called as mathematical modelling. 
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System identification involves constructing an estimate of an unknown system given only two signals, namely an 

input signal and a reference signal. Typically, the unknown system is modelled with a finite impulse response (FIR) 

[7] filter, and adaptive filtering algorithms are employed to compute an estimate of the response of the unknown 

system being identified. 

 

FIR filters are implemented with nonrecursive structures. Adaptive FIR filters are the most popular ones due to their 

stability. The most widely used adaptive FIR filter structure is the transversal filter. The structure of the FIR filter is 

shown in Fig. 

 
Figure 1.2:- FIR Filter: Time-shifted structure of the input signal 

 

Here, we can define the complex-valued tap-weight vector with M coefficients as  

wˆ (n) =                          
  …………….(3.1) 

Where       is the transpose of a vector or a matrix. 

With the M-length tap-weight vector shown as above, the complex-valued input signal can be defined as 

u(n) =                                    ……(3.2) 

Then the output of the filter is 

y(n) =    (n)u(n)     …………………………………..(3.3) 

Where         „H‟ is the Hermitian transpose of a vector or a matrix. 

 

Adaptive filtering algorithms:- 

Adaptive linear filters are linear dynamical system with adaptive structure and parameters. Adaptive filters have 

property to adjust their parameters values, i.e. filter changes its input according to their output, in order to generate 

signal at the output and the output which is generated at the end is desired output which is without undesired 

components, degradation, noise and interference signal and many more. 

 
Fig.3.1:- Block Diagram of Adaptive Filter 

 

The main characteristic of the adaptive algorithm is to adjust the parameters of the adaptive filter in such a way to 

minimize the error signal, which is nothing but the difference between the signal at the output of the adaptive filter 

and the reference signal. The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff [1], is a popular 

method for adaptive system identification. Its applications include echo cancelation, channel equalization, 

interference cancelation and so forth.  
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3.1 The Least Mean Square (LMS) Algorithm:- 

Simplicity is the main advantage of the LMS algorithm due to its simplicity the range of applications increases in the 

field of signal processing. Which makes the LMS a standard as compare to other linear adaptive algorithms. The 

cost function of the LMS algorithms is: 

            J (n) = |e (n)|   ……………………….. (3.1)  

 

Where | · | is the Euclidean norm and the e(n) is the error signal, that is equal to the difference between the desired 

signal and the filter output signal,  

          e (n) = d(n) −    (n)u(n)……………(3.2) 

 

Where wˆ (n) is the filter represented by a M-by-1 tap-weight vector and u (n) is the M-by-1 input signal and         

is the Hermitian transpose of a vector or a matrix.. Then the gradient vector of J (n) can be expressed as: 

          
  

   
 = −p + R wˆ (n)……………… (3.3)  

 

Where R is the correlation matrix of the received signal and p is the cross correlation vector between the received 

signal and the desired signal.  

The optimum solution of such a linear filter is known as the Wiener solution that is given by 

            ˆ   =    p…………………….. (3.4) 

 

To estimate the gradient vector the possible solution is applying instantaneous approximation for R and p as follows:  

R = u (n)    (n), p = u (n) d   (n)…………. (3.5) 

 Then the gradient vector is given by 
  

   
   = −u (n) d   (n) + u (n)      (n) wˆ (n)……… (3.6) 

So the filter coefficient vector is then updated by 

  wˆ (n + 1) = wˆ (n) − µ 
  

   
 

                   = wˆ (n) + µ u(n)[d   (n) −    (n)wˆ (n)] 

                   = wˆ (n) + µ u(n)e   (n)…………. (3.7) 

 

Where µ is the step-size parameter controlling the convergence and the steady state behaviour of the LMS. An 

approximate condition for the convergence is: 

                      0 < µ <  
 

     
            ………. (3.8)  

 

Where M is the length of the filter and Smax is the maximum value of the power spectral density of the received 

vector [1]. 

 

3.2The Normalized LMS (NLMS) Algorithm 

The normalized least mean square (NLMS) algorithm is the normalised version of the ordinary LMS algorithm. But 

the NLMS algorithm has faster convergence speed as compared to ordinary LMS algorithm, Given the tap input 

vector u(n) and the desired response d(n), determine the tap-weight vector wˆ (n + 1)  

so as to minimize the squared Euclidean norm of the change,            δwˆ (n + 1) = wˆ (n + 1) − wˆ (n)……………… 

(3.9) 

 in the tap-weight vector wˆ (n + 1) with respect to its old value wˆ (n), subject to the constraint 

   (n + 1) u (n) = d (n) …………….. (3.10) 

 

We can use the method of Lagrange multipliers to solve this optimization problem. The cost function of this 

problem can be expressed as 

 J(n) = ||wˆ (n + 1) − wˆ (n)|| ² + Re{λ   [d(n) − ˆ   (n + 1)u(n)]}    

                                                              ……………… (3.11)                                                                         

 

Where λ denotes the Lagrange multipliers. By using the method of Lagrange multipliers, the solution of this 

optimization problem is the following filter coefficient update equation [1]        wˆ (n + 1) = wˆ (n) + 
 

          
 e   

(n)………………….(3.12) 
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Equation (4.12) equation shows the NLMS algorithm can be viewed as an LMS algorithm with a time-variant step 

size parameter that‟s why we used normalised in NLMS. 

 

The error signal e(n) consists of the difference between the desired signal d(n) and the output of the sparse adaptive 

filter y(n). When the output error e(n) is minimized, the adaptive filter represents a model for the unknown sparse 

system.  

 

3.3 Zero-Attracting NLMS (ZA-NLMS) Algorithm 

We have to assemble the    -norm advanced strategy with the conventional NLMS algorithm we have to utilize the 

sparsity of the system. Here, the    -norm penalty on the coefficients is combined into the conventional NLMS cost 

function (3.1) and (3.2) 

 

The objective of the ZA-NLMS is to minimize  

   (n) = ||wˆ (n + 1) − wˆ (n)|| ² + ||wˆ (n)|| subject to 

 d(n) −    (n + 1)u(n) = 0………………. (3.13) 

To solve this constrained optimization problem, we may use the method of Lagrange multipliers. By using this 

method, the cost function can be expressed as  

  (n) = ||wˆ(n+1)−wˆ(n)|| ²+Re{λ  [d(n)−     (n+1)u(n)]}+||wˆ (n+1)||1……………………….. (3.14) 

We can compute the partial derivative of    (n) with respect to wˆ   (n + 1) 

 
       

              
  = wˆ (n + 1) − wˆ (n) − u(n)λ   + α sgn[wˆ (n + 1)], 

                                                                                    (3.15)        

Where sgn[ · ] is a function that returns the sign of the arguments. Denote a complex number z = a + bj, the sgn[ · ] 

is defined as 

 (3.16) 

 By equating (3.15) to zero, then we can get 

 λ =
     

          
  +

 

          
       [wˆ (n + 1)]u(n)………… (3.17) 

 

Assuming that sgn[wˆ(n + 1)]≈sgn[wˆ(n)], then combining (3.17) with (3.15), we can get the filter coefficient update 

equation of ZA-NLMS: 

wˆ(n + 1) = wˆ(n) + µ ||u(n)|| ² u(n)e   (n) + α u(n)    (n) ||u(n)||²  sgn[wˆ(n)] − α 

sgn[wˆ(n)]………………………(3.18) 

 

Comparing the ZA-NLMS update equation (3.18) with the conventional NLMS function (3.12), we can see an 

additional term α sgn [wˆ(n)], which attracts the tap coefficients to zero. We call this the zero attractor feature, 

whose strength is controlled by α. intuitively, the zero attractor will speed-up convergence when the majority of 

coefficients of wˆ are zero, i.e., the system is sparse. 
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4   Affine Projection Algorithm (APA) 

In adaptive filtering algorithms to increasing the rate of convergence where the input signal is correlated there we 

applying data-reusing algorithm are used. But this data reusing technique will increase the misadjustment of these 

algorithms [2]. The well-known method in adaptive filtering applications is the APA and its variations, though it 

involves complexity and performance intermediary between those of LMS and of RLS Its applications include echo 

cancellation, channel equalization, interference cancellation, [14-18] and so forth Let us assume that the last N input 

signal vectors are organized in a M-by-N matrix as follows 

     U(n) = [u(n), u(n − 1), ..., u(n − N + 1)],……………..(3.19) 

 

Where the u(n) denotes the vector of the input signal at time n, and N denotes the APA order. We can also define 

some vectors representing the filter output y(n), the desired signal d(n) and the error e(n) = d(n) − y(n) vectors. 

These vectors are, respectively given by 

      y(n) = [y(n), y(n − 1), ..., y(n − N + 1)]   …………(3.20) 

d(n) = [d(n), d(n − 1), ..., d(n − N + 1)]T ,………………(3.21) 

 

From (2.2.1) - (2.2.3), we can obtain the following equation 

         y(n) =    (n)wˆ (n)……………………(3.22) 

 

For the APA, the tap-weight vector variation is defined as 

 δwˆ(n+ 1) = wˆ(n+ 1) − wˆ(n). The objective of the APA is to minimize 

||wˆ (n + 1) − wˆ (n)|| ²                              

 Subject to d(n) −   (n)wˆ (n + 1) = 0……….(3.23) 

 

Here again the method of Lagrange multiplier can be used to find the solution that minimizes the cost function 

 J(n). J(n) = ||wˆ (n + 1) − wˆ(n)||² + Re{[d(n) −     (n)wˆ]        λ},……………………..(3.24) 

 

Where λ = [λ(0), λ(1), ..., λ(N − 1)]T denotes the vector of Lagrange multipliers. Then the solution of this 

optimization problem would be the following filter coefficient update equation. 

wˆ (n + 1) = wˆ (n) + µ U(n)[     (n)U(n)]−1 e(n)……….(3.25) 

with µ = 1, and e(n) = d(n) − y(n). In general, a step-size µ < 1 is used to control convergence and the steady-state 

behaviour of the APA. The APA is a generalization of the NLMS adaptive filtering algorithm. When the AP order N 

is set to one, the equation (3.25) will reduce to the familiar NLMS algorithm. 

 

4.1 Zero-Attracting Affine Projection Algorithm (ZA-APA) 

For conventional APA, we can also apply the same strategy to get a new cost function    (n) by combining the 

instantaneous square error with the    -norm penalty of the coefficient vector. The new cost function is shown as 

below, 

   (n) = ||wˆ (n+1)−wˆ(n)|| 2+Re{[d(n)−    (n)wˆ (n+1)]λ}+α ||wˆ (n+1)||1……………….………....(4.1) 

To minimize the cost function, we can compute the partial derivative of J2(n) with respect to wˆ   (n + 1) 

 

 
       

             
 = wˆ (n + 1) − wˆ (n) − U(n)λ + α sgn[wˆ (n + 1)]. 

                                                                    ………....(4.2) 

By equating (3.20) to zero, we get 

wˆ (n + 1) = wˆ (n) +    (n)λ − α sgn[wˆ (n + 1)]………..(4.3) 

Multiplying both sides by   (n) from the left, we obtain 

d(n) =    (n)wˆ (n) +    (n)U(n)λ − α    (n)sgn[wˆ (n + 1)] 

                                                                ………………..(4.4) 

Because e(n) = d(n)−    (n)wˆ (n) we can solve for λ. Assuming that sgn[wˆ(n + 1)]≈sgn[wˆ(n)], with further 

manipulations, we can obtain the new filter coefficient update equation 

wˆ(n+1)=wˆ(n)+µU(n)e(n)+αU+(n)    (n)sgn[wˆ (n)]−αsgn[wˆ (n)]……………………………………...(4.5)  

Where U+(n) = U(n)                  

 

Comparing the ZA-APA update (4.5) to the standard APA update (3.25), the ZA-APA has two additional terms, 

which attract the tap coefficients to zero. In addition, if we set the AP order N to one, (4.5) reduces to the update 

formula for the Zero-Attracting NLMS (ZA-NLMS) algorithm. 
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Simulation Result:- 

In this, each graph is plotted as MSD (Mean Square Deviation) vs Iteration. Here, Normalized Linear Mean square 

Algorithm, Reweighted NLMS algorithm, Affine Projection Algorithm, Zero Attracting Affine Projection. 

Algorithm and Reweighted Zero Attracting Affine Projection Algorithm are compared with each other. Four 

different experiments are taken.  

 

Results are given to show the performance of the proposed sparsity-aware algorithms in stationary scenarios. Firstly 

we shows the LMS mean square error and normalised LMS for 40db signal. 

 

 
Fig.4.1:- Simulated MSD for experiment 1 

 

The performance of the ZA-APA and the RZA-APA are compared with that of the standard NLMS, RZA-NLMS 

and standard APA. Four experiments have been designed to demonstrate their tracking and steady state performance 

[5]. 

 

 
Fig.4.2:- Simulated MSD for experiment 2 
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Fig.4.3:- Simulated MSD for experiment 3 

 

 
Fig.4.4:- Simulated MSD for experiment 4 

 

The parameters are varied in the coding. The mean Square Deviation value for all these algorithm are calculated for 

the no of iteration. Then the graph is plotted. 

 

Conclusion:- 
Thus, in this paper, we proposed adaptive algorithms, affine projection algorithms for sparse system identification. 

We can also develop zero forcing techniques in further development to improve their performance when the system 

has a significantly degree of sparsity and obtain more appropriate results in future simulations. 
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