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Innovative techniques for antibiotic discovery are required to hasten the 

development of effective therapies as the worldwide burden of 

antibiotic resistance rises. Artificial intelligence, a technological 

revolution in full swing, offers a hopeful future by removing 

bottlenecks in the pipeline for discovering new antibiotics. This review 

highlights how improvements in artificial intelligence are reviving the 

use of earlier antibiotic discovery approaches, including small molecule 

screening and natural product exploration. The use of modern machine 

learning techniques in new fields of antibiotic discovery, such as 

antibacterial systems biology, drug combination creation, antimicrobial 

peptide identification, and mechanism of action prediction, is then 

examined. Finally, we make a call to action for multidisciplinary 

collaboration and free access to high-quality screening datasets to 

hasten the development of novel antibiotic medications and the training 

of machine learning models. 
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Introduction:- 
Concerning levels of morbidity and mortality are being experienced worldwide due to antimicrobial resistance 

(AMR) in clinically significant bacteria
[1]

. Antibiotic-resistant bacteria are thought to be the source of 2.8 million 

infections in the US each year, 35,000 of which are fatal, according to the Centers for Disease Control and 

Prevention
[2]

. Since antibiotics have been found to significantly harm the gut microbiome, which reduces species 

diversity and promotes the evolution and spread of AMR genes, the current body of research also raises the 

possibility that the cure may be a component of the issue
[3]

. Clinically tested antibiotics are typically analogues of 

currently used medications for which AMR mechanisms have already been identified1, highlighting the need for 

new methods of antibiotic discovery
[1]

. 

 

The use of deep learning in antibiotic discovery has the potential to significantly advance the field of antimicrobial 

medicines
[4]

.The use of antibiotics in modern medicine is crucial. However, the emergence of microorganisms 

resistant to antibiotics poses further difficulties for this paradigm in medical care. Antibiotic research and 

development must keep up with the microorganism resistance rate. Significant research has been done on new 

techniques for discovering antibiotics due to the arms race against pathogenic microorganisms. In a fast-growing 

area of this research, potential antibiotics are predicted in silico using a high throughput machine learning approach.  

 

Historically, the discovery of antibiotics was based mainly on the search for secondary metabolites in soil-dwelling 

microbes that inhibited the growth of pathogenic bacteria
[5,6]

. Most antibiotic families currently used in medicine 
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were developed using this method, including lactams, aminoglycosides, polymyxins, and glycopeptides. By boosting 

efficacy, lowering toxicity, and avoiding resistance-determining factors, semi-synthetic derivatives of these 

scaffolds have kept a therapeutic arsenal of antibiotics viable. Additionally, completely synthetic antibiotics from 

the pyrimidine, quinolone, oxazolidinone, and sulfa families have been clinically useful for a long time and are stil l 

being refined for the same characteristics. 

 

This method resolves numerous issues with conventional discovery platforms and establishes a crucial standard for 

antibiotics in the future. We can win the arms race against pathogens resistant to antibiotics thanks to the increased 

efficiency offered by this technology and subsequent iterations. 

 

Methodology:- 
The goal of this review article was to present the role of artificial intelligence in antibiotic discovery and its 

perspective from the past twenty years, its present scenario, and its future applications. Thus, high-quality data that 

met the study objectives were included. In addition, comprehensive investigations on articles available in renowned 

databases like GoogleScholar, PubMed, Research Gate, and PMC articles were considered for literaturereview. The 

critical index words or phrases used during the literature search wereantibiotics, artificial intelligence, machine 

learning, drug discovery, antibiotic resistance, deep learning, antibiotic resistance, neural network and databases.  

 

Inclusion criteria:  

Scientific articles addressing the study objectives and written in English were included in the literature review. 

 

Exclusion Criteria:  

Studies published in languages other than English, literature thatdid not address the role of AI in antibiotic 

discovery, and literature dated before2000 were excluded. 

 
Figure 1:- Antibiotic discovery using machine learning

[7]
 

 

Traditional discovery methods: 

Traditional drug development methods are characterized by high prices, a lengthy synthesis, testing, and 

implementation time, expensive equipment, and significant human resources—possibly the toughest to come by. 

Drug research towards the pre-clinical and clinical testing phases can proceed more quickly thanks to automated 

computer-aided drug discovery processes that are both much less expensive and quicker. 

 

The Waksman Platform is one of the earliest experimental platforms for antibiotic discovery. The Waksman 

Platform, first used by Rutgers microbiologist Selman Waksman, involved screening soil-borne actinomycetes on a 

field of overlaying bacteria
[8]

. Antibiotics are frequently produced by actinomycetes in the soil environment. 
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Candidate antibiotic-producing bacteria were primarily found when a zone of inhibition on the plate formed. Using 

this method, numerous significant antibiotics, including streptomycin, were successfully found. Although this 

platform was crucial in discovering many antibiotics used today, it has some drawbacks. First, the number of soil 

antibiotics is limited. Methods to examine a broader range of soils and bacterial habitats have largely failed to create 

novel antibiotic classes
[9]

. Second, the method is challenging to scale up, making the procedure time-consuming and 

difficult. These are only a few factors that have led to the development of high-throughput computational methods 

for antibiotic discovery. 

 

The initial step in the conventional workflow for discovering antibiotics is the isolation of the producers (such as 

actinomycetes) from various environments. To semi-select the microorganisms, soil samples are primarily isolated 

and streaked with serial dilutions on certain solid media. Following a morphological inspection of the plates, 

promising candidates (such as colonies resembling actinomycetes) are selected and multiplied, often utilizing 

various mediums to examine the isolates' potential for biosynthetic production. Agar diffusion assays are used to 

evaluate extracts, culture supernatants, and agar with the mycelium for actinomycetes. 

 

Machine learning and deep learning: 

Artificial intelligence in medicinal chemistry can predict the efficacy and toxicity of possible therapeutic molecules. 

ML algorithms can spot patterns and trends that human researchers would miss, making it possible to propose new 

bioactive substances with fewer side effects more quickly than traditional protocols. Recent training of a DL 

algorithm employing a dataset of known medicinal molecules and their associated biological activity has resulted in 

major contributions to toxicity prevention, as has been described
[10,11]

. 

 

In addition to searching through a huge amount of data and choosing compounds that fit the necessary criteria, 

machine learning can be used to forecast and discover novel antibiotics. Parvaiz et al
. [12]

 extensive search for 

compounds with the property of beta-lactamase inhibition was made possible by machine learning. 74 compounds 

out of the 700,000 listed compounds were found and given empirical confirmation. Seven substances were classified 

as class C beta-Lactamase CMY-10 inhibitors, whereas eleven were classified as CMY-10 enhancers. Twenty-eight 

more substances were discovered, all of which showed antibacterial properties. 

 

Antimicrobial resistance has been brought on by the COVID-19 pandemic's numerous secondary infections brought 

on by bacteria that are multidrug resistant. The use of artificial intelligence techniques like machine learning and 

deep learning may make it possible to deliver potential antibiotic candidates more quickly. The challenge of 

antibiotic discovery should be evaluated using both empirical and contemporary methods and technologies in a 

cogent, thorough, and effective manner. 

 

AI has been used to find new cancer-fighting drugs, including MEK, BACE1, and COVID-19. Large databases of 

possible chemicals have been analyzed using machine learning algorithms to determine which has the best chance of 

curing the virus. In other instances, these AI-driven methodologies have identified interesting medication candidates 

in a fraction of the time it would take using conventional techniques. 

 

A review of deep learning (DL) models used to predict drug-target interactions (DTI) and the development of novel 

medications was presented by Kim et al. in 2021
[13]

. They noted a few barriers to the promising future of de novo 

drug development and DL-based DTI prediction. However, they failed to consider the most recent developments in 

DL application for DTIs, including XAI and DTs. 

 

Virtual Screening (VS) ML applications were presented by Rifaioglu et al
. [14]

,including methodology, tools, 

datasets, and resources. They showed examples of VS research that led to the discovery of novel bioactive 

compounds and treatments while highlighting DL technologies available as open-source programming libraries. In 

their literature evaluation, they did not consider drug dose optimization. 

 

High-throughput Fourier-transform infrared spectroscopy was used by Da Cunha et al
. [15]

. to combine machine 

learning, spectroscopy, and the mechanisms of action and efficacy of antibiotics. This method was able to quantify 

antibiotic potency by looking at metabolic fingerprints and accurately predict the many antibiotics in the same 

class's modes of action. 
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A review of feature-based chemogenomic techniques for DTIs prediction was presented by Sachdev and Gupta in 

2019
[16]

. In addition to pertinent datasets, techniques for figuring out drug or target features, and evaluation 

measures, they offered a current summary of the various methodology, datasets, tools, and measurements. The most 

recent DL application for DTIs should have been considered. 

 

In their analysis and search of the Roche compound library, Zoffman et al
. [17]

. Employed machine learning to 

prioritize compounds based on their novelty, potency, chemical makeup, and accessibility as pure powder materials. 

To measure the antibacterial activity of these substances, four Gram-negative bacteria were used as test subjects. 

Machine learning was used to recognize and gather the diverse bacterial phenotypic fingerprints concerning various 

compounds' varied modes of action to understand better the relationship between the structure and activity of 

specific antibacterial medications. 

 

Neural networks and antimicrobial compounds: 

Neural network models were recently employed to construct a novel representation and evaluate the antibacterial 

potential of previously discovered pharmaceuticals that were repurposed as antibiotics. Multiple copies of a model 

are combined using the ensemble learning technique, which weighs the input from each model to arrive at the final 

prediction. It has been applied to various tasks, from the discovery of proinflammatory peptides to the foretelling of 

adverse medication reactions. 

 

Deep neural networks and support vector machines (SVMs), two traditional ML methods, have been utilized to 

describe AMPs and calculate associated MOAs. In order to predict peptide activity against P. aeruginosa, 

researchers in 2009 compiled 44 peptide characteristics and fed them into an artificial neural network. The 20 

natural amino acids were converted into pseudo residue types using a deep convolutional neural network model 

developed in a study from 2020 using a condensed amino acid vocabulary. For the genome-based prediction of the 

lowest inhibitory doses of 20 antibiotics against Klebsiella pneumoniae and 15 antibiotics against nontyphoidal 

Salmonella bacteria, extreme gradient boosting was applied. Regression models, input representations, and RNNs 

were developed to choose peptide sequences with antibacterial activity. Peptide sequences were also embedded in a 

latent space
[18–20]

 

 

Fully Connected Neural Networks are identified using multi-layer perceptrons, which transform two-digit data 

inputs into linear and nonlinear functions. This model works best for classification and regression challenges with 

real-valued data since it incorporates the Sigmoid Curve, Hyperbolic Tangent, and Rectified Linear Unit as three 

representations for nonlinear functions
[21]

.  

 

A sophisticated and high-potential ANN variation called the classic convolutional neural network (CNN) model was 

created to handle increasing complexity levels and data pretreatment and compilation. It can be processed through 

four phases: one input layer, two output layers, and a sampling layer. It is based on how the neurons in an animal's 

visual brain are structured. One or more connected layers in CNNs connect the sample and output layers
[22]

. 

 

To extract, examine, and evaluate the peptides of the sea anemone Cnidopus japonicas and their antimicrobial 

properties, Grafkaia et al
. [23]

. They have conducted a transcriptome investigation. They created a search strategy 

using in silico machine learning to find toxin-like proteins that contained antimicrobial peptides. Ten peptides were 

chosen and produced. Three of them—peptides A1, A3, and B1—executed antimicrobial activity in the following 

way: one was active against both Gram-positive and Gram-negative bacteria, but the other two only reduced the 

growth of Gram-positive bacteria. The potassium-channel inhibitory toxin identified in Stichodactylahelianthus is 

comparable in chemical structure to the peptide A1, which has an alpha-helix and amino acid strand. The 

presumptive structure of peptide B3 revealed a similarity with GsMTx2, a toxin produced by the tarantula 

Grammostolaspatulate that blocks mechanosensitive ion channels. Antimicrobial peptides can effectively combat a 

variety of multidrug-resistant bacterial strains, and the introduction and advancement of machine learning and other 

AI technologies can further aid research in this area. 

 

To discriminate between bacteriocin and non-bacteriocin sequences, Hamid et al
. [24]

. used a Recurrent Neural 

Network (RNN) and a word-embedding representation for each trigram from a protein sequence. Compared to 

existing AI-based algorithms, the results indicated that their RNN-based system was the most effective automated 

approach for categorizing bacteriocins. 
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In order to forecast phenotypic polymyxin resistance (PR) in Klebsiella pneumoniae clonal group 258, Macesic et al. 

applied machine learning. Their methodology included a reference-based strategy (which made use of variant calling 

and insertion sequence identification) with a reference-free strategy (which made use of the detection of k-mers). 

Utilizing a reference-based and carefully curated input data set led to the best results. The approach can be enhanced 

by filtering bacterial genome-wide association study (GWAS) data and combining clinical information on antibiotic 

exposure
 [25]

. 

 

When treating carbapenem-resistant Acinetobacter baumannii with antibiotic combinations, Smith et al. applied 

machine-learning approaches to optimize dose regimens. To more accurately represent the drugs' intrinsic activity 

and efficacy, they added mechanism-based models to the pharmacodynamics data. The strategy was unidirectional 

based on evidence from literature models and polymyxin B's effects on meropenem. The study produced six 

improved antibiotic combination treatment regimens that could increase the likelihood of eradicating 

microorganisms in 50 to 90% of the simulated patients. However, the combination would require doses higher than 

those permitted and/or advised by the recommendations. Rigorous monitoring techniques were also employed to 

keep this combination effective for some individuals
 [26]

. 

 

Combining a machine learning method with multiple conformational high-throughput docking to find inhibitors of 

YpkAa key virulence factor affecting host actin cytoskeletal rearrangements and phagocytosis. Hu et al. suggested a 

multifaceted strategy to combat Yersinia species' antibiotic resistance. After the machine learning model was 

developed, resulting in an accuracy of 70%, and combining the method with virtual screening, 45 compounds were 

chosen to be experimentally examined for inhibitory characteristics. Of these 45 compounds, seven were able to stop 

the growth. This shows how machine learning may be used to find new substances having antibacterial activity
[27]

. 

 

Economic impact: 

DiMasi et al. examined the R&D expenditures for 106 new medications randomly chosen from 10 pharmaceutical 

firms. In 2013, the average cost of a newly approved compound—including post-approval and research and 

development expenses—was $2870 million
[28]

. A new medicine entering the market had an average likelihood of 

11.83%. In contrast to the 30–40 antibacterial drugs that are now in research, some 4,000 immuno-oncology 

medicines are
[29]

; this is because antibiotics are less expensive than other, more expensive treatments, are used for 

shorter periods than chronic treatments, and have usage restrictions to prevent misuse. 

 

Antibiotic-resistant bacterial infections are becoming more prevalent in the US due to the widespread use of 

conventional antibiotics, leading to diverse drug-resistant strains. Antibiotic-resistant bacteria affected 2.9 million 

people in 2013, leading to 23,000 annual fatalities. Twelve thousand eight hundred persons lost their lives as a result 

of the 223,900 instances of Clostridioides difficile infections that were documented in the USA in 2017
[30]

. More 

than $4.6 billion was estimated by Nelson et al
. [31]

. to have been spent on treating community- and hospital-onset 

infections in 2017. 

 

The SWOT study by Miethke et al
. [32]

, Provides a particular viewpoint on creating innovative antibiotic 

medications, stressing the potential benefits and long-term solutions of emerging artificial intelligence technology. 

The widespread use of antibiotics in animals and the emergence of multidrug-resistant bacteria pose a danger to the 

effectiveness of antibiotics, necessitating the development of novel antibiotics with faster entry into clinical usage 

and more specific methods of action. 

 

Future opportunities and strategies: 

As discussed above, other machine learning platforms have solved many problems with the Waksman Platform and 

other comparable systems. Machine learning strategies can significantly increase the rate of antibiotic discovery 

when compared to manually screening soil-derived microorganisms and their potential antibiotics. Analysis in silico 

is used to accelerate processing time. The finding rate will probably increase as computers become more effective 

over time. Increased drug libraries and better learning algorithms will also play a significant role in raising the 

discovery rate. 

 

This strategy will be less expensive as a computer process takes the role of physical tools and human resources. 

With the deep learning model, predictions that previously might have required several microbiologists and years can 

be made in a matter of days. Additionally, this method is not constrained by the source of the candidate compounds. 

The Stokes et al
. [7]

., 2020 method examines more structurally varied chemicals from numerous sources, in contrast 
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to the Waksman platform's reliance on finding distinct soil-borne, antibiotic-producing actinomycetes. Over 750 

million compounds are present in the ZINC15 database used in this machine-learning method. 

 

Drug Repurposing Hub, halicin, exhibits bactericidal action against a broad phylogenetic spectrum of pathogens, 

including Mycobacterium TB and carbapenem-resistant Enterobacteriaceae, and differs structurally from traditional 

antibiotics. In murine models, salicin also successfully cured infections caused by pan-resistant Acinetobacter 

baumannii and Clostridioides difficile. Additionally, among a discrete group of 23 empirically validated predictions 

from >107 million molecules filtered from the ZINC15 database, our model found eight antibacterial agents that are 

structurally different from well-known antibiotics. 

 

Emerging technologies associated with Industry 4.0 enable the development of digital twins (DTs), which are digital 

representations of actual entities that communicate with the original through dynamic, two-way communications. 

Although DTs are employed in many other industries, they have not yet been fully integrated into the production of 

pharmaceuticals. In today's cutthroat markets, new digital technologies are necessary to foster innovation, boost 

efficiency, and boost profitability. Industry 4.0 is a theory put forth by the professional community to raise 

automation levels and improve productivity and efficiency at work. 

 

The constant advancement of AI technology has created new opportunities for drug creation and given us the means 

to combat microorganisms resistant to antibiotics effectively. The "antibiotic crisis", as it is currently being called, is 

caused by a lack of antimicrobial agents and rising drug resistance. The difficulties currently experienced by patients 

and healthcare professionals must be overcome, which calls for increased collaboration between academic 

institutions and the drug-development industry. A viable method in that AI technology can positively impact the 

pharmaceutical and healthcare sectors is through creative approaches that quicken and reduce the cost of drug 

development. 

 

Conclusion:- 
The use of modern machine learning techniques in new fields of antibiotic discovery, such as antibacterial systems 

biology, drug combination creation, antimicrobial peptide identification, and mechanism of action prediction, needs 

to be studied in further detail. Action for multidisciplinary collaboration and free access to high-quality screening 

datasets to hasten the development of novel antibiotic medications and the training of machine learning models is 

required. 

 

References:- 
1.  De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. Antimicrobial 

resistance in ESKAPE pathogens. ClinMicrobiol Rev 2020;33(3):e00181-19.  

2.  CDC. Antibiotic Resistance Threats in the United States, 2019. Technical Report (US Department of 

Health and Human Services; CDC, 2019).  

3.  Chng KR, Ghosh TS, Tan YH, Nandi T, Lee IR, Ng AHQ, et al. Metagenome-wide association analysis 

identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat EcolEvol 2020;4(9):1256–67.  

4.  Shankarnarayan SA, Guthrie JD, Charlebois DA, Shankarnarayan SA, Guthrie JD, Charlebois DA. 

Machine Learning for Antimicrobial Resistance Research and Drug Development [Internet]. IntechOpen; 2022 

[cited 2023 Feb 16]. Available from: https://www.intechopen.com/chapters/81918 

5.  Wright GD. Opportunities for natural products in 21st-century antibiotic discovery. Nat Prod Rep 

2017;34(7):694–701.  

6.  Clardy J, Fischbach MA, Walsh CT. New antibiotics from natural bacterial products. Nat Biotechnol 

2006;24(12):1541–50.  

7.  Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep Learning Approach 

to Antibiotic Discovery. Cell 2020;180(4):688-702.e13.  

8.  Selman Waksman and Antibiotics - Landmark [Internet]. Am. Chem. Soc. [cited 2023 Feb 16]; Available 

from: https://www.acs.org/education/whatischemistry/landmarks/selmanwaksman.html 

9.  Valiquette L, Laupland KB. Digging for new solutions. Can J Infect Dis Med Microbiol 2015;26(6):289–

90.  

10.  Hansen, K. et al. Machine learning predictions of molecular properties: Accurate many-body potentials and 

nonlocality in chemical space. J. Phys. Chem. Lett. 6, 2326– 2331 (2015).  



ISSN: 2320-5407                                                                        Int. J. Adv. Res. 11(04), 1326-1332 

1332 

 

11.  Pérez Santín, E. et al. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. 

Wiley Interdisciplinary Reviews: Computational Molecular Science vol. 11 e1516 (2021).  

12.  Parvaiz N, Ahmad F, Yu W, MacKerell Jr AD, Azam SS. Discovery of beta-lactamase CMY-10 inhibitors 

for combination therapy against multidrug-resistant Enterobacteriaceae. PLoS One 2021;16(1):e0244967.  

13.  Kim J, Park S, Min D, Kim W. Comprehensive survey of recent drug discovery using deep learning. Int J 

Mol Sci 2021;22(18):9983.  

14.  Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep 

learning and machine intelligence on in silico drug discovery: methods, tools and databases. BriefBioinform 

2019;20(5):1878–912.  

15.  Ribeiro da Cunha B, Fonseca LP, Calado CR. Simultaneous elucidation of antibiotic mechanism of action 

and potency with high-throughput Fourier-transform infrared (FTIR) spectroscopy and machine learning. 

ApplMicrobiolBiotechnol2021;105:1269–86.  

16.  Sachdev K, Gupta MK. A comprehensive review of feature-based methods for drug target interaction 

prediction. J Biomed Inform 2019;93:103159.  

17.  Zoffmann S, Vercruysse M, Benmansour F, Maunz A, Wolf L, Blum Marti R, et al. Machine learning-

powered antibiotics phenotypic drug discovery. Sci Rep 2019;9(1):5013.  

18.  Nguyen M, Brettin T, Long S, Musser JM, Olsen RJ, Olson R, et al. Developing an in silico minimum 

inhibitory concentration panel test for Klebsiella pneumonia. Sci Rep 2018;8(1):1–11.  

19.  Yan J, Bhadra P, Li A, Sethiya P, Qin L, Tai HK, et al. Deep-AmPEP30: Improve short antimicrobial 

peptides prediction with deep learning. MolTher-Nucleic Acids 2020;20:882–94.  

20.  Nguyen M, Long SW, McDermott PF, Olsen RJ, Olson R, Stevens RL, et al. Using machine learning to 

predict antimicrobial MICs and associated genomic features for nontyphoidal Salmonella. J ClinMicrobiol 

2019;57(2):e01260-18.  

21.  Mukhamediev RI, Symagulov A, Kuchin Y, Yakunin K, Yelis M. From classical machine learning to deep 

neural networks: a simplified scientometric review. Appl Sci 2021;11(12):5541.  

22.  Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and applicat ion 

in radiology. Insights Imaging 2018;9:611–29.  

23.  Grafskaia EN, Polina NF, Babenko VV, Kharlampieva DD, Bobrovsky PA, Manuvera VA, et al. Discovery 

of novel antimicrobial peptides: A transcriptomic study of the sea anemone Cnidopus japonicus. J 

BioinformComputBiol 2018;16(02):1840006.  

24.  Hamid MN, Friedberg I. Identifying antimicrobial peptides using word embedding with deep recurrent 

neural networks. Bioinformatics 2019;35(12):2009–16.  

25.  Macesic N, Bear Don’t Walk OJ, Pe’er I, Tatonetti NP, Peleg AY, Uhlemann AC. Predicting Phenotypic 

Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. mSystems 

2020;5(3):e00656-19.  

26.  Smith NM, Lenhard JR, Boissonneault KR, Landersdorfer CB, Bulitta JB, Holden PN, et al. Using 

machinelearning to optimizeantibioticcombinations: dosingstrategies for meropenem and polymyxin B 

againstcarbapenem-resistantAcinetobacterbaumannii. ClinMicrobiolInfect 2020;26(9):1207–13.  

27.  Hu X, Prehna G, Stebbins CE. Targetingplaguevirulence factors: a combinedmachinelearningmethod and 

multiple conformational virtual screening for the discovery of Yersinia protein kinase A inhibitors. J Med Chem 

2007;50(17):3980–3.  

28.  DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceuticalindustry: new estimates of R&D 

costs. J Health Econ2016;47:20–33.  

29.  Yu JX, Hubbard-Lucey VM, Tang J. Immuno-oncology drug developmentgoes global. Nat Rev Drug 

Discov 2019;18(12):899–900.  

30.  Centers for Diseases Control and Prevention, Threat Report. [(accessed on 11 October 2021)];2013 

Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.  

31.  Nelson RE, Hatfield KM, Wolford H, Samore MH, Scott RD, Reddy SC, et al. National estimates of 

healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United 

States. Clin Infect Dis 2021;72(Supplement_1):S17–26.  

32.  Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, et al. Towards the sustainable 

discovery and development of new antibiotics. Nat Rev Chem 2021;5(10):726–49. 


