

RESEARCH ARTICLE

EVOLUTION OF FLUVIAL TERRACES OF ALAKNANDA AND ITS TRIBUTARIES AND IMPRINTS OF NEOTECTONISAM IN UPPER GANGA BASIN, GARHWAL HIMALAYA, PARTS OF CHAMOLI TEHRI UTTAKASHI & PAURI DISTRICT UTTAR PRADESH (UTTRARKHAND) INDIA

Dr. A. A.Khan^{1,2} and Dr. A.C Chaterjee^{3,4}

.....

- 1. Ex. Director Geological Survey of India.
- 2. Ex. Director Rajeev Gandhi Produyogiki Mahavidhaylaya.
- 3. Ex HOD, School of Studies in Geology.
- 4. Vikram University Ujjain (M.P.) India.

Manuscript Info

Manuscript History Received: 30 November 2022 Final Accepted: 31 December 2022 Published: January 2023

Abstract

. The Geomorphological study in in Alaknanda and its tributaries Ganga basin Garhwal Himalva parts of Chamoli Tehri Uttarkashiand Pauri district Uttar Pradesh (Uttrarkhand with special reference to fluvial terraces has been studied . An area about 10000 Sq.kms in parts of QA sheet 53Jand 53 N on 1:1000000/ 1:50000 scale of has been covered. The area of Upper Ganga basin genetically comprised of terraces of three domains, viz. glacial, fluvio-glacial and fluvial which represent distinct environment of sedimentation of Pleistocene, late Pleistocene and Holocene time during Quaternary period. The glacial terraces are identified at an average elevation of 1150 m above m.s.l, the fluvioglacial terraces at an average elevation of 975m above m.s.l, and fluvial terraces at an average elevation between 650 to 900 m above Upper Ganga basin consists of m.s.l, The area of Alaknanda, Bhagirathi, Bhilangna, Nandakini, Mandakini. Pindar. Dhauli- Ganga Bal- Ganga, Madhmeshwar Ganga and Berhi Ganga. Amidst these Alaknnda is trunk stream and other are tributaries. The Alaknanda is chracterised by six fluvial terraces followed by Bhagirathi with five terraces, Bhilangna Nandakini four terraces Mandakini /Pindar/Dhauli-Ganga /Balganga three terraces Madhmshwar Ganga two terraces and Bberhi Ganga one terraces. The Badrinath temple is situated in glaciated trough valley of Alaknanda, which comprise of, four levels of the glacial terraces (lateral moraine), cirque moraine on mountain flanks and the terminal moraine at the base of valley, whereas Kedarnath in the upstream of Mandakini, where number of well developed cirgues were identified on high mountain, they are mostly arm chair shaped hollows with a steep to vertical head walls, concave floor and a threshold, these cirgues are noticed at an average height of about 4500 m. The Kedarnath temple is situated in glaciated trough valley on quaternary platform formed by coalescing of cirque, lateral moraine and terminal moraine. The-Himalayan thrust like Central thrust Srinagar thrust,, Alaknanda fault, Tons thrust show flattening dip suggesting that they lie at comparatively at shallow depth at short distance, down dip from their out crops, recent movements

along the trace of these faults /thrust are not of high and longer magnitude but have considerably affected Quaternary terraces of glacial, fluvio-glacial and fluvial domain of Alaknanda and its tributaries. Beside drainage, river bed profile, landscape architect and over all morphogenetic expression of the area bears the impact of tectonic activity. The imprints of neotectonisam associated in the area indicate that these thrust /faults are active and have posed tectanoecological problems, bears signatures of sinking of the area, mass wasting activities and neosiemic hazards. The study revealed that there is sharp curvilinear break in morphogenetic expression of the area In North of Wazri in Jamuna valley, North of Uttarkashi in Bhagirathi valley, around Tugnath and Chamoli and South of Joshimuth in Alaknanda valley, which appears to be due to horizontal movement of a sub - tectonic plates towards south, which is causative factor in dislocation in tectonic ecology of the area, it is matter of serious concerned and needs further attention.

Copy Right, IJAR, 2023,. All rights reserved.

Introduction:-

The Geological and Geomorphological study in Upper Ganga basin has been attempted in parts of Uttarkashi, Chamoli, Pauri and Tehri districts, an area of 10000 Sq.kms in parts of QA sheet 53J and 53 N on 1:100000/ 1:50000 scale has been covered in Garhwal Himalaya U.P; presently known as Uttrakhand State of Union of India.

The area of study is approachable via Dehradun and Rishiksh which are nearest rail heads of Northern Railway. These heads are connected by good moterable roads leading to famous pilgrimage centre Badrinathh, Kedarnath, Gangotri and Janmnontri. The state highway No 54 which is connecting Rishikesh and Badrinath bifurcates at Rudraprayag along Mandakini river and terminates at Kedarnath via Sonprayag.. The Tehri is about 85 kilometers from Rishikesh on state high way No 53 connecting Rishikesh Tehri Uttarkashi Gangotri. This road runs along Bhagirathi River between Tehri and Gangotri, it bifurcates at Dharasu and connects Bhagirathi valley to Yamuna valley crossing the water divide at Ravi Pass. In addition to these there are all weather roads which connect Kathgodam to Karanpryag via Ranikhet, Dwarhat and Adi-Badri from east and Mussoori via Dhanaulti to Tehri from west to Alaknanda and Bhagirathi valleys respectively. (Plate No.1 & 2)

Previous Work

The area of Upper Ganga basin consisting of Alaknanda,Bhagirathi,Bhilangna, Nandakini, Mandakini, Pindar, Dhauli- Ganga Bal- Ganga , Madhmeshwar Ganga and Berhi Ganga. Amidst these Alaknnda is trunk stream and other are tributaries, amidst these Alaknanda is trunk stream and other are tributaries. These streams emerge from different glaciers in Himalaya descend in sinuous to meandering channel pattern, in their courses they traverse through entrenched valleys, and deep gorges leaving glacial Fluvio-glacial and Fluvial terraces in decreasing antiquity; due to uplift and climatic changes in the area; representing different phases of sedimentation in Quaternary period.

Padhi and Sharan (1972) Dubey (1972), Dubey (1974a), Shukla Khan & Dubey (1974) Khan (1972-73) Khan (1974), Khan et.al (1974-75) Sinha & Khan (1975), Sinha & Khan (1975-76), Dubey (1974) Sinha & Khan (1976) Khan (1981), Khan (1987) have carried out geological and Geomorphological studies in parts of Alaknanda, Bhagirathi, Bhilangna, Nandakini, Mandakini, Pindar, Dhauli- Ganga Bal- Ganga, Madhmeshwar Ganga and Berhi Ganga. Amidst these Alaknnda is trunk stream and other is tributaries.

Present Work

The present paper is an attempt to trace integrated picture of evolution, of fluvial terrace sand their stratigraphy, their correlation in Upper Ganga Basin during Quaternary period.

The area under study has witnessed the intensive erosional and depositional activity subsequent to recession to glaciers which has entirely modified the pre-existing, topography and given rise to present shape to the area., Khan,

(1975) and Khan et al, 1981). The Fluvial terraces of Alaknanda and its tributaries are developed and evolved in response to tectonic changes and cyclic uplift of watershed region of upper Ganga during Quaternary times, (Khan 1987) The glacial, inter glacial and post glacial climatic conditions, have also played the vital role in morphogenetic shaping of present day complex. (Khan 1981). On the merits of evolution of fluvial terraces the sequential order of valley development in upper Ganga basin is established (Khan 1987).

Geomorphic Evolution of Fluvial Terraces in Upper Ganga Basin, Stratigraphic and chronological sequence of Quaternary deposit is given in table below:

Age	Quaternary Formation	Environment of sedimentation	Geomorphic land forms	Composition
	Younger Alluvium	Channel and Flood Plain	Flood Plain Point Bar, Channel Bar Sand Bar	Well rounded boulder, cabble, pebble of quartzite, gneiss, schist, granite, slate, limestone, phyllite and basics in the matrix of coarse to fine micaceous sand.
Holo cone Older Allu vium	Fluvial deposit	Channel and flood plain	River terraces of Alaknanda and its tributaries	Sub-rounded to well rounded boulder, cobble, pebble of quartzite granite, gneiss, schist, phyllite, slate, limestone and basic in the matrix of coarse to fine sand silt with subordinate amount of clay
Late pleis- tocene	Fluvioglacial glacial deposit	Fluvio glacial	Fluvio glacial terraces of Alaknanda & its tributaries	Sub- Angular boulders, cobbles, pebbles of quartzite gneiss, granite biotite schist, muscovite, chlorite schist, slate and basic, in the matrix of coarse to fine sand, silt and clay.
Early pleis- tocene	Glacial deposit	Glacial	Glacial terraces, terminal moraines medial moraines, cirque moraines of Alaknanda & its tributaries.	Sub-Angular to angular boulder, cobble, pebble of gneiss, granite, quartzite, granite, quartzite, biotite, muscovite, chlorite schist, in the matrix of very coarse to very fine sand, silt and clay

Table No. 1:- Stratigraphy Of Quaternary Deposit In Upper Ganga Basin, Garhwal Himalaya U.P.

The successive development of Quaternary terraces of Alaknanda is as follows: -

Table No. 2:-	Stratigraphy C	of Quaternary	Terraces In	n Upper	Ganga Ba	asin. (Garhwall	Himalava	U.P.
1 4010 1 100 20	Strangraphy C	Y Qualernary	I cliuces in	n opper	Sunga Di		Guinnar	i i i i i i i i i i i i i i i i i i i	· · · ·

Age	Stages	of	valley	Terraces	Environment of	sedimenta	tion
	developn	nent					
Recent to				Flood Plain and adjoining low land area of	Channel and	Flood	plain
Holo-				present day course of channel and	environment		
cene				associated geomorphic features, point bar,			
				sand bar, channel braids etc.			
	VI			Berhi Ganga terraces	BRT ₁		
	V			Madhmeshwar Ganga terraces	MDT_1 to MDT_2		

	IV	Bal Ganga terraces		MDT_1 to BGT_2		
		Mandakini terraces		MT_1 to MT_3		
		Pindar terraces		PT_1 to PT_3		
		Dhauli Ganga terraces	Dhauli Ganga terraces			
	III	Bhilanga terraces	BHT_1 to BHT_4			
	III	Mandakini terraces	NT_1 to NT_4			
	II	Bhagirathi terraces		BGT_1 to BGT_5		
	Ι	Alaknanda terraces	AT_1 to AT_3			
Late – Pleistocene		Flurio-glacial terraces Flurio-gla		cial		
		of Berhi Ganga, Madhmeshwar	environme	nt		
		~ ~				

Ganga, Balganga, Man-dakini

Pindar, Dhauli Ganga, Bhilangna, Nandakini, Bhagirathi and Alaknanda

Pleistocene	-	Glacial terrances of Berhi Ganga, Glacial
		Madhmeshwar Ganga, Bal Ganga, environment
		Mandakini, Pindar, Dhauli Ganga, Bhilangna, Nandakini, Bhagirathi and Alaknanda.

The fluvial terraces or alluvial topographic benches of Alaknanda and its tributaries form the prominent Quaternary landscape in the valley breaking the monotony of vast rugged hilly tract. These terraces are formed by a combined intermittent process of aggradations and degradation in the valley associated with different phase of sedimentation of the fluvial domain. As such others are the abandoned flood Plains of the river representing the former levels of valley floors and formed due to tectonic eustatic and climatic changes during the Holocene time, , Khan et.al.(1985).

These terraces are comprised of surrounded to well rounded boulder, cobble, pebble of predominantly quartzite, gneiss, granite and schist basic, slate, phyllite, limestone, in the matrix of sand and silt with subordinate amount of clay.

The sediments of these terraces are mostly similar in composition to the terraces of glacial and fluvio-glacial origin, but are characterized by higher order of sphericity, roundness, sorting, imbrications pattern and sedimentary features, viz. graded bedding, cross bedding, both planner and tough type, lamination, minor ripples, cut and fill features and cyclic sedimentation typically of fluvial domain.

The higher order of sphericity, roundness, sorting of these sediments indicate their derivation from the distant and mixed provenances during the different phases of sedimentation in the Quaternary times.

The fine sediment of these terraces consist of sand of different grade and shade such as smoky micaceous, coarse to fine sand; light to dark yellow coarse to fine sand and silt; light to dark maroon silt and clay with subordinate amount of sand; light brown sand with abundant granules of quartz, feldspar and mica flakes. These sediments, in general, are embedded with the coarse rock caustic comprising the various terrace horizons. In Alaknanda, valley at very few places, e.g. around Bamoth, Nagrosu, Ratura, Lameri Gulab Rai, independent beds of coarse to fine sand ranging from 2.5 m to 10 m are noticed. In this area, the sand of various grade and shade comprise of different sub units display sedimentary features of minor scale, viz. lamination graded lamination, minor ripples and entrapped small lenses of fine sand mostly of cut and fill nature.

The Fluvial Terraces Of Alaknanda Valley:

The Alaknanda, the trunk stream of Ganga System forms at Vishnuprayag by two tributaries, viz. Vishnu Ganga and Duauli Ganga rising from snowy peaks north of Badrinath and Niti at average elevation of 3,897 m and 5,330 m respectively in Central Himalayas.. The river descends in straight/sinuous to meandering channel pattern through the deep gorges across the Himalayan ranges, with sinuosity index ranging from 1.95 to 2.6 for meandering segment. It is joined by numerous other tributaries in its traverse in Himalaya till it finally debouches in the intermountain Doon valley at Rishikesh. The important tributaries joining Alaknanda between Vishnuprayag and Rishikesh are, Berhi Ganga at Chinka, Nandakini at Nandaprayag, Pindar at Karanprayag, Mandakini at Rudraprayag and Bhagirathi at Deoprayag, downstream of Deoprayag it is known as Ganga.

The Alaknanda all along its length across the Himalayas has characteristically NE-SW course except the swing between Karprayag and Rudraprayag and Srinagar Janesu, where it drains in WNW-ESE and NW-SE direction respectively. The other tributaries in the north eastern part of the basin viz. Berhi Ganga, Nandakini and Pindar and Patal Ganga have, however, the conspicuous NW-SE course and join Alaknanda at sharp angle. The course of Alaknanda appears to have been constantly maintained its course, inspite of rise of Himalaya as is evident from entrenched meanders, deep gorges, steep cliffs and peaks which is suggestive of its antecedent nature.

The courses of tributaries appear to have been guided by NW-SE trending lineaments, which are mostly sympathetic in nature and their trends coincide with the major NW-SE structural trends of the Himalaya. The Alaknanda all along its length displays swelling and pinching nature in its width and its flanks are occupied by terraces of glacial, fluvio-glacial and fluvial origin. In the glaciated and Peri-glacial terrain it passes through straight segments with tight meanders and the average width of the valley does not exceed 225 m. In the fluvio-glacial and fluvial part of the valley average width varies from 190 to 210 m and the widest part is of the order ranging from 230 to 245 are seen around Langesu, Gauchar and Srinagar.

The Alaknanda has formed six prominent regional terraces in the valley. These have been designated as AT0, to AT6. The AT0, being the low level surface above the present day course of the river being a part of active flood plain. The AT1, being the youngest and AT6, being the oldest terrace in the area. Each of these terraces is separated by the scarp both of linear and curvilinear in nature facing towards river. These terraces are both erosional and depositional in nature and display divergence and convergence in their relative disposition.

The erosional terraces are generally seen as isolated pockets and lenses resting over the country rocks along the higher part of the valley flanks, representing the former levels of valley floors. In general these terraces are very ill preserved and have very few matched equivalent in the valley. The occurrences of these terraces and associated features in the higher parts of valley indicate the rigorous and abrupt incision of valley floors due to relatively rapid and sudden uplift of watershed region of Alaknanda during the early Holocene times.

The depositional terraces are widely developed and have occupied the larger area in the valley around Srinagar Kaliyasaur, Kirtinagar Pharases, Dungri, Gulab Rai, Nagresu, Gauchar and Langasu, Sunala and characteristically found to be restricted within the meander of Alaknanda. These are extensively used both for inhabitation and cultivation in the valley. These are characterized by the deposition sedimentary features such as graded bedding cross bedding lamination, graded lamination, minor ripples, cut and fill features and poly cyclic sedimentation typically of wide flood plain environments and both migrating as well as incisive system of the channel of fluvial domain predominantly of depositional in nature.

The complete sequence of terraces in the valley is seen at very few places viz. around Srinagar, Koteshwar, Rudraprayag, Nagrasu and Gauchar which give almost the complete account of tectonic and climatic changes in the area. Whereas at other places one two or three terraces are preserved and many other have been eroded away. This therefore, indicates incisive as well as rapid migrating nature of the stream. These terraces are both paired and unpaired and display convergence and divergence in their relative disposition. The divergence and pairing in general is seen in the older terraces viz. AT6, AT5, and AT4, whereas the younger terraces viz. AT1, AT2 and AT3, display convergent in their disposition and mostly remained unpaired. The divergence and pairing in the older terraces indicate the abrupt and sudden incision of the valley floor due to relatively sudden upraise of head ward ends of the Alaknanda and consequent climatic changes, in the early Holocene times. The convergence and un-pairing in younger terraces, on the contrary, indicate decrease in rate of uplift and long interval climatic change towards the later phases of sedimentation in the valley. The pairing, un-pairing and relative disposition of terraces as whole in Alaknanda suggests the constant and steady decrease in rate of uplift in Himalaya from early to late Holocene time. Khan (2018)

In Alaknanda valley, these terrace (AT_3, AT_5) are characterized by the association of fossiliferous boulder, cobble, pebble of quartzite with the luxuriant assemblage of productus, spirifer and other species of Brachiopods and Mullose group typically of permo-carboniferous age. Although these rock constituents are mostly confined in these terraces and noticed around Devprayag, Srinagar, Nagrosu, Gauchar, Karanprayag and Nandprayag ,suggest the presence of some fossiliferous horizon of quartzite in the catchment area of Alaknanda which actually been subjected to extensive erosion during third and fifth phase of erosion . subsequent to recede of glacier in post Pleistocene time

The average total thickness of fluvial terraces in Alaknanda is 118 m. The highest terrace i.e. AT6 1s noticed at an average elevation of 795 m from m.s.l. and 150 m from the present day course of the river. The average thickness of individual terrace is 16.25 m., 22.25 m., and 27.22 m., 25 m., 21.25 m., 15 m., respectively. In the upstream areas, the thickness of these terraces is constantly reduced and ultimately the profile of these terraces pinches out against the higher terraces of fluvio-glacial origin.

The scarps separating the different terraces in the valley are generally of linear and curvilinear in nature. The scarps of older terraces in general are intensively dissected by the minor rills and gullies and extended gullies. The degree of maturity is relatively high in these terraces in contrast to younger ones and scarps of these terraces are mostly more stabilized, though at places the convex slopes along the scarps are developed due to debris slides.

The terraces developed in Alaknanda are in general rectangular, semi-circular to circular and cuspate in shape. Each of this type is related to the separate genetic processes. Among these, the semi-circular is most common in the valley, which are related to the short interval meander of channel and formed due to enhanced energy conditions of the channel, associated with the increasing discharge and low gradient. Such terraces are observed around Nandaprayag, Gauchar, Papresu, Dhari-Khaliyesour, These are in general non-cyclic terraces. The elongated rectangular non-cyclic and cyclic terraces in the valley are observed around Shrinagar, Nagresu, Gauchar, Bamoth and Langesu. The former ones were formed by a combined processes of lateral coalescences and unidirectional sudden shift of straight segment of channel and subsequent incision whereas the later one, due to abrupt reactivation in energy condition due to sudden climatic changes and subsequent adjustment of base level of channel by incision of valley floor. The semi-circular to circular and cuspate terraces is related to the meander processes lateral shift of channel and ingrown incision. The point bar development in such processes is often noticed in the slip of slope of channel meander loop and the terraces occur as slices within the periphery of meander, separated by small scarps relatively of small magnitude. The ill preserved circular terraces are noticed around the confluences of Alaknanda, with Bhagirathi around Devprayag; Alaknanda with Mandakini around Rudraprayag; and Nandakini around Nandaprayag, which were formed by the initial erosion and subsequent deposition during the inception of these major tributaries.

The cuspate terraces revealing a dip of 2° to 3° are formed by incision of several loops at different elevation on the same side of valley. These suggest multiple rejuvenation through the micro episodic change in discharge and micro pulsation of unwrapping in head ward ends of Alaksandra (Khan, 1974).

The detail description of salient features of Alaknanda terrances in type localities have been tabulated in Table No11

Fluvial Terraces Of Bhagirathi Valley:

The Bhagirathi is the major tributary of Alaknanda. It rises from Gangotri glacier north of Uttarkashi around Gaumukh in the Central Himalaya at an elevation of about 3665 m and joins Alaknanda at Deoprayag the river descends in sinuous to meandering with an average sinuosity index of order of 1.30. The river all along the length of 160 km has formed the terraces of three domains Viz. glacial fluvio-glacial and fluvial. The fluvial domain comprised of five major terraces which are time equivalent to the five younger terraces of Alaknanda, the trunk stream of Ganga system. These terraces are designated BT1, to BT5. The BT1, is youngest terrace and BT5, being the oldest in the valley. These terraces are mostly fill and cut type and are both erosional and depositional in nature. The older terraces BT3 to BT5, are elongated, rectangular in shape and have paired equivalents on both the flanks of valleys, whereas the younger terraces BT1, and BT2 are semi circular and crescent in shape non-cyclic in nature and are restricted within the meander of Bhagirathi.

The type development of these terraces is seen at very few places in the valley Viz. Uttarkashi, Dunda, Chinyalisaur Chamb, Tehri, whereas other places such as Sarot Seansu and Nagor one or two levels of terraces were seen, which appears to be due to exposure of the area to extensive post depositional activities, reworking of terrace sediments by subsequent streams developed on the slopes of valley and extensive lateral cutting by Bhagirathi. The total average thickness of these terraces in the valley is 36 m. The average relative thickness of these terraces in Uttarkashi and Tehri section is 6.5, and 5 m respectively.

The detailed salient features of Bhagirathi terraces have been tabulated in Table No12

Fluvial Terraces Of Bhilang Na Valley:

The Bhilangna is a tributary of Bhagirathi. It originates from ice clad peaks of Central Himalaya at an elevation of about 3200 m and joins Bhagirathi at Tehri. It display sinuous to meandering channel pattern all along its course of 75 km and embraces the terraces of three regimes, viz. glacial, fluvio-glacial and fluvial, deposited in three distinct environments during the Quaternary times.

The Fluvial terraces are designated as BHT1, to BHT4 the BT1, is being the youngest terrace and BHT4, is the oldest in the valley. These terraces are mostly deposition in nature and exhibit divergence and convergence in their relative disposition, the former is more conspicuous in older terraces BRT4 and BHT4, whereas the later in the younger terraces. The type development of these terraces in the valley is seen around Tehri, Dewal. Asena and Ghansali Dubey, (1972) Khan (1981). Khan (1974) (1975). The total average thickness of these terraces is about 55 m whereas the relative thickness is 16, 15, 18, 16 m respectively.

The salient features of Bhilangna terraces are tabulated in table No.13

The Fluvial Terraces Of Nandakini Valley:

The Nandakini, a tributary of Alaknanda, It rises in northeast of Sutal in the Central Himalaya at an elevation of about 3660 m from the snowy peak, descends down in sinuous to meandering pattern, with sinuosity, index ranging from 1.20 to 1.25. It also passes through the straight segment of the valley and tight meanders and joins Alaknanda at Nandaprayag. It comprises three distinct groups of terraces deposited entirely in different enrolments, viz. glacial, fluvio-glacial and fluvial. In the fluvial domain four prominent regional terraces in Nandakini have been identified which are time equivalent of the four younger terraces of Alaknanda the trunk stream and the Bhagirathi, Bhilangna, and other major tributaries of the Ganga system.

These Fluvial terraces are designated as NT1, NT2, NT3, and NT4, NT1 is the youngest and NT4 being the oldest in the valley, NT0 is the low surface of the present day flood plain of the stream. These terraces are both erosional and depositional in nature. The terraces NT4, and NT3, and have generally the divergent relation, whereas NT2 and NT1, convergent mutual relation as well as with NT0, the NT4 and NT3, are mostly cyclic in nature and NT1 non-cyclic and characteristically restricted within the meander of channel. The full sequence of terraces is very rarely preserved in the valley such as around Nandprayag, Rajwaki, whereas at other places one or two level of terraces are seen. It is possibly due to frequential lateral shift of the channel, extensive lateral cutting and subsequently repeated reworking of the terrace sediments in the environments of increasing discharge and steep gradient towards the later phase in the history of river sedimentation.

The top terrace NT4, is observed at an average elevation of 1100 m above m.s.l and 80 m from the present day course of the channel. The total thickness of fluvial terraces in the valley is 80 m whereas the average relative thickness of individual terraces 10, 23.50, 23.50 and 23.50 respectively.

The detailed description of salient features of Nandakini terraces are given in Table No.14.

The Fluvial Terraces Of Mandakini Valley:

The Mandakini rises from the Gangotri group of glaciers in the north of Sonprayag around Kedarnath at an elevation of 3562 m and mingle with Alaknanda at Rudraprayag. All along its length it has formed the stepped sequence of terraces of three distinct domains viz. glacial, fluvio-glacial and fluvial. In fluvial domain three prominent regional terraces have been identified which are designated as MT1, to MT3 and are time equivalent to the three terraces of Alaknanda and other tributaries. (Khan1981). These are polyclic depositional terraces and their wide development is seen around Barhi Bhatwari, Sauri, Agustmuni, Rampur and Tilwara. These terraces portrays divergent and convergent relation amidst each other and are generally semicircular, elongated, semi-circular to circular in shape and are both cyclic and non-cyclic in nature. These terraces the conspicuous embody sedimentary features such as graded bedding, cross bedding both planer and trough type, lamination, graded lamination, cut and fill features, around Agastmuni, Tilwara, Behri, Saurgarh, Sauri and Bhatwari.

The total average thickness of fluvial terraces in the valley between Kund Chatti and Rudraprayag is about 40 m. The highest terrace is observed at an average elevation of 810 m above m.s.l

The Salient features of these terraces are given in Table No.15

Fluvial Terraces Of Pindar Valley:

The Pindar rises from the glacier top on the east of Dhakkni Devi Glacier in Central Himalaya at an elevation of 3621 m. It traverses across the Himalayan ranges and descends down through steep gorges forming straight sinuous to meandering channel pattern and joins its trunk stream Alaknanda at Karanprayag.

The Pindar all along its major part of traverse maintains straight course, between Kheta and Dewal, it almost drains in WNW - ESE direction. At Dewal it takes an acute turn changing its course to NNE - SSW, which further down stream of Nandikesri again swings in WNW- ESE direction and maintains it upto Karanprayag, where it mingles with Alaknanda. In between Dewal and Nandikesri the course of Pindar appears to have been controlled by NNE - SSW trending fault, which up stream of Dewal also control the course of Kali Ganga a small tributary of the Pindar. All along its length it shows swelling and pinching in width, which varies from 500 to 680 m between Kheta and Dewal, 600 to 700 m between Dewal and Theralli, 500 to 650 between Theralli to Narayanbag and between Narayanbag to Nalgaon the stream passes through the straight segment of deep gorge, having steep sides of valley flanks and smallest average width is 260 m. Downstream of Nalgaon the width of valley broadens out to the range from 670 to 850 m.

In Pindar valley between Theralli and Simli and Karanprayag three prominent regional terraces have been identified. These are designated as PT0, to PT3. The PT0, being the low level terrace, PT1, being the youngest and PT3 being the oldest terrace in the valley (Khan, 1975). These terraces are correlated with the three younger terraces of Alaknanda and other tributaries.

These terraces are formed by combined and intermittent processes of aggradations and degradation associated with different phases of sedimentation of fluvial regime. The process is repeated thrice in the valley during the Holocene times.

The highest terrace is observed at an elevation of 830 m above m.s.l. and 60 m from the present course of channel. The total thickness of these terraces in the valley is 55.5 m whereas the average relative thickness of individual terrace is 15, 20 and 20 m (PT_1 , to PT_3) respectively.

The detailed salient features of Pindar terraces have been tabulated in Table No.16

Fluvial Terraces Of Dhauli Ganga

The Dhauli Ganga is a tributary of Alaknanda, it originates from glaciated top in the Central Himalaya in upstream of Dapoban and joins Vishnu Ganga, near Joshimukh and down the Vishnuprayag it is known as the Alaknanda. The river has, conspicuous straight sinuous to meandering course and descends down through the tight gorges with the steeply rising valley flanks. The river has formed three prominent fluvial terraces besides several channel and land form elements. These terraces are genetically both erosional and depositional in nature and have been designated as DGT1, to DGT3. The DGT₁, is being the youngest and DGT3 is oldest terrace. The total average thickness of these terraces is 24 m and relative average thickness of these terraces is 10, 8 and 6 m respectively

The salient features of these terraces in type area around Tapoban are tabulated in Table No.17

Fluvial Terraces Of Bal-Ganga

The Bal-Ganga is a small tributary of Bhilagna. It rises from the ice clad peak in the Central Himalaya southwest of Kedarnath. This stream has formed three prominent fluvial terraces, beside the glacial and fluvio-glacial terraces in the upper reaches which occur in the form of isolated and dissected caps. These fluvial terraces are mainly depositional in nature and are designated as BGT1, to BGT3, the BGT1, it is being the lowest and youngest terrace, whereas BGT3, the oldest terrace. The relative average thickness of these terraces is 5, 10 and 7 m respectively.

The salient features, shape and composition etc. are tabulated in the Table No.18

Fluvial Terraces Of Madhmeshwar Ganga:

The Madhmeshwar Ganga is a tributary of the Mandakini. The stream originates from glacier southwest of Kedarnath and joins Mandakini near Okhimukh. The stream has formed two prominent river terraces, each separated by scarp. These are depositional in nature and are fill and cut type. The shapes of these terraces are semi-circular, which is mostly restricted in the channel meander and non-cyclic in nature. These terraces are designated as MDT1,

to MDT2, (Khan 1981) from younger to older terraces respectively. The relative thickness of these terraces is 12 and 8 m respectively.

The salient features showing, shape, slope, relative disposition and composition etc. are tabulated in Table No.19.

Fluvial Terraces Of Berhi-Ganga Valley

Berhi Ganga is a fault controlled small tributary of Alaknanda. It drains mostly the Garhwal Group of rocks and joins Alaknanda at Chinka. The river is so young that it has been able to develop only one terrace beside its present day flood plain and is designated as BRT₁, which indicates single phase of rejuvenation of the river. The terrace is localized within the meander of stream. This terrace is time equivalent to AT1 terrace of Alaknanda.

The salient features showing, shape, slope, relative disposition and composition etc. are tabulated in Table No.20

Imprints Of Neotectonisam And Neo- Seiesmic Events In Alaknanda And Its Tributaries

In Himalayas the occurrence of movements in recent times are naturally be expected, where mountain building activities have occurred recent past and mountains are "rather young". However, in contrast to the characteristics organic movement of Tertiary and pre Tertiary periods, the movement taking place during Neogene and Quaternary period are slightly different nature what is as Cymatogeny (L.King 1950-68). These movements which have taken place along pre-existing lineaments /thrust/ faults, are small magnitutede but have perceptibly affected the Quaternary terraces, glacial moraines, talus, cones, alluvial fans, drainage, channel morphology land forms and landscape expression.

It has been found that thrusting movements have caused the pre- Tertiary and late Tertiary formation to ride over the Pleistocene deposits.Geomorphological and actual measurements, consequently demonstrate that many of Himalayan thrust is tectonically quite active. According to estimate (Krishnaswamy et.al 1970) the rate of creep movement along Nahan and Riasi and other thrust may be order of 1-2cm/year. Fithch (1970) computed the rate of seismic slip of Himalayan thrust at 5.8 cms / year. The measurement Sinvhalet.al (1973) shows that along the Krol thrust near Kalsi the present movement is 0.92 cms/year. There are reveling example throughout Himalayan front of the older rock riding over recent and sub recent alluvial or talus deposits.

The sub Himalayan thrust like Srinagr thrust show flattening dip suggesting that they would lie at comparatively at shallow depth at short distance, down dip from their out crops. The recent movements along the trace of these faults /thrust are not of longer magnitude but have considerably affected Quaternary terraces, other land form and morphogenetic expression, have formed the nick points in the stream bed draining the area, it is evident by the profile of river bed and terraces.Sinha and Khan (1975), have observed the displacement in terrace near Dewal in Bhilangna valley along the Srinagar thrust near Seansu . The wide terraces on left bank of Bhagirathi appear to be uplifted and sloping up stream appreciably. The movement of Srinagar thrust and Tons thrust which passes in close vicinity of the area have also affected the litho units of terrace section. The reverse plunge in cobble pebble in terrace section in tectonically active area are conspicuous features of neotectonism and indicate recent movement along thrust fault traversing the area.

The Srinagar thrust further up stream in Bhagirathi traverses around Nalupani and forms the tectonic boundary between Barahats and Simla slates. There is a marked difference in the topography on both side of the thrust .As per observation the Srinagar thrust is geologically is of recent age and presence of nick points at some of stream crossing the thrust explained is due to movements, consequent upon the release of strain accumulated along it,. Dhanota (1970) made attempt to correlate the epicenter of some of the earthquake that occurred in the region to seismic activity at different depth along the Srinagar thrust plane. However, available data and records indicate that Uttarkashi Earthquake (1991) and Chamoli Earthquake (1999) was of 6.8 magnitude respectively, besides many shocks of low magnitude are recorded in the area. It indicates that area is sensitive and movement has been taken place in this part of Himalaya in recent times, it is prone to Earthquake. Generally in case of thrust a slow creep movement seems to take place, in which accumulating strain energy is when gradually dissipated and affect land form elements and morphogenetic expression of landscape of the area. it indicates that area is sensitive and pron to Earthquake.

Alaknansda is trunk steam of Ganga system formed at Vishnuprayag by intermingling of two major streams viz Vishnuganga and Dhauli Ganga rising from snowy peaks north of Badrinath. The river descends in straight and

sinuous to meandering channel pattern through the deep gorges across the Himalayan ranges with sinuosity index ranging 1.95 to 2.6 for meandering segments. It is joined by numerous other stream tributaries during its traverse across the Himalaya till it debouches in the plain.

The Alaknanda all along its length across the Himalaya has characteristically south western course, except the local swing between Karanpryag, Rudraprayag and Srinagar, where it drains in south east direction. The course of Alaknanda seems to have been controlled by weak planes fault/ lineament, the course has constantly maintained by Alaknanda inspite of rise of Himalaya. It is evident by the conspicuous association of epigenetic gorges, entrenched meanders incised straight segments of channel courses, stepped rock cut terraces, cyclic terraces, cut scars and strand lines along valley flanks. The major tributaries of Alaknanda have conspicuous south east course and join Alaknanda at an acute angle. The course of this stream has been guided NW-SE trending lineaments which are mostly sympathetic in nature and their trend coincides with the major NW-SE structural trends of Himalayas.

The terraces of Alaknanda are both cyclic and non-cyclic in nature and display convergence and divergence in their relative disposition in the valley. The divergence and pairing is distinctly seen in older terraces Viz. AT6, AT5, AT4, whereas the younger terrace AT1, AT2, AT3 display convergence in their disposition the former are cyclic whereas the later mostly remained non-cyclic in nature. The divergence and cyclic nature of the older terraces indicates the abrupt and sharp incision of valley floor due to relatively sudden uplift of watershed region of Alaknanda in early Holocene times Khan (1981). The convergence and non –cyclic nature of younger suggest the decrease rate of uplift and long period of climatic changes in the region. As whole the occurrence of terraces and their mutual and disposition in Alaknanda indicates the steady and constant decrease in rate of uplift in Himalaya from early to late Holocene time Khan (2018).

The terraces developed in Alaknnanda valley are in general rectangular; semis circular to circular and cuspate in shape, each of these types are related to separate genetic and tectonic process.

Among these the semi circular, which are related with short interval meander of the channel were formed due to enhanced energy condition of the channel associated with increasing discharge and low gradient, such terraces are observed around Nandaprayag, Gauchar, Nagrasu, and Dhari Kaliyasaur. These are generally non cyclic terraces and indicate lateral shift in channel due to differential up warping of different blocks of Himalaya. The elongated and rectangular on-cyclic and cyclic terraces in the valley are observed around Srinagar, Nagrasu, Gauchar, Bamoth and Langasu. The former one were formed by combine processes of lateral coalescences and unidirectional shift of the straight segment of channel and subsequent incision, where the later due abrupt activation in energy condition due to sudden uplift and subsequent adjustment of the base level of channel by incision of the valley floor.

The semis circular to circular and cuspate are related to the meander process, lateral shift of the channel and ingrown incision. The point bar development in such process is often noticed in slip of slope of channel meander, separated by small scarp relatively of small magnitude indicate the micro pulse of uplift in Himalayan towards later phases of terrace formation.

The cuspate revealing a dip of 2 to3 degree is formed by incision of several loops of different elevation on one side of the valley. It suggests multiple rejuvenation of the channel through micro-episodes of uplift in the head ward ends of Alaknanda during Quaternary time. These terraces are observed around Rudraprayag, Karnpryag, Srinagar and Gauchar in Alaknanda valley Khan (1981).

In upstream of Karanpryag in Alaknanda Valley around Utma and Thali tilt in river terraces of 3 to 5 degree towards North –East does recorded Khan (1981) .The sub litho units of these terraces comprise rock clastics of various shape and size in the matrix of sand and silt. It displays appreciable displacement and dislocation in their disposition in terraces section .The tilt in terraces block and associated characteristics of rock fabrics strongly suggest the recent movement in the area along some lineaments.

Khan (1981) recognized linear trench across the terraces in Alaknanda valley around Nagrasu, Gholtir, and west of Gauchar along the Alaknanda fault. This East-West trending fault deeply dissected the multiple sequence of terraces and developed truncated drainage of minor gullies of partly impersistent and internal nature. This fault seem to be active in this area as evident by shifting of the terrace block, active retreating terrace scarp, minor dislocation in stratified sand horizon, steep vertical incision in, active alluvial capping in the terraces along the valley flanks, and

diverse imbrications pattern of rock fabrics along the straight segment of channel. The release of accumulated strain energy along the fault plane and subsequent reactivation of the fault has appreciably organized mass wasting processes in the linear order in the vicinity.

At several places between Deoprayag and Vishnuprayag the Alaknanda has abandoned its original course and flow through newly curved out gorges. Theses channel course are designated epigenetic gorges, Hem and Ganssar (1939) due to their lateral origin and original courses have been termed them as fossil valley Waltier (1962). However, Alaknanda have curved through the new epigenetic gorge, a fossil valley is also present on the one side of the bank and two are separated by a rock wedge of variable dimension. According to Khan (1981) theses epigenetic gorges in Alaknanda were formed by sudden rise of watershed area and consequent rejuvenation of stream to active the new base level, in changed kinenetic condition, discharge and bed slope. It appears that that the superimposition of fluvial cycle on the earlier glaciated valley in the upper part and mass wasting processes associated with the weaker zones /planes have also played the vital role in forming the epigenetic gorges, It is morphotectonic manifestation and is related with tectonic activity in the area of watershed of Alaknanda. The three level of epigenetic gorges in Alaknanda valley are identified at an elevation of 5m, 8m and 12m from present day course of Alaaknanda indicate cyclic rejuvenation of stream in recent past.

In Alaknanda around Hanuman Chatti and Hillong tilt in the hanging moraine, association of nick points in river bed of Vishu Ganga near Vinay Chatti, association of rock slide with steep rock cliff north of Joshimuth, occurrence of active land slide around Depoban in Dhauli ganga and Patal Ganga and dissected cones of cirque moraines both in Vishnu Ganga and Dhauli Ganga are noticed these are positive evidences of neotectonisam in Himalaya Khan (1981). Further indicate that tectonically area is active and slow movements are taking place along the thrust /faults /and lineaments traversing the area which is matter of concerned and needs attention of scientist.

The gradient of Alaknanda river in Karangpryag and Deoprayag is about 1:265, while Srinagar and Deoprayag is 1:165, forming an overall upward convex profile. The gradient of terraces between these two sections is 1 in 310 and 1 in 245 respectively. According to Sinha & Khan ((1975) the upward convexity might possibly be due to recent movement along the Srinagar Nalupani fault/thrust crossing the Alaknanda.

In Bhilangna valley the average gradient of the terraces and channel is 1:120 towards downstream , however , the terraces have little lesser gradient than the river channel, which might indicates that presently river is slowly under cutting its bed. Again there is slight reduction in the gradient of terraces between Dowal and Asena , the gradient is slightly more towards upstream and downstream. There is possibility that this is the result of Neotectonic movement along the Srinagar Naluoani fault/thrust which runs oblique to the river through Dewal. The Bhilangna terraces at Dewal have been dissected and displaced along the fault Sinha & Khan ((1975). The fluvial terraces of Pindar around Simli show upward movement and tilt towards north east. The tilt in some adjacent terrace is of order of 5 degree toward south east. The up warping and tilt has caused perceptible displacement in the pebble bed of terraces and caused reverse plunge of pebble axis , which indicates the area is active and recent movement are taking place along the lineament/ faults in the area. Khan (1975)

The longitudinal profile of Nandakini is quite simple as compared to Alaknanda. The slope of profile is slightly concave, smooth and has gradual slope. The profiles of fluvial terraces in general follow the profile of present day channel. It appears that Nandakani has adjusted its course along some weaker planes during up rise of head ward ends during the Holocene times (Khan 1981). The gradient of river bed of Nandakani between Nanala and Nandprayag is 1:0.55 Nanala and Ghat 1:2.77 respectively. In the area around Chamtali there is a sudden fall in the bed slope, indicating some up warping activity in Nandakini in recent past. The profile of fluvio-glacial terraces is suspended in nature; it pinches out upstream against the glacial terraces and downstream against the terraces of fluvial domain and perhaps represents the transitional phase of sedimentation in the valley. The profile of glacial terraces is restricted upstream of Nanala, where glacial terraces/glacial moraine are mostly dissected and discontinuous in nature and thereby indicating extensive erosion by renewed depositional activities subsequent to the recede of glacier in post-Pleistocene times.

The longitudinal profile of Mandakini terraces in general is concave with mild convexity in the area around Rampur and Tilwara. The profile of river bed is steep to gentle, between Kund Chatti and Augustmuni, it has gradient 1:10, Agustmuni and Rampur, 1:5, whereas between Rampur and Rudraprayag, the gradient is considerably reduced and profile has become nearly flat. The profile of both river terraces and river bed is slightly convex upward between

Agustmuni and Tilwara. It possibly indicates some differential up warping in the area (Khan in press), caused by some recent movement along lineaments and faults.

The fluvial terraces generally have uniform thickness and gradual gradient in Rudraprayag and Bhatwari section whereas upstream of Bhatwari it is considerably reduced. The average gradient of these terraces between Rudraprayag and Bhatwari is 1:4.4, 1:4.4 and 1:5.56, respectively. The profile of fluvio-glacial terraces is restricted in the middle part of the valley; it is truncated upstream against the profile of glacial and downstream against the fluvial terraces, which suggests the transition phase of sedimentation between the domains of these two terraces in the valley during the quaternary times. The average gradient of these terraces in the valley is 1:52. The profile of glacial terraces restricted upstream of Agustmuni, it has gradients of 1:9.33, between Kund Chatti and Bhatwari, in Sonparyag section it is of order of 1:92.In Kedarnath and Kund Chatti it become steep and represent rock cut terraces capped by glacial moraines.

The general shape of profile of Pindar River is concave and gentle with isolated convexity and steepness at places. The concavity and gentle shape of profile indicates the graded nature and balanced cutting of the river bed, while the convexity indicates comparatively good competence of rock constituting the river bed which is still under active cutting. The convexity in the channel profile in lower Pindar is perhaps due to deposition of coarser material in the river bed by tributaries joining Pindar in the lower segment of valley. The association of innumerable channel braids indicates under loading of channel due to loss of bed slope and low energy condition. The convexity in a river profile appear due to recent movements along the lineaments traversing the area which has also caused shifting of terrace block and tilt in older terraces in valley Khan (1975).

Epigenetic Gorges and Fossil Valley in Alaknanda:

The Alaknanda River descends across the Himalaya in straight, sinuous pattern and its course is strongly controlled by structural elements, it has abandoned its original course at several places between Vishnuprayag and Devprayag and flows through newly curved out gorges. These new channel courses have been designated as epigenetic gorges (Heim and Ganser 1939) due to their lateral origin and the original abandoned courses have been termed fossil valley. Whereas Alaknanda has curved through the new epigenetic gorge, a fossil valley is also present on one of its bank and two are separated by a wedge or hump of rocks of variable dimensions. These epigenetic gorges were formed due to superimposition of fluvial cycle of erosion on earlier glaciated valley, cyclic rejuvenation of Alaknanda associated with the different phases of up warping/climatic changes.It is also supplemented by sudden change in the Kinetics of the stream system due to tectonic and neotectonic activity along thrust/faults and lineament traversing the area in Quaternary times. In Alaknanda between Karanprayag and Srinagar at about ten places the epigenetic gorges have noticed.

These occur near Karanprayag, Bamoth, Gharkot, Dharkot, Ratura, Trini, Uttiyasu, Kaliasour, Koteshwar and Srinagar are described below: (Plate No.13).

Geomorphic Evolution Of Fluvial Terraces In Alaknanda And Its Tributaries

The Quaternary period was heralded by widespread glacial activity in Himalaya. It is considered that there were at least four periods of glaciations with three intervening inter glacial period during the Pleistocene time. With the advent of Holocene the glaciers in Himalaya began to recede due to major climatic changes and as a sequel large volume of water impounded in glacier was released to the major antecedent rivers descending the Himalaya.

In the Holocene time the area experienced the major tectonic/eustatic and climatic changes which renewed the erosional and depositional activity superimposed their creation on the pre-existing topography and reshaped the morphogenetic expressions of the basin. As witnessed by the occurrences of as many as six prominent regional terraces in Alaknanda, the trunk stream of Ganga System, there have been at least six pulses of uplift, aided by the climatic changes Khan (1981) (1987). The Alaknanda was the first major streams to emerge on the surface, following subsequently by Bhagirathi, Bhilangna, Nandakini, Mandakini/Pinder/Dhauli-Ganga ,Madhmeshwar Ganga and Berhi-Ganga the tributaries, each characterized by five, four, three two and one terrace respectively.

Based on the parameters like terrace correlation both inter and intra valley wise, their regional disposition and occurrence, the following sequential order of valley development in Ganga basin in parts of Garhwal Himalaya is established is as follows Khan et.al. 1981), Khan (1981,1987).

Sequence of va	alley dev	velopment	
Stage – VI	:	Berhi – Ganga	One level of terrace
Stage – V	:	Madhmeshwar	Two level of terrace
Stage – IV	:	Bal Ganga, Mandakini, Pindar	Three level of terrace
		Dhauli Ganga	
Stage – III	:	Bhilangna=, Nandakini	Four level of terrace
Stage – II	:	Bhagirathi	Five level of terrace
Stage – I:		Alaknanda	Six level of terrace

Based on the sequence of valley development the following sequential order of terrace development is established .

Sequential order of terrace development :

Alaknanda	Bhagi-	Bhila-	Nanda	Manda-	Pindar	DhauliGanga	Bal	Madh	Berhi	
	rathi	Ngna	kini	kini		_	Ganga	Mesh	Ganga	
								war		
								Gang		
1	-	-	-	-	-	-	-	-	_	
2	1	-	-	-	-	-	-	-	-	
3	2	1	1	-	-	-	-	-	-	
4	3	2	2	1	1	1	1	-	-	
5	4	3	3	2	2	2	2	1	-	
6	5	4	4	3	3	3	3	2	1	
	II III = III IV = IV = IV = IV VVI									
Stages of vall	ey develop	ment								

The occurrences of as many as six terraces in Alaknanda indicate the six pulses of uplift in the watershed region of river in Quaternary times. During the intermittent period of successive uplift peni-planation of flood plain occurred, whereas during the phase of upraise streams were forced to abandon their flood plains and regionally adjusted their base level in relation to the newly formed eaustatic levels, the readjustment of catchment after the release of large quantity of water.

On the basis of terrace correlation, valley development sequential order of terrace development their relation to the uplift/eaustatic/ climatic changes and different phases of rejuvenation of channel the following order of terrace development is suggested.

Sputar Order of Terrace Development										
	Alaknanda	Bhagirathi	Bhalangna	Nandakini	Mandakini	Pindar	Dhauli Ganga	Gal Ganga	Madhmeshwar Ganga	Berhi Ganga
Ι	AT ₆	-	-	-	-	-	-	-	-	-
II	AT ₅	BT ₅	-	-	-	-	-	-	-	-
II	AT_4	BT_4	BHT_4	NT_4	-	-	-	-	-	-
IV	AT ₃	BT ₃	BHT ₃	NT ₃	MT ₃	PT ₃	DGT ₃	BGT ₃	-	-
V	AT_2	BT ₂	BHT ₂	NT_2	MT ₂	PT ₂	DGT ₂	BGT ₂	MDT ₂	-
VI	AT_1	BT_1	BHT_1	NT_1	MT_1	PT_1	DGT_1	BGT_1	MDT_1	BBT_1

Spatial Order Of Terrace Development

The occurrences of six terraces in Alaknanda correspond to the six phases of uplift/eustatic/climatic changes in the head ward of Ganga system in Holocene time.

In the first phase of uplift/eustatic/climatic changes, Alaknanda formed its first and oldest terrace, i.e. AT₆.

In the second phase, while Alaknanda had already formed one terrace, the Bhagirathi joined the scene of terrace building activity and subsequently formed the terrace, 1.e. (BT_5) , simultaneously with AT_5 of Alaknanda.

In the third phase, the other tributaries viz. Bhilangna, Mandakini, developed their first terrace viz BHT_4 , NT_4 , simultaneous with the AT_4 of Alaknanda, and BT_4 , of Bhagirathi.

In the fourth phase the Mandakini, Pindar, Dhauli Ganga and Bal Ganga developed their first terrace viz. MT_3 , PT_3 , DHT_3 , and BGT_3 , contemporaneous to AT_3 of Alaknanda, BT_3 , of Bhagirathi, BHT_3 , of Bhilangna, NT_3 , of Nandakini.

In the fifth phase the Madhmeshwar Ganga the youngest tributary of Ganga system entered in terrace building activity and formed its first terrace MDT_4), simultaneously with AT_2 , of Alaknanda. BT_2 of Bhagirathi. BHT₂, of Bhelangna, NT₂, of Nandakini, MT₂, of Mandakini, PT₂, of Pindâr, DHT₂, of Dhauli Ganga and BGT of Bal Ganga.

In the sixth phase the Madhmeshwar Ganga formed its second terrace ie. MDT_1 simultaneously with AT_1 , of Alaknanda, BT_1 , of Bhagirathi, BHT_1 of Bhelangna, NT_1 , of Mandakini, MT_2 , of Mandakini, PT_1 of Pinder, DHT_1 , of Dhauli Ganga and BGT₁, of Bal Ganga, MDT_1 , of Madheshwar Ganga and BRT₁, of Berhi Ganga.

It is evident that in the post-Pleistocene time the Ganga Basin area has undergone the process of aggradation, degradation six times. Each aggradations phase was intervened by the phase of degradation during the course of uplift. On the above basis, the spatio-temporal order delineating the phase of aggradations and degradation phases of Quaternary sedimentation is suggested as below: (Table No.21)

Conclusionn:-

The Geological and Geomorphological study in Upper Ganga basin has been attempted in parts of Uttarkashi, Chamoli, Pauri and Tehri districts an area of 10000 Sq.kms in parts of QA sheet 53J and 53 N on 1000000/ 1:50000 scale of Garhwal Himalaya U.P; presently known as Uttrakhand State of Union of India.

The area of Upper Ganga basin consisting of drainage net of Alaknanda,Bhagirathi,Bhilangna, Nandakini, Mandakini, Pindar, Dhauli- Ganga Bal- Ganga , Madhmeshwar Ganga and Berhi Ganga. The Alaknanda embraces and and chracterised by six fluvial terraces besides terraces followed by Bhagirathi with five terraces , Bhilangna Nandakini four terraces Mandakini /Pindar/Dhauli-Ganga /Balganga three terraces , Madhmshwar Ganga two terraces and Bherhi Ganga one terrace besides glacial and fluvio-glacal terraces, amidst, these Alaknanda is trunk stream and others are tributaries. The area genetically comprised of terraces of three domains, viz. glacial, fluvioglacial and fluvial which represent distinct environment of sedimentation of Pleistocene, late Pleistocene and Holocene time during Quaternary period. The glacial terraces are identified at an average elevation of 1150 m above m.s.l. the fluvio-glacial terraces at an average elevation of 975m above m.s.l. and Fluvial terraces at an average elevation between 650 to 900 m above m.s.l.

The Alaknanda has formed six prominent regional terraces in the valley. These have been designated as ATO, to AT6. The AT0, being the low level surface above the present day course of the river being a part of active flood plain. The AT1, being the youngest and AT6, being the oldest terrace in the area. Each of these terraces is separated by the scarp both of linear and curvilinear in nature facing towards river. These terraces are both erosional and depositional in nature and display divergence and convergence in their relative disposition. The erosional terraces are generally seen as isolated pockets and lenses resting over the country rocks along the higher part of the valley flanks, representing the former levels of valley floors. In general these terraces are very ill preserved and have very few matched equivalent in the valley. The occurrences of these terraces and associated features in the higher parts of valley indicate the rigorous and abrupt incision of valley floors due to relatively rapid and sudden uplift of watershed region of Alaknanda during the early Holocene times.

The complete sequence of terraces in the valley is seen at very few places viz. around Srinagar, Koteshwar, Rudraprayag, Nagrasu and Gauchar which give almost the complete account of tectonic and climatic changes in the area; whereas at other places one, two or three terraces are preserved, and many other have been eroded away.. It indicates incisive as well as rapid migrating nature of the stream. These terraces are both paired and unpaired and display convergence and divergence in their relative disposition. The divergence and pairing in general is seen in the

older terraces viz. AT6, AT5, and AT4, whereas the younger terraces viz. AT1, AT2 and AT3, display convergent in their disposition and mostly remained unpaired.

The divergence and pairing in the older terraces indicate the abrupt and sudden incision of the valley floor due to relatively sudden upraise of head ward ends of the Alaknanda and consequent climatic changes, in the early Holocene times. The convergence and un-pairing in younger terraces, on the contrary, indicate decrease in rate of uplift and long interval climatic change towards the later phases of sedimentation in the valley. The pairing, un-pairing and relative disposition of terraces as whole in Alaknanda suggests the constant and steady decrease in rate of uplift in Himalaya from early to late Holocene time.

Alaknanda is Antecedent River which traverses across the strike of Himalayan ranges and negotiate both across and along thrust/fault and linaments. The channel morphology of Alaknanda is diverse and associated various diagnostic morphotectonic features and elements, amidst these the epigenetic gorges which are associated at different level i.e. at 5m, 10m, 12m, and 15m within the present valley suggest the channel system has been under tremendous stress and under tectonic influence. It was governed and controlled by consequential and residual energy system and frequential newly generated energy system by neotconic movements along thrust/fault/lineaments traversing the area. The disposition of epigenetic gorges and their association with Alaknanda suggests at least three major tectonic events in Holocene time. The morphogenetic illustration of channel morphology of Alaknanda indicates that area is active, sensitive and prone to Earthquake.

The-Himalayan thrust like Central thrust Srinagar thrust, Alaknanda fault, Tons thrust, show flattening dip suggesting that they lie at comparatively at shallow depth at short distance, down dip from their out crops, recent movements along the trace of these faults /thrust are unpredictable the slow movements along these thrust /faults have considerably affected Quaternary terraces of glacial, fluvio-glacial and fluvial domain of Alaknanda and its tributaries. Beside drainage, river bed profile, landscape architect and over all morphogenetic expression of the area, bears the imprints of neotectonisam which revealed that the area is under stress, active sensitive, and posed to earthquake.

The area of study, morphectonically and morphogenetic North of Wazri in Jamuna valley, North of Uttarkashi in Bhagirathi valley, around Tugnath and Chamoli and South of Joshimuth in Alaknanda valley revealed that there is sharp curvilinear break in morphogenetic expression of the area, which appears to be due to horizontal movement of some sub - tectonic plates towards south , which is causative factor in dislocation in tectonic ecology of the area, it is matter of serious concerned and needs further attention

Table 11:- Salient features of fluvial terraces in type area of Alaknanda Valley.(i)Locality : Srinagar $(30^0 12^2 - 78^0 47^2)$

	River be	d	AT ₁	AT ₂	AT ₃	AT ₄	AT ₅	AT ₆
Age		_	Holocene _					
Elevation above MSL	(m)	600	600	615	635	650	670	690
Geomorphic break (m))-	15	20	20	15	20	20	
Elevation above RB (m	1)	-	20	35	55	70	90	110
Slope		Towar	ds west	Tow	ards SW	- Towards we	est	
Nature of surface		Depos	itional		Eros	ional		
Cycle sedimentation	-	Po	lycycle		Not	exposed		
Orientation of L-Axes	-	NW-SE	E-W	NNE-S	SW	NE-SW	E-W	E-W
Plunge of L-Axes	-	Towar	ds East		Та	wards NE -	Том	ards Wes
Relative disposition	-	Divergent	Divergent	Conver	rgent	Divergent		
Paired / Unpaired	-	Unpaired	Paired	Unpair	ed Paired	Paired	Isolate Patche	ed es
Nature of scarp Curvilinear	-		Curviliı	near			· Linear ·	

Sedimentary features	-	Not ex	kposeda) Graded beddingCross-b) Cross beddingbedding
			c) Lamination and cross
			limitation
Terrace Shape Circular	-	Cuspate	Rectangular Semi-
			Isolated cap
Land use pattern	-		Inhabitation and cultivation
Composition/Litho con Arranged in probable	nstituents order of	River bed :-	Quartzite, granite, gneiss, schist, basic, phyllite, slate, shale and sand
abundance and		AT ₁ :-	Quartzite, gneiss, granite, schist, basic, limestone, phyllite, slate
			sand.
		AT ₂ :-	Ouartzite, gneiss, granite, schist, phyllite, slate, sand and silt.
		AT ₃ :-	Quartzite, gneiss, granite, fossiliferous, limestone, basic,
phyllite,		5	
1 5 /			slate, shale, sand and silt.
		AT4 :-	Ouartzite, gneiss, granite, basic, schist, phyllite, slate, shale,
sand		-	
			and silt.
		$AT_5 :-$	Quartzite, gneiss, granite, basic, schist, phyllite, slate, shale,
sand,		•	
,			silt and clay
shale.		AT ₆ :-	Quartzite, limestone, gneiss, granite, schist, phyllite, slate, sand, silt and clay.
** The fabric eleme	nts of rive	er terraces ra	ange in size from boulder to small pebble. The finer clastics
		e	

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.
 (ii) Locality : Pharasu (30⁰ 14-30" - 78⁰ 52'.00")

Age	River be	d	AT ₁ Holocene	AT ₂	AT ₃	AT ₄	AT ₅	AT ₆
Elevation above MSL (m)	605	615	635	660	675	700	725
Geomorphic break (m)	-	15	20	25	15	25	25	
Elevation above RB (m	l)	-	15	35	70	85	110	135
Slope	Towards	SW	Toward	ls West ·		Towar	ds South V	Vest
Nature of surface		Depositi	onalErosional	Deposit	tional	Depositi	onal	- Erosional
Cycle sedimentation exposed	-		Uncycle		Po	lycycle	Not	fully
Orientation of L -Axes	-	E-W	NNE-SSW	NE-SW	NW-SV	V NW-SW	V NW-S	W
Plunge of L-Axes North	-	To	wards East			Towards	NW	- Towards
Relative disposition	-	C	Convergent			- Divergent		
Paired / Unpaired	-		Unpaired -				- Paired	
Nature of scarp	-		Curvilir	near			Linear -	
Sedimentary features	-	Graded Cross I	Bedding, Bedding, lamina	ation,cro cut & f	ss bedding, ill features	, cross ,lamir	nation,	

Terrace Shape circular	-	Cuspate	Rectangular Semi-Circular
Land use pattern	-		Inhabitation and cultivation
Composition/Litho con Arranged in probable	nstituents order of	River bed :-	Quartzite, gneiss, schist, basic, slate, shale, limestone and sand
abundance		AT ₁ :-	Quartzite, gneiss, granite, schist, , phyllite, slate, shale and &sand.
		$AT_2:$	Quartzite, limestone (fossiliferous), gneiss, granite, phyllite,
	slate,		
			shale and basic.
		AT ₃ :-	Quartzite, gneiss, sandysilt, granite, schist, limestone, phyllite, slate, shale, sand and silt.
		AT ₄ :-	Quartzite, gneiss, Fossiliferous, limestone, phyllite, slate, basic, shale, sand, silt and clay
		AT ₅ :-	Gneiss, granite, quartzite, schist, slate, shale, sand, silt and clay
		AT ₆ :-	Quartzite, granite, schist, limestone, gneiss, basic, slate, , sand, silt and clay.
** The fabric along	nto of mixe	n tonnoood m	and in size from houldon to small nobble. The finer election

(iii) Locality : Rudraprayag and Ultiyasu Area $(32^0 30' 00 - 79^0 57' 30'')$

	River be	ed	AT ₁	AT ₂	AT ₃	AT ₄	AT ₅	AT ₆
Age	()		Holocene	< = 0		<0 .		
Elevation above MSL	(m)	625	635	65U 20	670 15	685	715	740
Geomorphic break (m	.)-	10	15	20	15	30	25	115
Elevation above KB (n	n)	-	10	25	45	00	90 Tanaa	115
Slope West							Towar	ds South
Nature of surface - Erosional	-]	Depositional			
Cycle sedimentation	-	Section not	Section no	t	Unicycle		Polycyc	ele
Orientation of L-Axes		Fully expos	ed fully exp North East →	osed		South Wo	est	
Plunge of L-Axes Relative disposition as islated	-	5 ⁰ towards	north east	Divergei	10 ⁰ NE nt	9 ₀ NE	10 ⁰ N	Occur
Paired / Unpaired	-				U	npaired	caps	
Nature of scarp Curvilinear	-			Lin	ear			
Sedimentary features	-		Graded Be cross bedd cut & fill f lamination Cross lam	edding ling éatures 1 & ination -				

Terrace Shape -		Rectangular
Land use pattern -		Inhabitation and cultivation
Composition/Litho constitu	ients River bed	- Quartzite, gneiss, granite, schist, basic, phyllite, shale,
Arranged in probable orde	er of	limestone and micaceous sand.abundance AT ₁ :-
Qua	artzite, slate, phyll	lite, basic, gneiss, granite, fossiliferous,
c .		Limestone and sand.
	AT ₂ :-	Quartzite, slate, basic, phyllite, gneiss, granite, schist,
foss	siferous limestone	e, sand and silt.
	AT ₃ :-	Quartzite, gneiss, granite, schist, basic, slate,
foss	siliferous, limeston	e silt, sand and clay.
	AT ₄ :-	Quartzite, gneiss, granite, schist, basic, slate, phyllite, Fossiliferous, limestone, silt, sand and clay.
nhvllite sond and	AT ₅ :-	Quartzite, gneiss, granite, schist, limestone, slate, red, silt,
phymic, sand and	Chay	
sand, silt and clay.	AT ₆ :-	Quartzite, granite, schist, gneiss, limestone, phyllite, slate,

(iv) Locality : Nagrasu (32⁰ 17' 25" - 79⁰ 10'00")

A ge	River be	d	AT ₁ Holocene	AT ₂	AT ₃	AT ₄	AT ₅	AT ₆
Elevation above MSL	(m)	650	670	695	710	745	765	790
Geomorphic break (m))-	20	25	15	35	20	25	190
Elevation above RB (n	,' 1)	-	20	45	60	95	115	140
Slone	•)	Towards we	st		SW	SW		140
Towards		10 mulus we			511	511		
Nature of surface	_	Denosi	Erosi			Denosition	nal	
i ature of surface	Erosional	Бербя	11051			Deposition	141	
Cycle sedimentation	-	-	Unicycle		- Polycycle			
Orientation of L -Axes	-	NW-SE	NW-SE	NW-SE	NNE-SSW	E-W	E-W	
Plunge of L-Axes		5 ⁰ towards	5 ⁰ towards	5° toward	$s5^{0}$ to 10^{0}	5° to 10°	10° toy	vards
I lunge of L TIMES		NE	North	NW	towards No	orth	toward	ls East
	East							
Relative disposition	-		Diverg	zent	C(onvergent		diverge
I	Isolated C	Caps	c	2		8		8
Paired / Unpaired	-	Un	paired		Paired -	τ	Inpaired	
r	Unpaired		T			-	r	
Nature of scarp		Line	ar		Cu	urvilinear		
Sedimentary features	-			Gra	ded Bedding	g		
		Cross	Lamination	n	-	Graded la	mination	cross
		Bedding	& cut and		lamination	cross bedd	ling	
		Lamination	fill feature	S		and cut ar	nd fill feat	ures
Terrace Shape Isolated semi	-	cuspate	Rectangula	ar		Semi	Circular	

				Ciı ciı	rcular to rcular lences			
Land use pattern -	Inhabitation and cultivation							
Composition/Litho constituents Arranged in probable order of	River bed	:- Quartzite, gn fog	eiss, granite, scl ssiliferous, lime	hist, basic, slate, stone and sand.	phyllite, shale,			
abundance	AT ₁ :-	Quartzite, gne shale, limestor	eiss, granite, sch ne, silt and sand	ist, slate, phyllit	e, basic,			
	AT ₂ :-	Quartzite, gneiss, granite, phyllite, limestone, fossiferous slate, shale, sand and silt.						
	AT ₃ :-	Quartzite,	gneiss,	granite,	Fossiliferous,			
limestone,basic,phyllite		Slate, shale, sa	and and silt.					
	AT ₄ :-	Quartzite, gne Coarse to yell	eiss, granite, lim ow sand, yellow	estone, shale, ba purples silt and	sic, slate, clay.			
	AT ₅ :-	Quartzite, gne Purple sand, r	eiss, granite, sch ed silt and clay	ist, basic, shale,	slate,			
	AT ₆ :-	Granite, schist, gneiss, Fossiliferous, limestone, phyllite, slate, , And slate red fine sand, silt and clay.						

(v) Locality : Gauchar-Bamoth $(30^{\circ} 17' 30'' - 79^{\circ} 10'00'')$ (Photo No.21)

Terrace and its Designation

	River b	ed	AT ₁	AT ₂	AT ₃	AT_4	AT ₅	AT ₆
Age			Holocene					
Elevation above MSL	(m)	650	670	690	715	745	785	800
Geomorphic break (m	ı)-	20	20	25	30	40	15	
Elevation above RB (I	n)	-	20	40	65	95	135	150
Slope	,	-	Towards	west		NW	West	NW
-	West							
Nature of surface	-		Deposition	nal		Section not	Polycy	cle
	Section		•				υυ	
					full expo	osed		full
exposed								
Cycle sedimentation	-	Unicycle	Polycycle					
Orientation of L -Axe	s -	N	$\mathbf{W} - \mathbf{S}\mathbf{E} - \mathbf{S}\mathbf{E}$			E-W	NW-S	E E-W
Plunge of L-Axes	-	5 ⁰ to 1	0 towards	North Ea	st			
Relative disposition	-	Convergent	; 	Diverge	nt	- Convergent	t	Divergen
		0		U		C		0
Paired / Unpaired	-					Paired		
Nature of scarp	-		Line	ar		Cu	rvilinea	r
Sedimentary features	-			Cross b	bedding, gr	aded bedding,	lamina	tion, cross
lamination ar	nd cut				0.0			
			and fill fe	atures				
Terrace Shape	-		cuspate		Semi Ci	rcular		
			-					
Land use pattern	-			Inhab	itation and	cultivation		
-								

Composition/Litho constituents River bed :- Quartzite, slate, phyllite, basic, gneiss, granite, limestone Arranged in probable order of and micaceous sand.

AT ₁ :-	Quartzite, gneiss, granite, schist, slate, basic,limestone shale, and micaceous sand.
AT ₂ :-	Quartzite, gneiss, granite, fossiferous, limestone, phyllite, slate Shale, sand, silt and clay.
AT ₃ :-	Quartzite, phyllite, gneiss, granite, slate, basic, schist, shale, Fossiliferous, limestone, sand, silt and clay.
AT ₄ :-	Quartzite, gneiss, granite, schist, fossilifeous, limestone,
A (T)	slate, sand silt and clay
$AT_5:$	Quartzite, gneiss, granite, schist, slate, fossiliferous, limestone,
	Phyllite, silt, clay and sand.

Granite, schist, gneiss, granite, fossiliferous, limestone, phyllite,

AT₆ :-

phyllite,

slate, clay, silt and sand.

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

Table -12:- Salient Features Of Fluvial Terraces In Type Area Of Bhagirathi Valley.

(i) Locality : Tehri 30⁰ 28' 22" : 78⁰ 22' 48"

Age	BT ₁ Holocene	BT ₂	BT ₃	BT ₄	BT ₅		
Elevation above MSL (m)	427	432	440	447	456	462	
Geomorphic break (m)	-	5	8	7	9	5	
Elevation above RB (m)	-	5	13	20	29	34	
Slope	-	Towards sou	uth	Towards so	uth	Towards south	n
- Towards sou	th	Towards sou	uth				
Nature of surface -	Depositional	Depositiona	IDepositiona	lErosional	Eros	sional	
Cycle sedimentation -	Polycycle	Polycycle	Polycycle	Polycycle	Poly	cycle	
Orientation of L -Axes	-	NW-SE	NW-SE	NW-SE	NW	-SE N-S	
Plunge of L-Axes - to 15 ⁰ North 5 ⁰ to 15 ⁰ North	5 ⁰ to 15 ⁰ Nort h	h	5 [°] to 15 [°] Noi	rth	5 ⁰ to	15 ⁰ North	5°
Relative disposition -	Convergent	Convergent	Convergent	Convergent	Con	vergent	
Paired / Unpaired -	Unpaired	Unpaired	Unpaired	Paired	Pair	ed	
Nature of scarp -	Curvilinear	Curvilinear	Curvilinear	Linear	Line	ar	
Sedimentary features -	Graded bedd	ling, cross lar	nination cut	and fill featu	res		
Terrace Shape -		cuspate, elo	ngated and l	ensoid			-
Land use pattern -			Inhabitation	and cultivat	ion		-
Composition/Litho constituents R Arranged in probable order of	River bed :- Qu	uartzite, gnei to f	ss, schist, sla ile sand.	te, limestone,	coar	se	
abundance B	ST ₁ :- Qu wi	uartzite, gnei th very coars	ss, granite, so to fine sand	chist, phyllite d and silt.	, basi	ic and limestone	
B ::4h	$\mathbf{T}_2 := \mathbf{Q}_1$	uartzite, gnei	ss, granite, l	imestone, ph	yllite	, schist and basic	С
with	V	erv coarse to	fine and silt				
R	т. ·- О	lartzite gnei	ss. granite, h	asic schist li	imest	one with	
	,. Q	parse to fine s	and.	usic, semist, i	11050		
В	$T_4:$ Qu	uartzite, gnei	ss, granite, s	chist, basic, s	late,	phyllite,	
R		neiss granite	schist nhvl	lite slate coa	rse te	n fine sand	

.

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded

(ii) Locality : - Chinyalli Saur (Photo No.63) (30⁰ 31' 52" : 78⁰ 22' 20")

Terrace and its Designation

Age	River bed	BT ₁ Holocene	BT ₂	BT ₃	BT ₄	BT ₅	
Elevation above MSL (r	n)	429	436	446	454	464 472	
Geomorphic break (m)	/	-	7	10	8	10 7	
Elevation above RB (m)		-	7	17	25	35 42	
Slope		-		- Towards	s south		
 Nature of surface -		Depositional	Depositi	onalDepositi	onalDepositi	onalErosional	
Cycle sedimentation -		Polycycle	Polycycl	e Polycycl	e Polycycl	e Polycycle	
Orientation of L -Axes		-	5° to 10°	N	- S		
Plunge of L-Axes -			5 ⁰ to 10 ⁰	⁹ to	wards north		
Relative disposition -			Converg	gent		Diverg	ent
Paired / Unpaired -		Unpaired	Unpaire	d Unpaire	d Unpaire	d Paired	
Nature of scarp -		Curvilinear	Curvilin	ear Curvilin	ear Curvilin	ear Linear	
Sedimentary features - exposed		Graded	bedding	& cut & fill	features	Sectio	n not well
Terrace Shape -			Cr	recent			
Ē	longate						
Land use pattern -	_			Inhabita	ion and culti	vation	
Composition/Litho cons micaceous	tituents F	River bed :- Q	uartzite,	gneiss, grai	nite, schist,	phyllite, slate,	limestone
Arranged in probable of	rder of			meta-volcani	ic, coarse to f	ine sand.	
abundance	E	BT ₁ :- Q	uartzite,	gneiss, grai	nite, schist,	phyllite, slate,	limestone
micaceous,							
		m	eta-volca	nic, coarse to	fine sand.		
	E	$BT_2:- Q$	uartzite,	gneiss, gran	ite, limestor	ne, schist, meta	a-volcanic,
s	late, Coars	e to fine sand	•				
	E	BT3:- Q	uartzite,	gneiss, grai	nite, schist,	basic, phyllite,	slate and
occasional,							
		Μ	leta-basic	and coarse to	o fine sand si	lt and clay.	
	E	BT ₄ :- Q	uartzite,	gneiss, grani	te, schist, pł	yllite, and slate	e with very
coarse							
		Т	o very fin	e sand, silt ar	nd clay		
	E	$BT_5:-$ Q	uartzite ,	, gneiss, gra	nite, schist,	phyllite, slate	with very
coarse to							
		ve	ery fine sil	t and clay.			

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.
(iii) Locality : Dunda
(30⁰ 41' 51" : 78⁰ 21' 05")

Terrace and its Designation

Age	River bed	BT ₁ Holocene	BT ₂	BT ₃	BT ₄	BT ₅		-
Elevation above MSL	(m)	448	451	456	463	468	473	
Geomorphic break (n	n)	-	3	5	7	5	10	
Elevation above RB (1	m)	-	3	8	15	20	30	
Slope	,	-		Towards	s SW			
- Natura of surface		Donosition	al Donosition	Donositi	onolDonositi	onolFroci	onal	
Cycle codimentation	-	Deposition	Uniquelo	indepositi	onarDepositi	Dolyo	wolo	
Cycle seminentation	- Dolvovolo		• Unicycle			Folye	ycie	
Orientation of I Area	Polycycle			100 to 250		15 N V	17	100
Orientation of L -Axe 20^0 NE GW	5	-		10 10 25	19 49 - 5 49 - 5	- 15 IN-V	v -	10 .
20 NE-SW Plunge of L-Axes	-	5° to 10°	toward	ls north				
•••••								
Relative disposition	-		Conver	gent			D	ivergent
Paired / Unpaired	-	Unpaired	Unpaired	Unpaire	d Paired	Paire	d	
Nature of scarp	-	Curvilinea	r Curvilinea	· Curvilin	ear Linear	Linea	ar	
Sedimentary features	-	Graded be	dding, cross be	dding		Sectio	on not	fully
,		Laminatio	n. cross lamina	tion		expos	sed	
Terrace Shape	-		- Semi circul	ar		Elongat	e	
Rectangular						8.0		
Land use pattern	-			Inhabitat	ion and culti	vation		
Composition/Litho co	nstituents F	River bed :-	Quartzite, gne	iss, granit	e, schist, phy	llite, slate	, limes	stone
Arranged in probable	e order of		me	ta-volcani	ic and coarse	e to fine m	nicaceo	ous sand.
abundance	I	BT ₁ :-	Quartzite, gne meta-volcanic,	iss, granit coarse to	e, schist, phy fine sand.	llite, slate	, limes	stone
	I	BT ₂ :-	Quartzite, gne Coarse to fine	iss, granit sand.	e, phyllite, sla	ate, limest	tone, b	oasic and
	I	BT3 :-	Ouartzite, gn	eiss, grar	nite, schist.	phyllite.	slate.	limestone.
Coarse to find	e sand. silt an	d clav.	~ • • • • • • • • • • • • •	.,	,	I	· ···-,	, . ,
	I	BT ₄ :-	Quartzite, gne	iss, granit	e, schist, phy	llite, slate	coars	e to fine
	-		Sand, silt and	clay.				
	ł	3°1′5 :-	Quartzite , gno very fine sand	eiss, granit and clay.	te, schist, slat	e and ver	y coar	se to

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

(iv) Locality : Uttarkashi (30⁰ 43' 00" : 78⁰ 26' 00")

Terrace and its Designation					
River l	Ded BT ₁ Holocene	BT ₂	BT ₃	BT ₄	BT ₅
Elevation above MSL (m)	460	464	469	474	479 491
Geomorphic break (m)	-	4	5	5	5 12
Elevation above RB (m)	-	4	9	14	19 31

Slope	-		Towards West		
 Nature of surface - Cycle sedimentation -	Deposition	nal Deposition Not exposed	alDepositionalErosio	nal Erosio Polycycle	onal
Orientation of L -Axes	-		- Towards NW		
Plunge of L-Axes -	5'	⁰ to 12 ⁰	towards west	15 ⁰ -	20 ⁰ east
 Relative disposition -		Conver	gent		Divergent
Paired / Unpaired -	Unpaired	Unpaired	Unpaired Paired	Pairee	d
Nature of scarp -	Curviline	ar Curvilinea	r Curvilinear Linear	Linea	r
Sedimentary features -		Graded be	lding	Grade	ed bedding &
·		Cross lamina	ation	cut &	fill features
		Lamination	and cut and fill featur	e	
Terrace Shape -		Crecent		L	ensoid
Land use pattern -			- Inhabitation and cul	tivation	
Composition/Litho constitu	ents River bed :-	Quartzite, gno	eiss, granite, schist, lin	nestone,	
Arranged in probable order	: of	m	eta-volcanic and coars	se to fine sa	nd.
abundance	B T ₁ :-	Quartzite, gno	eiss, granite, schist, ph	yllite, slate	
	-	meta-volcanic	, coarse to fine sand.		
	BT ₂ :-	Quartzite, gn	eiss, granite, phyllite	e, slate and	l coarse to fine
sand	- I.				
	BT ₃ :-	Gneiss, granit	e, schist, phyllite, slat	e, limestone	and
		Coarse to fine	sand.		
	BT ₄ :-	Gneiss, granit	e, schist, phyllite, slat	e, limestone	coarse to fine
		Sand, silt and	clay.		
	BT ₅ :-	Gneiss, granit	e, schist, phyllite, slat	e and very c	coarse
	-	very fine sand	, silt and clay.	•	

Table 13:- Salient Features Of Fluvial Terraces In Type Area Of Bhillangna Valley (i) Locality : Tehri – Simlasau (Photo No.64-65) (30⁰ 43' 15" : 78⁰ 26' 15")

Terrace and its Designation						
River bed	BHT ₁ Holocene	BHT ₂	BHT ₃	BHT ₄		
Elevation above MSL (m)	605	619	632	645	655	
Geomorphic break (m)	-	14	13	12	10	
Elevation above RB (m)	-	14	27	39	49	
Slope	-			Towards	West and	l South
West						
Nature of surface -		Depositi	ional	Eros	ional	
Cycle sedimentation -			Polycycle -			
Orientation of L -Axes	-		Prodor	ninently to	wards SW-	•W

Plunge of L-Axes	-	5 [°] to 15		- Predominent	tly NE & E	
Relative disposition	-			Convergent -		Rounded Isolate
Paired / Unpaired	-	Unpaired		Unpaired	Paired	Paired
Nature of scarp	-	Curviline	ar	Curvilinear	Curvilinear	Curvilinear
Sedimentary features	-	Graded be Graded la Cut & fill	edding minat featur	, cross bedding ion, cross lami e	g, nation	
Terrace Shape	-			Crecent sl	haped	Rounded
Land use pattern	-			Inha	bitation mainly	y
Composition/Litho co Arranged in probable	onstituents e order of	River bed :-	Quar	tzite, gneiss, gı limeston	canite, phyllite, le and sand.	slate, basic and
abundance		BHT ₁ :-	Quar limest	tzite, gneiss, gı tone and sand.	ranite, phyllite,	slate, basic and
		BHT ₂ :-	Quar Coars	tzite, gneiss, gı se to fine sand.	ranite, schist, b	asic, limestone and
		BHT ₃ :-	Quar Sand	tzite, gneiss, gı and silt.	ranite, limestor	ne, schist coarse to fine
		BHT ₄ :-	Quar to ver	tzite, gneiss, gı y fine sand, sil	ranite, limeston It and clay.	ne, schist with very coarse

(ii) Locality : Dewal (30⁰ 02' 27" : 79⁰ 33' 25")

Terrace and its Design	ation					
Age	River bed	BHT ₁ Holocene	BHT ₂	BHT ₃	BHT ₄	
Elevation above MSL ((m)	610	622	635	649	661
Geomorphic break (m))	-	12	13	12	14
Elevation above RB (m	ı)	-	12	25	37	57
Slope		-	SW	SW	SW	SW
Nature of surface -		Depositional	Depositional	Erosional	Erosiona	al
Cycle sedimentation -		Not exposed	Not exposed	Not exposed	Not expo	osed
Orientation of L -Axes			Predominant	ly	Predomi	inantly
]	Predominant	ly	Predominant	ly		-
		NW-SE	NW-SE	NW-SE	NW-SE	
Plunge of L-Axes -		Variable	Variable	5 [°] -20 [°] NE	5 ⁰ -20 ⁰ NI	Ξ
Relative disposition -		Convergent	Convergent	Divergent	Diverge	nt
Paired / Unpaired -		Unpaired	Unpaired	Paired Shifte	d Paired	l Shifted
Nature of scarp -		Curvilinear	Curvilinear	Linear	Linear	
Sedimentary features -				Section not	exposed ·	
Terrace Shape -		Crecent	Crecent	Elongated Rectangular	Elongate	ed ular
Land use pattern -			Inha	bitation and C	ultivation	ulai

Arranged in probable order of abundance

Composition/Litho constituents River bed :- Quartzite, gneiss, granite, phyllite, slate, basic, limestone, coarse to fine micaceous sand. **BHT**₁:-Quartzite, gneiss, granite, phyllite, slate, basic, limestone

- and coarse to fine micaceous sand. **BHT**₂:-Quartzite, gneiss, granite, phyllite, schist, slate, coarse to fine sand & silt. Quartzite, gneiss, granite, phyllite, slate, schist and very **BHT**₃:-Coarse to fine sand, silt and clay. **BHT**₄ :-
 - Gneiss, granite, phyllite, schist, slate and limestone and Very coarse to very fine sand and clay.
- ** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape & subrounded to well rounded.

(iii) Locality : Asena $(30^{\circ} 23' 00'' : 79^{\circ} 35' 00'')$

Age	River bed	BHT ₁ Holocene		BHT ₂	BHT ₃	BHT ₄		
Elevation above MSL (m)	612		628	643	661	671	
Geomorphic break (m)		-		16	15	17	10	
Elevation above RB (m)	-		16	31	49	59	
Slope		-		SW	SW	SW	SW	
Nature of surface -		Deposition	nal	Depositional	Erosional	Erosion	al	
Cycle sedimentation -				Polyc	ycle		Not expo	sed
Orientation of L -Axes		-			P	redominan	t South Wes	st
Plunge of L-Axes - North	-	5 ⁰ -10 ⁰ NE			5 ⁰ -25 ⁰ N		1	$0^{0}-30^{0}N$
Relative disposition -		Converge	nt	Convergent	Divergent	Diverge	ent	
Paired / Unpaired -		Unpaired		Unpaired	Paired	Paired		
Nature of scarp -				Curvilinea	r	· 1	Not exposed	
Sedimentary features -					Graded bed	lding	Not expo	sed
				Cross beddin Lamination	g lamination,	cross		
Terrace Shape -		Crecent		Crecent	Elongated	Elongat	ed	
Land use pattern -				Inha	bitation and	Cultivation	1	
Composition/Litho con Arranged in probable of	stituents H order of	River bed :-	Quar	tzite, gneiss, g slate an	ranite, schist, d coarse to fir	basic, lime 1e micaceou	stone us sand.	
abundance	I	3HT ₁ :-	Quar and c	tzite, gneiss, g coarse to fine s	ranite, schist, and.	slate, basic	e, limestone	
	I	BHT ₂ :-	Quar	tzite, gneiss, g	ranite, schist,	, slate and	limestone co	oarse to
	fine			0 11/				
	Ι	3HT3 :-	sand Quar to yet	& silt. tzite, gneiss, gi rv fine sand &	ranite, schist, silt.	limestone a	and slate ver	ry coarse
	Ι	3HT4 :-	Quar Very	tzite , gneiss, g fine sand and	granite, schist, silt.	, limestone,	, very coarse	e to

(iv)	Locality	:	Ghansali	
	-		•	

 $(30^{\circ} 25' 00'' : 78^{\circ} 40' 00'')$

Terrace and its Designation

Age	River bed	BHT ₁ Holocene	BHT ₂	BHT ₃	BHT ₄		
Elevation above MSL (1	m)	625	641	659	674	691	
Geomorphic break (m)		-	16	15	18	17	
Elevation above RB (m))	-	16	31	49	66	
Slope		-		SW – S	outh		Towards
West							
Cycle sedimentation -				Polyo	cycle		
Orientation of L -Axes		-		Sout	th west		
Plunge of L-Axes -		10 ⁰ -20 ⁰ NE	E		5-15 ⁰ N	orth	
Relative disposition -		Converge	nt Convergent	t Convergent	Diverge	ent	
Paired / Unpaired -		Unpaired	Unpaired	Paired	Paired		
Nature of scarp -			Curvi	linear		Linear	
Sedimentary features -		Most grad Cross bed Cross lam Cut &Full	led bedding ding, ination l features				
Terrace Shape -			Crecent	Elong	ated	ill preserv	ved
Land use pattern -			In	habitation and	Cultivation	n	
Composition/Litho cons	stituents F	River bed :-	Quartzite, gneiss,	granite, schist,	meta-volca	anic e sand	
abundance	E	BHT ₁ :-	Quartzite, gneiss, matrix of coarse t	granite, meta-v o fine sand.	olcanic, pl	hyllite, slat	e in the
	E	BHT ₂ :-	Ouartzite, phyllite	e. slate. limestor	ne. gneiss. :	schist sand	l.
	E	BHT ₃ :-	Quartzite, gneiss, fine sand.	granite, slate, p	hyllite, lin	nestone, co	arse to
	E	3HT4 :-	Quartzite, gneiss	s, granite, phyl	lite, slate,	limestone	, coarse to
fine sa	nd.						

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

Table 14:- Salient Features Of Fluvial Terraces In The Type Area Of Nandakini Valley. (i) Locality : Nandprayag $(30^{\circ} 27' 22'' : 78^{\circ} 22' 48'')$

Terrace and its Designation River bed N₁ N_2 N_3 N_4 Holocene Age_ Elevation above MSL (m) 1015 1030 1050 1070 1080 Geomorphic break (m) 15 25 20 10

Elevation above RB (m) Slope	-	15	40	60 Towa	70 ards North West
Nature of surface - Erosional			Deposition	al	
Cycle sedimentation -	Section not fully exposed	y Unicycle	Polycycle	Section 1 exposed	not fully
Orientation of L -Axes	-				NE – SE
Plunge of L-Axes - Relative disposition - Paired / Unpaired -	5 ⁰ towards SE Unpaired	5 ⁰ to 10 ⁰ tov Divergent Paired	vards SE Paired	10 ⁰ towar Converg Paired	ds SE gent Divergent
Nature of scarp -	Curvilinear	Curvilinear	Curvilinear	Linear	
Sedimentary features -		Graded bed Graded bed Cross beddi Lamination Features	ding ng lamination, l and	Graded amination cut and f	Semi Circular bedding, cross fill features
Land use pattern -		Inh	nabitation main	ly	
Composition/Litho constituents Arranged in probable order of	River bed :- Quar	rtzite, gneiss, ; sand.	granite, schist, j	phyllite, sla	te and
abundance	N ₁ :- Quan coars	rtzite, gneiss, ; se to fine sand	granite, schist, l l.	basic slate,	phyllite
	N ₂ :- Quan Sand	rtzite, gneiss, l and silt.	granite, schist, s	slate, coars	e to fine
	N ₃ :- Gnei Slate	ss, granite, bi , light marooi	otite, uncompos	ed highly v clay.	wethered schist
	N ₄ :- Gnei	ss, granite, sc	hist, slate, light	to dark m	aroon clay, silt and
sand.					

(ii) Locality : RAJWAKTI (30⁰ 28' 05" : 78⁰ 30' 00")

Terrace and its Designation River bed N₁ N_2 N_3 N_4 Age_ Holocene 1030 1050 Elevation above MSL (m) 1020 1075 1105 30 Geomorphic break (m) 10 20 25 Elevation above RB (m) 10 30 55 85 ------ Towards West Slope Nature of surface ----- Depositional ------Erosional Section not fully Polycycle Section not fully exposed Cycle sedimentation exposed ----- East West Orientation of L-Axes------5⁰ towards 0⁰ towards **Plunge of L-Axes** East North East Relative disposition -Convergent Divergent Divergent Divergent Paired / Unpaired Paired Paired Paired Paired -

Nature of scarp -	Curvilin	ear L	inear	Linear	Linear
Terrace Shape -	Cuspate	R	Rectangular	Semi-Circula	ar Semi-Circular
Sedimentary features -	Section n	not C	cross bedding	g Sectio	on not fully
	full expo	sed g	raded beddi	ng	exposed
		la	amination, c	ross	
		la	amination an	nd cut	
		a	nd fill featur	es	
Land use pattern -			Inha	bitation main	ly
Composition/Litho constituents Arranged in probable order of	River bed :	- Quartzi	ite, gneiss, gr	ranite, schist, s	slate and sand.
abundance	N ₁ :-	Gneiss,	granite, schi	ist, slate, sand	and slit.
	N ₂ :-	Quartzi and silt	ite, gneiss, gr	ranite, schist, s	slate, coarse to fine sand
	N ₃ :-	Quartzi	ite, gneiss, gr	ranite, schist, s	slate, clay, sand and silt.
	N ₄ :-	Gneiss,	granite, schi	ist, slate, pink	maroon clay, silt and coarse to
fine					
		Sand.			

** Litho- constituents are arranged in probable order of abundance. The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

(iii) Locality : Nanala (30⁰ 28' 00" : 78⁰ 25' 00")

Age	River bed	N ₁ Holocene	N ₂	N ₃	N_4	
Elevation above MSL	2 (m)	1020	1025	1050	1075	1105
Geomorphic break (n	n)	-	05	25	25	30
Elevation above RB (m)	-	05	30	55	85
Slope		-			Towa	rds NW
Nature of surface	 - Erosional			Deposition	nal	
Cycle sedimentation	-	-	-	Polycycle	Section a	not fully
Orientation of L-Axe	s -			NW-S	E	
Plunge of L-Axes	-	5 ⁰ towards SE	5 ⁰ towards SE	E 10 ⁰ towards S	SE 10 ⁰ (towards East
Relative disposition	-	Divergent	Divergent	Divergent	Diverger	nt
Paired / Unpaired	-	Unpaired	Paired	Paired	Paired	
Nature of scarp	-	Curvilinear	Linear	Linear	Linear	
Terrace Shape	-	Rectangular	Rectangular	Rectangular	Semi-Ci	rcular
Sedimentary features	: -		Graded	Cross	Graded	bedding
•			Bedding	bedding	cross be	dding
			Cross	lamination	cross lan	nination
			Lamination	cross	laminati	on and
			Graded	lamination	cut fill	
			Lamination	cut and fill fe	atures	cut fill featur
Land use pattern	-		Inhat	oitation and cu	ltivation	

Composition/Litho constituents Arranged in probable order of abundance

Composition/Litho constituents River bed :- Quartzite, gneiss, granite, schist, slate, phyllite and sand.

N ₁ :-	Quartzite, gneiss, granite, schist, slate, phyllite and sand
N ₂ :-	Quartzite, gneiss, granite, schist, slate and silt.
N ₃ :-	Gneiss, granite, schist, slate, clay, sand and silt etc.
N ₄ :-	Gneiss, granite, schist, slate, dark maroon clay, silt and sand.

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

Table 15:- Salient Features Of Fluvial Terraces In The Type Area Of Mandakini Valley (i) Locality : TILWARA $(30^{\circ} 20' 00'' : 79^{\circ} 05' 00'')$

Terrace and its Designation

River bec	I MT ₁ Holocene		MT ₂	МТ	۲ ₃	
Elevation above MSL (m)	660		700	730	769	
Geomorphic break (m)	-		40	30	30	
Elevation above RB (m)	-		40	70	100	
Slope	-		SW	SW	SW SW	
Nature of surface -	Deposition	nal	Depositional	Dej	positional	
Cycle sedimentation -	Unicycle		Polycycle	Pol	ycycle	
Orientation of L-Axes-	NNW-SSI	E	NS	NS		
Plunge of L-Axes -	5 ⁰ N		5 ⁰ N	5° N	N	
Relative disposition -	Converge	nt	Divergent	Co	nvergent	
Paired / Unpaired -	Unpaired		Paired	Pai	red	
Nature of scarp -	Curvilinea	ar	Curvilinear	Cu	rvilinear	
Terrace Shape -	Semi Circ	ular	Semi Circula	ar Sen	ni Circular	
Sedimentary features -	Graded		Graded	Gra	aded bedding	
	Bedding a	nd	bedding	cro	ss bedding	
	Cross		cross beddin	ig lan	nination cross	
	Bedding		lamination	lan	nination both	
			Cross lamina	ation both	planner and	
			planner and	through ty	pe type. Graded limit	ation
			Graded lami and fill featu	ination, cut ires	cut and fill features	
Land use pattern -			Inhal	oitation and	d Cultivation	
Composition/Litho constituents sand	River bed :-	Quartzite	e, gneiss, gran	ite, schist, l	basic, limestone, phylli	te, slate
Arranged in probable order of phyllite, silt, and clay.		MT ₁ :-	Quartzite,	gneiss, g	ranite, schist, basic	slate,
abundance	MT ₂ :-	Quartzite and clay.	e, gneiss, gran	ite, schist, b	oasic, slate, phyllite, silt	t, sand
	MT 3 :-	Gneiss, g Silt and c	ranite, schist, lay.	slate, phyll	ite, shale, limestone, sa	nd.

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

(ii) Locality : AGAUSTMUNI (30⁰ 23' 25" : 79⁰ 00' 55")

Terrace and its Designation

Age	River bed	MT ₁ Holocene		MT ₂	MT	3
Elevation above MSL (r	n)	720		740	775	805
Geomorphic break (m)		-		20	35	30
Elevation above RB (m)		-		20	55	85
Slope		SW		SW	SW	SW
Nature of surface -		Depositio	nal	Erosional	Dep	ositional
Cycle sedimentation -		Not fully	exposed	Polycycle	Not	fully exposed
Orientation of L-Axes-		NE-SW	•	NE-SW	NE-	SW
Plunge of L-Axes -		$50^{\circ} - 10^{\circ}$ N	VE	10 ⁰ NE	10⁰	NE
Relative disposition -		Divergent	t	Divergent	Dive	ergent
Paired / Unpaired -		Unpaired		Paired	Unp	paired
Nature of scarp -		Linear		Curvilinear	Cur	vilinear
Terrace Shape -		Cuspate		Rectangular	· Rec	tangular
Sedimentary features -		Cross Bee	lding	Cross beddi	ng, graded b	pedding
		Laminati	on and	lamination a	and cross lar	nination, cut and
		Cross La	mination	fill features.		
Land use pattern -				Inhal	bitation and	Cultivation
Composition/Litho cons	tituents F	River bed :-	- Quartzite	e, gneiss, gran	ite, schist, b	asic, slate and phyllite.
Arranged in probable of limestone.	rder of		MT ₁ :-	Quartzite,	gneiss, gra	nite, schist, slate, phyllit
abundance	Ν	AT 2 :-	Quartzite	e, gneiss, gran	ite, schist, p	hyllite, slate, shale and sand
	Ν	AT 3 :-	Quartzite clay and	e, gneiss, gran sand.	ite, schist, p	hyllite, slate, shale, silt,

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

(iii) Locality : SAURI AND HAT (30⁰ 24' 30" : 79⁰ 3' 00")

River be	d MT ₁	MT 2	MT ₃
Age	_ Holocene		
Elevation above MSL (m)	750	765	790 810
Geomorphic break (m)	-	15	25 20
Elevation above RB (m)	-	15	40 60
Slope	SW	SW	SW SW
Nature of surface -	Depositional	Depositional	Depositional
Cycle sedimentation -	Unicycle	Unicycle	Polycycle
Orientation of L-Axes-	NE-SW	NNE-SSW	NNE-SSW
Plunge of L-Axes -	5 ⁰ NE	5 ⁰ NNE	5 ⁰ NNE
Relative disposition -	Convergent	Convergent	Divergent
Paired / Unpaired -	Unpaired	Unpaired	Unpaired
Nature of scarp -	Curvilinear	Curvilinear	Curvilinear
Terrace Shape -	Semi Circular	Elongated	Elongated

Sedimentary features -	Graded k Cross bee Laminati Laminati	oedding dding ion cross ion	Graded lamination cross bedding, both plan and through type Lamination cut & Features	Graded beddi cross bedding mer laminatic lamination cu fill fill featur	ng on cross t and res
Land use pattern -			Inhabitatio	n and Cultivation	on
Composition/Litho constituents micaceous	River bed :	- Quartzite	, gneiss, granite,	schist, basic,	phyllite, slate and
		Sand.			
Arranged in probable order of sand.		MT ₁ :-	Quartzite, gneiss,	, granite, schist,	slate, phyllite, and
abundance	MT ₂ :-	Quartzite	, gneiss, granite, scl	hist, slate, phylli	te, limestones.
	MT 3 :-	Quartzite	, gneiss, granite,	, biotite, schi	st, slate, phyllite,
limestone,		Silt, clay a	and sand.		

(iv) Locality : BHAGIRATHI/GOVINDGAON (30⁰ 26' 00" : 78⁰ 05' 00")

Age	MT ₁ Holocene	MT ₁ Holocene		MT	3	
Elevation above MSL (m)	775		800	830	850	
Geomorphic break (m)	-		25	30	20	
Elevation above RB (m)	-		25	55	75	
Slope	-		SW	SW	SW	
Nature of surface -	Depositiona	ıl	Depositional	Dep	ositional	
Cycle sedimentation - Orientation of L-Axes - Plunge of L-Axes -	Not fully ex NNW-SSE 5 ⁰ N	posed	Polycycle NNW-SSE 5 ^{0 -} 10 ⁰ N	Poly NNV 5 ^{0 -} 1	/cycle W-SSE 10 ⁰ N	
Relative disposition -	Divergent		Divergent	Dive	ergent	
Paired / Unpaired -	Paired		Paired	Pair	ed	
Nature of scarp -	Linear		Linear	Line	ear	
Terrace Shape -	Elongated		Elongated	Elon	ngated	
Sedimentary features -	not fully exp	posed	Graded beddin	ng, cross b	edding	
·			Lamination, cr	oss lamin	ations.	
Land use pattern -			Inhabit	ation and	Cultivation	
Composition/Litho constituents Arranged in probable order of phyllite, shale and	River bed :- (N	Quartzite AT ₁ :-	e, gneiss, granite Quartzite, g	, schist, ba neiss, gra	asic, phyllite, slate and anite, schist, basic,	sand. slate,
abundance	S	and.				
I	$MT_2:= \begin{array}{c} 0\\ S\end{array}$	Quartzite Sand and	e, gneiss, granite l clay.	, basic, sla	ate, phyllite, limestone, s	ält
I	MT 3 :- 0	Gneiss, g	granite, schist, l	basic, lim	estone, phyllite, slate,	shale
clay and silt.	-			•	· - · · · · · · · · · · · · · · · · · · ·	

Terrace and its Designation

Age	MT ₁ Holocene		MT ₂	MT 3	
Elevation above MSL (m)	830		845	860 880	
Geomorphic break (m)	-		15	15 20	
Elevation above RB (m)	-		15	30 50	
Slope	-		South	South South	
Nature of surface -	Deposition	al	Depositional	Depositional	
Cycle sedimentation -	Unicycle		Unicycle	Polycycle	
Orientation of L-Axes-	NS		NS	NW-SE	
Plunge of L-Axes -	5 ⁰ N		5^{0} 10 ⁰ NW	5 ^{0 -} 10 ⁰ NW	
Relative disposition -	Convergen	nt	Convergent	Linear	
Paired / Unpaired -	Unpaired		Paired	Paired	
Nature of scarp -	Curvilinea	r	Curvilinear	Linear	
Terrace Shape -	Cuspate		Semi-Circular	Ventricular	
Sedimentary features -			Cross bedding	Graded bedding	
			Lamination	cross bedding	
			& cross lamination	planner and trough typ	be
Land use pattern -			Inhabitatior	and Cultivation	
Composition/Litho constituents l sand.	River bed :-	Quartzite	, gneiss, granite, sc	hist, phyllite, slate and	micaceou
Arranged in probable order of shale and		MT ₁ :-	Quartzite, gneiss	, granite, schist, slate,	phyllite,
abundance	-	sand.			
I I	MT ₂ :- MT ₃ :-	Gneiss, gr Gneiss, gr and sand.	anite, schist, phyllit anite, schist, basic, j	e, slate, shale and sand. phyllite, slate, light marc	oon silt,

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

Table 16:- Salient Features Of Fluvial Terraces In The Type Area Of Pindar Valley.
(i) Locality : KARANPRAYAS (30⁰ 15' 30" : 79⁰ 13' 00")

River be	ed PT ₁ Holocene	PT ₂	PT 3
Elevation above MSL (m)	769	785	805 825
Geomorphic break (m)	-	16	20 20
Elevation above RB (m)	-	16	36 56
Slope	-	NW	NW NW
Nature of surface -	Depositional	Depositional	Depositional
Cycle sedimentation -	Section not exposed	Polycycle	Polycycle
Orientation of L-Axes-	NW-SE	NW-SE	NW-SE

⁽v) Locality : BERHI AND DAMER (30⁰ 27' 30" : 79⁰ 05' 00")

Plunge of L-Axes -	5 ⁰ SE		5 ⁰ SE	5 [°] - 10 [°] SE
Relative disposition -	Divergen	t	Divergent	Divergent
Paired / Unpaired -	Unpaired	1	Paired	Paired
Nature of scarp -	Linear		Linear	Linear
Terrace Shape -	Rectangu	ılar	Rectangular	Rectangular
Sedimentary features -	-		Graded bedding	Cross bedding
-			Cross bedding	both planner
			Lamination and	and trough type
			Cross lamination	graded bedding, lamination
				Cross lamination.
Land use pattern -			Inhabitation	n and Cultivation
Composition/Litho constituents slate	River bed :	- Quartzite	e, gneiss, granite, scl	nist, fossiferous, limestone, phyllite,
		Basic and	l sand.	
Arranged in probable order of basic sand and silt.		PT ₁ :-	Quartzite, gneiss	s, granite, schist, phyllite, slate,
abundance	PT ₂ :-	Quartzite limestone	e, gneiss, granite, sc e, sand and silt.	hist, basic, slate, phyllite, shale,
	PT 3 :-	Gneiss, g	granite, schist, phy	yllite, slate, shale, light to dark
maroon				_
		sand, silt	and clay.	

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.
(ii) Locality : SIMLI (30⁰ 13' 30" : 79⁰ 36' 20")

River bed	PT ₁ Holocene	PT ₂	PT 3
Elevation above MSL (m)	800	815	835 855
Geomorphic break (m)	-	15	20 20
Elevation above RB (m)	-	15	35 55
Slope	-	NW	NW NW
Nature of surface -	Depositional	Depositional	Depositional
Cycle sedimentation -	Section not exposed	Polycycle	Polycycle
Orientation of L-Axes-	NW-SE	NW-SE	NW-SE
Plunge of L-Axes -	5 [°] - 10 [°] SE	10 ⁰ SE	10 ⁰ SE
Relative disposition -	Divergent	Divergent	Divergent
Paired / Unpaired -	Paired	Paired	Paired
Nature of scarp -	Linear	Linear	Linear
Terrace Shape -	Rectangular	Rectangular	Rectangular
Sedimentary features -	Section not fully exp	osed	Cross bedding Graded bedding
·	U A	Cross lamination Lamination & cut Fill features	graded lamination and cross lamination
Land use pattern -		Inhabitatio	n and Cultivation
Composition/Litho constituents	River bed :- Quartzite Basic and	e, gneiss, granite, sch l sand.	nist, basic, phyllite, shale, and san
Arranged in probable order of limestone and	PT ₁ :-	Quartzite, gneiss	s, granite, schist, basic, phyllite

			Coarse to fine sand.
abundance		PT 2 :-	Quartzite, gneiss, schist, basic, slate, phyllite, shale,
			and light to dark brown maroon sand, silt and clay.
		PT 3 :-	Quartzite, gneiss, granite, schist, basic, slate, phyllite, sand, silt
	and		
			clay

Table 17:- Salient Features Of Fluvial Terraces In The Type Area Of Dhauli Ganga Valley. (i) Locality : **TAPOBAN** (30° 29' 00" : 79° 37' 30")

Terrace and its Designation

River be	d DGT ₁ _ Holocen	e	DGT ₂	DGT ₃	
Elevation above MSL (m)	1995		2010	2018 2024	
Geomorphic break (m)	-		10	86	
Elevation above RB (m)	-		10	18 24	
Slope	-		SW	SW SW	
Nature of surface -	Depositi	ional	Depositional	Depositional	
Cycle sedimentation -	Polvcvc	le	Polvcvcle	Section not exposed	
Orientation of L-Axes-	SW		SW	SW	
Plunge of L-Axes -	Ν		NE	NE	
Relative disposition -	Convers	zent	Convergent	Divergent	
Paired / Unpaired -	Unpaire	ed	Unpaired	Paired	
Nature of scarp -	Curvilin	near	Curvilinear	Linear	
Terrace Shape -	Semi-Ci	rcular	Elongated	Elongated	
Sedimentary features -	Graded	bedding	cross	Section not exposed	
	Lamina	tion. cut &	fill	lamination features	
Land use pattern -			Inhabita	tion and Cultivation	
Composition/Litho constituents	River bed	:- Quartzit	e, gneiss, biotite, s	chist, muscovite, schist, slat	e, chlorite
Arranged in probable order of fossiliferous boulders		$DGT_1:$	Gneiss, grani	te, biotite, schist, chlorit	e, schist,
		of limest	one and quartzite	, coarse to fine sand.	
abundance of	DGT ₂ :-	Gneiss,	granite, biotite, cl	nlorite, phyllite, fossiliferou	is boulder
		limeston	e, and quartzite, c	oarse to fine sand.	
	DGT 3 :-	Gneiss,	granite, biotite	schist, phyllite, slate,	limeston
fossiliferous,	-				
		Ouartzit	e and limestone w	ith very coarse to very fine	sand

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

Table 18:- Salient Features Of Fluvial Terraces In The Type Area Of Bal Ganga Valley.(i) Locality : UPSTREAM OF GHANSALI (30° 25' 00" : 78° 40' 00")

Age	River bed	BGT ₁ Holocene		BGT ₂	BG	Γ ₃
Elevation above MSL (n	n)	720		725	735	742
Geomorphic break (m)		-		5	10	7
Elevation above RB (m)		-		5	15	22
Slope		-		SW	SW	SW
Nature of surface -		Depositio	nal	Depositional	Dep	ositional
Cycle sedimentation -		Polycycle		Polycycle	Poly	ycycle
Orientation of L-Axes-		SW		SW	SW	-
Plunge of L-Axes -		5^{0} -10 ⁰ (Av	verage towa	ards north)		
Relative disposition -		Converge	nt	Divergent	Div	ergent
Paired / Unpaired -		Mostly ur	npaired	Mostly unpaired	Mos	stly unpaired
Nature of scarp -		Curviline	ar	Curvilinear	Cur	vilinear
Terrace Shape - and Elongated		Crecent a	nd Elonga	ted	Cre	cent and Elongated Crecent
Sedimentary features -		Graded b	edding, laı	nination and cross	lamina	ation
Land use pattern -				Inhabitatio	on and	Cultivation
Composition/Litho cons fine	tituents F	River bed :-	- Mostly Q	uartzite, gneiss, gr	ranite,	schist, slates, very coarse to
			Sand and	l silt.		
Arranged in probable or coarse to tine	rder of		BGT ₁ :-	Mostly Quartzite	e, gnei	ss, granite, schist, slate, very
			sand and	silt.		
abundance limestone,	E	BGT 2 :-	Quartzite	, gneiss, granite	, mus	scovite, and biotite, schist
			very coar	se to fine sand silt.		
cilt	E	BGT 3 :-	Quartzite	, gneiss, granite, s	chist,	slate, coarse to fine sand and
5111.						

Table 19:- Salient Features Of Fluvial Terraces In The Type Area Of Madheshwar Ganga Valley(i) Locality : UPSTREAM OF OKHIMUTH (30° 31' 30" : 79° 35' 30")

C					
River bed	MDT ₁	MDT ₂			
Age	Holocene				
Elevation above MSL (m)	950	962	970		
Geomorphic break (m)	-	12	08		
Elevation above RB (m)	-	12	20		
Slope	-			South	E
Nature of surface -	Depositional	Depositi	ional		
Cycle sedimentation -	S	ection not fully ex	posed		
Orientation of L-Axes-	S	ection not fully ex	posed		
Plunge of L-Axes -	S	ection not fully ex	posed		
Relative disposition -	Convergent	Converg	gent		
Paired / Unpaired -	Unpaired	Unpaire	d		
Nature of scarp -	Curvilinear	Curvilir	near		
-					

Terrace Shape -	Crecent to Semi Circular
Sedimentary features -	Section not fully exposed
Land use pattern -	Inhabitation and Cultivation
Composition/Litho constituents	River bed :- Gneiss, granite, muscovite, schist, biotite, schist, slate, coarse To fine sand.
Arranged in probable order of slate, coarse	MDT ₁ :- Gneiss, granite, biotite, schist, muscovite, quartzite
	to fine sand.
abundance fine	MDT ₂ :- Gneiss, granite, biotite, schist, muscovite, schist very coarse t
	sand and sits.
** The fabric elements of rive	terraces range in size from boulder to small pebble. The finer clastics

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape. The salient features of the terrace are tabulated in Table No. 20.

Table 20:- Salient Features Of Fluvial Terraces In The Type Area Of Berhi Ganga Valley. (i) Locality : GORIGOAN $(30^{0} 23' 00'' : 79^{0} 25' 10'')$

Terrace and its Designation

River bed	BRT ₁				
Age	Holocene				
Elevation above MSL (m)	720	728			
Geomorphic break (m)	-	8			
Elevation above RB (m)	-	8			
Slope	-	South West			
Nature of surface -	Depositional				
Cycle sedimentation -	Section not fully exp	oosed			
Orientation of L-Axes-	SSW				
Plunge of L-Axes -	Towards North				
Relative disposition -	Convergent with respect to river course				
Paired / Unpaired -	Unpaired	-			
Nature of scarp -	Curvilinear				
Terrace Shape -	Section not fully exp	oosed			
Sedimentary features -	Section not fully exp	oosed			
Land use pattern -	Inhabitation and Cu	lltivation			
Composition/Litho constituents	River bed :- Gneiss, granite, slate, quartzite, phylites, limestone				
	Schist and	d coarse to fine sand.			
Arranged in probable order of schist, slate, and	BRT ₁ :-	Quartzite, phyllite, limestone, gneiss, gra			
	Coarse to	fine sand.			

abundance

** The fabric elements of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock fabrics are generally subrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.

Age	Environ ments	Possible Cause	Phase of Aggradation / Degradation	Alaknanda	Bhagirathi	Bhilangna	Nandakini	Mandakini	Pindar
Holocene	Fluvial Environment	Tectonic / Climatic / Eustatic Changes	Aggradation / Degradation	AT ₀	BT ₀	BHT ₀	NT ₀	MT ₀	PT ₀
				Simultaneous processes of erosional / depositional in progress					
			Aggradation / Degradation	AT ₁	BT ₁	BHT ₁	NT ₁	MT ₁	PT ₁
				Riverine depositional processes in progress					
			Aggradation / Degradation	AT ₂	BT ₂	BHT ₂	NT ₂	MT ₂	PT ₂
				Riverine depositional processes in progress					
			Aggradation / Degradation	AT ₃	BT ₃	BHT ₃	NT ₃	MT ₃	PT ₃
				Riverine depositional processes in progress					
			Aggradation / Degradation	AT ₄	BT ₄	BHT ₄	NT ₄		
				Riverine depositional processes in progress					
			Aggradation / Degradation	AT ₅	BT ₅				
				Riverine depositional processes in progress					
			Aggradation / Degradation	AT ₆		-			
l				Riverine depositional processes in progress					

References:-

- 1. Padhi, R.N and Sharan, R.B (1972), A study of River Terraces of Alaknanda Valley Rec.Geol.surv India V 104pt 1 pp 39
- 2. Dubey, U.S. (1972) Progress Report on Geomorphological study of river terraces of Alaknanda , Bhagirathi, and Ganga valley, Garhwal Himalaya U.P.(Unpublished G.S.I Report 1972)
- 3. Padhi, R.N and Sharan, R.B (1972), A study of River Terraces of Alaknanda Valley Rec.Geol.surv India V 104pt 1 pp 39
- 4. Shukla, H.N Khan, A.A. and Dubey, U.S (1973) Report on Geomorphological studies of the River Terracs of , Bhagirathi and other Pleistocene landform .(Unpublished G.S.I Report).
- 5. Khan ,A.A (19 73-74) Records Vol.108 Geological survey of India ,pt1,pp 241-242
- 6. Dubey, U.S.(1974) Progress Report on Geomorphological studies of river terraces of Alaknanda and Bhagirath valley system Garhwal Himalaya U.P. .(Unpublished G.S.I Report 1972)
- 7. Dubey, U.S (1974a) Report on Geomorphological and sedimentological studies of the river terracs of Alaknanda , Bhagirathi, Ganga valley , Garhwal Himalaya U.P.(Unpublished G.S.I Report)
- 8. Khan, A.A.(1974)Report on Geomorphological studies of river terraces and other Pleistocene landform of Alaknanda and Pindar Valley. (Unpublished G.S.I Report)
- 9. Khan, A.A and Balchandran, V (1974-75) Record Vol 109 of Geological Survey of India, Part I PP 59
- 10. Khan, A.A. (19 75) Report on Geomorphological studies of river terraces and other Pleistocene land forms in Alaknanda, Pindar and Attagad valley . (Unpublished G.S.I Report of FS 1973-74)
- 11. Sinha, K.K.and Khan, A.A.(1976) A Report on Geomorphological studies of parts of Garhwal Himalaya, U.P. (Based on Photo Interpretation with selected field Checks) 11Geomorphology Course I.P.I.Dehra Dun)..
- 12. Khan , A.A (1981) Geology and Geomorphology of Eastern part of Ganga Complex in parts of Tehri, Chamoli, and pauri District Uttar Pradesh . (Unpublished G.S.I Report FS 1976-77)
- 13. Khan ,A.A and Dubey ,U.S (1981) Evaluation of Quaternary Landscape of intermontane Jamuna valley in Dheradun U.P;) and Sirmur (H. P). Rec.Geol.Surv.Indi; Vol112, pt 3 pp 125-135.
- 14. Khan, A.A. and Nawani , P.C (1981.) Quaternary geological and geomorphological Evaluation of Eastern part of Ganga Complex, Garhwal Himalaya U.P India (Abstract) IV Regional Conference Geol. SE Asia Manila Philippines

- 15. Khan, A.A and Dubey ,U.S (1985) An attempt to study the sedimentary structures and paleo current of Quaternary terraces of Alaknanda valley of Garhwal Himalaya U.P (Accepted for publication in GSI Record of 1985).
- 16. Khan, A.A.(1986) A Note on statistical parameters of sediment of Fluvial terraces of Bal Ganga valley , Grahwal HimalyayaU.P.Proc.73 Session Indian Science Congress (Abstract)sea
- 17. Khan.A.A (.1987) Geomorphic Evaluation and Quaternary Sedimentation in Upper Ganga Basin Garhwal Himalaya (U.P.). Ph.D. unpublished thesissubmitted to Vikram University Ujjain, M.P. India
- 18. Khan.A.A (.2018) Quaternary deposits of Narmada valley in relation to Geomorphology and Neotectonic of the area with special reference to Hominid occurrence D.sc. unpublished thesis submitted to Barkatullaha University Bhopal, M.P. India.