

Journal Homepage: -www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

INTERNATIONAL DICENAL GI ADVANCED RESEARCH GLARY Constitution of the Constitution of t

Article DOI:10.21474/IJAR01/18020 **DOI URL:** http://dx.doi.org/10.21474/IJAR01/18020

RESEARCH ARTICLE

SYNTHESIS AND STUDY ON THE PROPERTIES OF CaMoO₄:Eu³⁺ CO-DOPEDTb³⁺ MATERIALS TO ENHANCED RED PHOTOLUMINESCENCE

Nhuong Chu Manh¹, Mai An Pham² and Huan Pham Van³

- 1. Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen City 250000, Vietnam.
- 2. Faculty of Physics, Thai Nguyen University of Education, Thai Nguyen City 250000, Vietnam.
- 3. Faculty of Natural Sciences, Electric, Electric Power University, Hanoi City 100000, Vietnam.

Manuscript Info

Manuscript History

Received: 15 October 2023 Final Accepted: 18 November 2023

Published: December 2023

Key words:-

Ca_{0.99-y}Tb_{0.01}MoO₄:yEu³⁺, Nanophosphors, Red, Lifetime

Abstract

Ca_{0.99-v}Tb_{0.01}MoO₄:yEu³⁺nanophosphors

were successfully synthesized by hydrothermal method. All the samples can be excited by 395nm wavelengths for generation of red color emission. Enhancement in $^5D_0 \rightarrow ^7F_2$ (616 nm) emission (f–f transition) of Eu³+ionis observed when Tb³+ionis co–doped in CaMoO₄:Eu³+. This is due to the efficient energy transfer from Tb³+ to Eu³+ ions. Introduction of Tb³+ in the system does not lead to the change of emission wavelength of Eu³+. However, Tb³+and Eu³+co–doped in the system induces a shift in Mo-O charge transfer band absorption from 262nm to (413–431 nm). This may be due to the increase in electronegativity between Mo and O bond in the presence of Eu³+andTb³+leading to change in crystal field environment of Mo⁶+ in MoO₄²-. At the optimal concentration of Eu³+, an enhancement in emission by a factor of ~5.6 in the respective excitation at 616nm (⁵D₀→²F₂) is observed. The chromaticity coordinates (CIE) of all Ca₀.99-yTb₀.01MoO₄:yEu³+ nanophosphors are in the red region. The luminescence lifetime values are0.812 ms to 1.20 ms. The energy transfer is observed to occur mainly via dipole–dipole interactions.

Copy Right, IJAR, 2023,. All rights reserved.

Introduction:-

Nowaday, the luminescence of rare earth ions(RE³⁺)has attractedintensive investigations due to the abundant emission spectra caused bytheir special 4f electronic configuration. Phosphors are an important part of whitelight LEDs, which require a long life, high color rendering index (CRI), high luminosity efficiency, color neutrality, poor thermal stability, and their emission diminishes over time and environmental friendly characteristics. The above requirements can be improved by RE³⁺doped luminescent materials due to 4f–4f transition in rare earths [1–5]. Ion Eu³⁺ (1.066 Å) and Tb³⁺ (1.027 Å) co–doped compounds have been paid considerable attention due to the strong red emission ($^5D_0 \rightarrow ^7F_2$ transition of Eu³⁺, 616 nm) and the green emission at 545 nm($^5D_4 \rightarrow ^7F_5$) and the blue emission at 489 nm ($^5D_4 \rightarrow ^7F_6$), which are due to internal 4f–4f electron transitions of Tb³⁺. The CaMoO₄:RE³⁺ material with scheelite structure has strong 4f–4f transitional absorption and emission due to the effect of polarization of MoO₄²⁻. As well known, the luminescence properties of RE³⁺ doped materials may be strongly influenced by the crystal field environmentaround the RE ions in the host. Thus, it is important to choose an appropriate host material. CaMoO₄ belongs to the scheelitestructure, which is assembled by CaO₈ dodecahedra and MoO₄ tetrahedron. In addition, CaMoO₄ has good chemical and heat stability. Therefore, CaMoO₄ is considered to be an excellent matrix material for luminescence [6–11, 13].

Corresponding Author: Nhuong Chu Manh

Address:- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen City 250000, Vietnam.

Khanna et al [1] synthesized phosphor crystals of calcium molybdate doped with dopant Eu^{3+} , Dy^{3+} , Tb^{3+} grown using flux growth method have been shown to exhibit higher excitation efficiency than the powders synthesized by solid state reaction process at a temperature around 1100 °C. Using the excitation wavelengths of 465 nm, 454 nm and 489 nm for $CaMoO_4:Eu^{3+}$, $CaMoO_4:Dy^{3+}$ and $CaMoO_4:Tb^{3+}$, respectively, intense emission lines at 615 nm ($^5D_0-^7F_2$ transition of Eu^{3+}), 575 nm ($^4F_{9/2}-^6H_{13/2}$ of Dy^{3+}) and 550 nm ($^5D_4-^7F_5$ of Tb^{3+}) were observed. The optimized doping concentrations of 12%, 2% and 5% for Eu^{3+} , Dy^{3+} and Tb^{3+} , respectively, provided the highest luminescence intensity. These phosphors could potentially be used for the fabrication of phosphor-converted light emitting diodes (pc–LEDs).

Akta Verm et al [2] have successfully developed CaMoO₄:RE³⁺ (RE = Tb, Sm, Tm, Er, Yb) phosphors as a spectral converter for solar cell application by using hydrothermal method. The XRD pattern contains prominent peaks located at 28.74°, 47.08°, 58.03°, 76.11° corresponds to (112), (204), (312) and (316)planes, respectively. The crystallite size was found in the range of 10–60 nm. The calculated values of band gap for CaMoO₄:Tb³⁺/Sm³⁺/Tm³⁺ and (1%)Er³⁺, (2%)Yb³⁺ dopedand co–doped CaMoO₄ phosphors were found 3.88 eV, 3.85 eV, 3.82 e and 3.76 eV, respectively. The as synthesized CaMoO₄:Tb³⁺, Sm³⁺, Tm³⁺ downshifting (DS) phosphors exhibit hypersensitive green, red and blue emission at 547 nm, 600 nm and 453 nm corresponding to $^5D_4 \rightarrow ^7F_5$, $^4G_{5/2} \rightarrow ^6H_{7/2}$ and $^1D_2 \rightarrow ^3F_4$ transitions, respectively. The spectrum of CaMoO₄:Tb³⁺ phosphor consists of a prominent peak at 378 nm arises due to f–f transition of Tb³⁺ ions from ground state 7F_6 to 5D_3 level. The spectrum contains various peaks at 488 nm, 547 nm, 585 nm, 620 nm due to $^5D_4 \rightarrow ^7F_6$, $^5D_4 \rightarrow ^7F_5$, $^5D_4 \rightarrow ^7F_5$, $^5D_4 \rightarrow ^7F_5$ transitions, respectively.

[3]synthesized Anees Ansari CaMoO₄:Tb, CaMoO₄:Tb@CaMoO₄andCaMoO₄:Tb@CaMoO₄@SiO₂coreeshell nanoparticles have been successfully prepared by polyol process with urea thermal decomposition. The XRD results indicate that the obtained CaMoO₄:Tb is sheelite tetragonal structure and well crystallized at 150 °C. The average crystallite size of the synthesized nanoparticles is calculated using the Scherrer formula for the major (112) reflection plane observed at ~28.8° about 21.1, 32.4 and 48.2 nm, respectively. The absorption spectra of CaMoO₄:Tb nanoparticles reveals two well resolved broad absorption bands at 206 nm (6.0 eV) and 234 nm (5.3 eV). The emission spectra recorded at room temperature in the spectral range of 400-700 nm with excitation at 325 nm (3.82 eV) displayed several well-known emission bands corresponding to the intra 4f transitions ${}^5D_4 \rightarrow {}^7F_n$ (n = 0-6), which belong to the characteristic transition of Tb³⁺ ion. These emission spectra reveal six emission transitions in the visible region which are observed at 488 nm $(2.54 \text{ eV}; {}^{5}D_{4} - {}^{7}F_{6})$, 545 nm $(2.27 \text{ eV}; {}^{5}D_{4} - {}^{7}F_{5})$, 586 nm $(2.12 \text{ eV}; {}^{5}D_{4} - {}^{7}F_{4})$, 620 nm $(2.00 \text{ eV}; {}^{5}D_{4} - {}^{7}F_{3})$, 641–658 nm $(1.90 \text{ eV}; {}^5D_4 - {}^7F_2)$ and 680 nm $(1.82 \text{ eV}; {}^5D_4 - {}^7F_0)$, with the hypersensitive ${}^5D_4 - {}^7F_5$ transition as the most prominent one, and hence can provide information about the chemical environment of the Tb³⁺ ion. The comparative emission spectra show that the peak positions of Tb³⁺ ions are not affected or destroy the structure and luminescence properties of CaMoO₄:Tb³⁺ phosphor after covered the CaMoO₄ and SiO₂ nano-layers around the CaMoO₄:Tb³⁺ nanocrystals, could be due to no alteration of symmetry of the core lattice. The highest phosphorescence intensity is observed for CaMoO₄:Tb regardless of CaMoO₄ and SiO₂ layer coated coreeshell nanoparticles, most probably by the UV light absorption and scattering of CaMoO₄ and amorphous SiO₂ that reduces the excitation irradiation

Yongqing Zhai et al [4] synthesized a series of Dy^{3+}/Eu^{3+} co-doped CaMoO₄ phosphors by a facile microwave radiation synthesis method. The the band gap energy (E_g) of $Ca_{0.98}MoO_4:0.02Dy^{3+}$ and $Ca_{0.978}MoO_4:0.02Dy^{3+}$, $0.002Eu^{3+}$ is estimated to be 3.68 eV and 3.64 eV, respectively. The SEM of two samples, show the average size of the fine spherical-like grains is about 0.29 and 0.38 μ m, respectively. The emission spectra of phosphors under the excitation of 301 nm, contain a broad band ranging from 400 to 550 nm and a narrow peak located at 573 nm. The broad band belongs to the emission of internal MoO_4^{2-} and the ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$ magnetic dipole transition of Dy^{3+} (484 nm). The peak at 573 nm is attributed to the ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ electric dipole transition of Dy^{3+} . Besides, for $Ca_{0.978}MoO_4:0.02Dy^{3+}$, $0.002Eu^{3+}$ phosphor, the characteristic emissions of Eu^{3+} can be observed, which are corresponding to the ${}^5D_0 \rightarrow {}^7F_1$ (589 nm), ${}^5D_0 \rightarrow {}^7F_2$ (613 nm) and ${}^5D_0 \rightarrow {}^7F_3$ (652 nm) transitions, respectively. The chromaticity coordinates (CIE) of $Ca_{0.98-x}MoO_4:0.02Dy^{3+}$, xEu^{3+} (x=0-0.008) phosphors under the excitation at 254 nm, were measured (0.3139, 0.4895) to (0.6238, 0.3658) and CCT values of (1198–5956 K). The average decay time of Dy^{3+} is determined to be 20.33, 19.49, 17.90, 17.57 and 15.87 μ s, respectively. The energy transfer efficiency (η_{ET} from Dy^{3+} to Eu^{3+} , is determined to be 4.1%, 11.9%, 13.5% and 21.9%, corresponding to x=0.002-0.008 in $Ca_{0.98-x}MoO_4:0.02Dy^{3+}$, xEu^{3+} , respectively. The energy transfer mechanism of $Dy^{3+} \rightarrow Eu^{3+}$ is the dipole-dipole interaction. The samples can emit multiple colors of yellow–green, yellow, orange–reddish and red by adjusting Eu^{3+} doping content. Under 301 nm excitation, the increase of Eu^{3+} content in $CaMoO_4:Dy^{3+}$, Eu^{3+} led to

the enhancement of red emission (613 nm) of Eu^{3+} and the decrease of blue and yellow emissions of Dy^{3+} , which was possibly due to the efficient energy transfer (ET) from level of Dy^{3+} to ${}^5\mathrm{D}_0$ level of Eu^{3+} through the phononaided non-radiative relaxation. The phosphors could generate different color light from yellow-green through yellow and orange-reddish and eventually to red by properly tuning the content of Eu^{3+} based on the ET process, which suggested that they might be potentially applied in the fields of lighting and display.

Shidong Li et al [5] successfully synthesized CaMoO₄:5%Tb³⁺,x%Eu³⁺(x = 0.3, 0.5, 1.0, 2.0) phosphors by precipitation method. The room temperature PLE spectrum of the CaMoO₄:5%Tb³⁺ sample monitoring at 545.5 nm and 486 nm, corresponding to ${}^5D_4 \rightarrow {}^7F_5$ and ${}^5D_4 \rightarrow {}^7F_6$ transitions of Tb³⁺. The CaMoO₄:1%Eu³⁺PLE spectrum are 395 nm and 465 nm for ${}^7F_0 \rightarrow {}^5L_6$ and ${}^7F_0 \rightarrow {}^5D_2$ of Eu³⁺ as the monitoring wavelength is 616 nm. The PLE spectrum of CaMoO₄:5%Tb³⁺,0.3%Eu³⁺, monitoring at 616 nm transition from Eu³⁺ (${}^5D_0 \rightarrow {}^7F_2$). The excitation peaks are from Eu³⁺ or Tb³⁺ different energy level transitions for Eu³⁺ at 362 nm (${}^7F_0 \rightarrow {}^5D_4$), 381 nm (${}^7F_0 \rightarrow {}^5L_7$), 395 nm (${}^7F_0 \rightarrow {}^5L_6$), 416 nm (${}^7F_0 \rightarrow {}^5D_3$), 465 nm (${}^7F_0 \rightarrow {}^5D_2$), and at 486 nm (${}^7F_0 \rightarrow {}^5D_4$) for Tb³⁺. The room temperature photoluminescence (PL) spectra excited by 270 nm of CaMoO₄:5%Tb³⁺, CaMoO₄:5%Tb³⁺,0.3%Eu³⁺, and CaMoO₄:1%Eu³⁺ phosphors, show the 4f-4f transition of Tb³⁺ locating at 489 nm (${}^5D_4 \rightarrow {}^7F_6$), 545 nm (${}^5D_4 \rightarrow {}^7F_5$), 587 nm (${}^5D_0 \rightarrow {}^7F_4$), and 621 nm (${}^5D_4 \rightarrow {}^7F_3$), of Eu³⁺ ion's 4f-4f transition at 592 nm (${}^5D_0 \rightarrow {}^7F_1$), 616 nm (${}^5D_0 \rightarrow {}^7F_2$), 655 nm (${}^5D_0 \rightarrow {}^7F_3$), and 702 nm (${}^5D_0 \rightarrow {}^7F_4$). The fluorescence intensity ratio (FIR) of Eu³⁺ to Tb³⁺ is dependent on temperature, and the FIR increases with the increase of temperature. When FIR of Eu³⁺ to Tb³⁺ is used to characterize the temperature, the sensitivity increases with the increase of Eu³⁺ concentration.

Hyun-Woo Lee et al [6] developed a new method for preparing transparent suspensions of CaMoO₄:(1 $x \to Eu^{3+}$, $(x) \to Eu^{3+}$, (x = 0-1) nanophosphors by reacting Ca-oleate (with Eu-oleate and/or Tb-oleate) complexes in hexane with an aqueous (NH₄)₆Mo₇O₂₄ solution via a solvothermal reaction in a hexane-water bilayer system. The TEM revealed slightly elongated spherical particles with a mean length and width of 9.5±3.6 and 4.1±1.2 nm, respectively. The photoluminescence emission spectra of the CaMoO₄:Eu³⁺ and CaMoO₄:Tb³⁺ nanophosphors exhibited intense peaks in the red (614 nm) and green (545 nm) regions, respectively. These emissions originated from the ${}^5D_0 \rightarrow {}^7F_2$ transition of the Eu³⁺ ion and the ${}^5D_4 \rightarrow {}^7F_5$ transition of the Tb³⁺ ion in the CaMoO₄ host, respectively. The emission colors in the green-red spectral region could be finely tuned by adjusting the molar fraction of Tb³⁺ ions in the CaMoO₄:(1-x)Eu³⁺,(x)Tb³⁺nanophosphors. The PL emission spectrum of the CaMoO₄:Eu³⁺ nanophosphor exhibits a series of emission lines in the range of 550–750 nm due to the $^5D_0 \rightarrow ^7F_J$ (j = 1–4) transitions of Eu³⁺. Thus, the CaMoO₄:Eu³⁺ nanophosphor is a red emitting material, as evident from its strongest emission peak appearing at 614 nm, which is assigned to the ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu³⁺. Similarly, the PL excitation spectrum of the CaMoO₄:Tb³⁺ nanophosphor exhibits a broad CT band at approximately 300 nm, while the PL emission spectrum of the CaMoO₄:Tb³⁺ nanophosphor exhibits sharp emission peaks at 489, 545, 587, and 621 nm that originate from the ${}^5D_4 \rightarrow {}^7F_i$ (j = 6, 5, 4, 3) transitions of Tb³⁺, respectively. Thus, the CaMoO₄:Tb³⁺ nanophosphor is a green-emitting material with the most intense emission peak appearing at 545 nm. The characteristic strong peaks at 614 and 545 nm correspond to the $^5D_0 \rightarrow ^7F_2$ transition of Eu³⁺ and the $^5D_4 \rightarrow ^7F_5$ transition of Tb³⁺, respectively. With an increase in x value, the emission intensities at 614 and 545 nm simultaneously decreased and increased, respectively. The ratio of the emission intensity at 545 nm to the sum of the intensities at 545 and 614 nm increased with increasing x value for the CaMoO₄:(1-x)Eu³⁺,(x)Tb³⁺ nanophosphors. Thus, the emission color can be finely tuned from red to green by adjusting the fractions of Tb³⁺ and Eu³⁺ activator ions in the CaMoO₄:(1-x)Eu³⁺,(x)Tb³⁺nanophosphors. This shows that the emission color of the CaMoO₄:(1x)Eu³⁺,(x)Tb³⁺ nanophosphor is tunable. With an increase in x value, the chromaticity coordinates changed from (0.65, 0.34) for the red-emitting CaMoO₄:Eu³⁺ nanophosphor to (0.31, 0.60) for the green-emitting CaMoO₄:Tb³⁺. The prepared CaMoO₄:(1-x)Eu³⁺,(x)Tb³⁺ suspensions can be used in transparent displays as light emitting materials with tunable emission from red to green region.

R. L. Tranquilinet al [7] successfully synthetized CaMoO₄:xRE³⁺ (RE = Eu, Tb, Tm and x = 1, 2, 4 mol%) compounds by one–pot ultrasonic spray pyrolysis method. The values of E_g were within the range of 3.84–3.93 eV. The PL spectra of the CaMoO₄:RE³⁺ phosphors exhibited characteristics of each doped ion (Eu³⁺, Tb³⁺, Tm³⁺) emission. Under the excitation of 350 nm, the ${}^5D_4 \rightarrow {}^7F_6$ (492 nm) and ${}^5D_4 \rightarrow {}^7F_5$ (548 nm) transitions, respectively, which are associated with the emission of Tb³⁺. This is related to the charge transfer (CT) process from the [TbO₈] to the [MoO₄]²⁻ tetragonal clusters, which corresponds to the 4f \rightarrow 5d transitions. The emission peak at 800 nm is attributed to Tm³⁺, which is associated with the ${}^3H_4 \rightarrow {}^3H_6$ transition. With respect to Eu³⁺, ${}^5D_0 \rightarrow {}^7F_j$ (j = 1–4) transitions occurred at the respective wavelengths of 596, 614, 661, and 704 nm. The most intense emission band, ${}^5D_0 \rightarrow {}^7F_2$, of Eu³⁺ is known to have an electric dipole, and this type of transition is highly sensitive to the changes

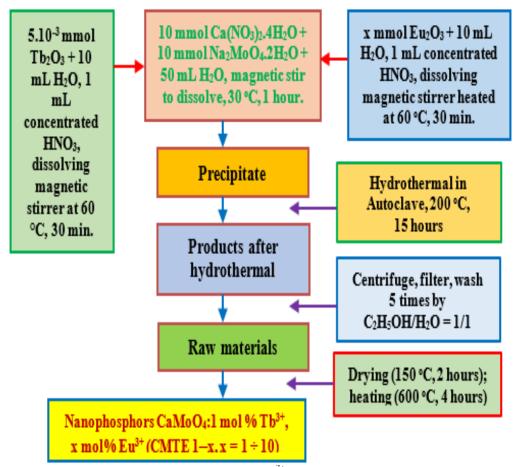
that occur around the Eu^{3+} cations. The samples with 2 and 4% of RE^{3+} released white emission according to the chromaticity coordinates (0.34, 0.34) and (0.34, 0.33), respectively.

Xiong Jianhui et al [8] synthesized CaMoO₄:Tb³⁺,Eu³⁺ phosphors by precipitation method. By adjusting the codoped concentration of Eu³⁺ ion in CaMoO₄:Tb³⁺,Eu³⁺ phosphors, can be easily adjusted the emission color of phosphors from green to red. The particle size is uniformly distributed about 1 μm. The emission spectra of CaMoO₄:x%Tb³⁺ (x = 2–8) phosphors and the excitation wavelength is 486 nm. The concentration quenching of Tb³⁺ ($^5D_4 \rightarrow ^7F_5$) transition green luminescence of CaMoO₄ samples which is excited by 486 nm. With the increase of Tb³⁺ concentration, the luminescent intensity of 545.5 nm of Tb³⁺($^5D_4 \rightarrow ^7F_5$) first increases and then decreases. The best concentration of Tb³⁺ is 5%. When the Tb³⁺ concentration is more than 5%, the luminescent intensity remarkably decreases. This phenomenon is due to the energy transfer between Tb³⁺ ions leading to the concentration quenching. The luminescent properties and the energy transfer mechanism from Tb³⁺ to Eu³⁺ in the phosphors were studied. With the increase of Eu³⁺ concentration, the luminescent colors could be changed from green to red easily because of different proportions of Tb³⁺ and Eu³⁺. The phosphors had potential application in the anti–counterfeiting technology. With Tb³⁺ doped in the phosphors, the red luminescence of Eu³⁺ by near UV excitation was significantly enhanced. The study also indicated that the energy transfer rate and energy transfer efficiency from Tb³⁺ to Eu³⁺ were increased with the increase of Eu³⁺ concentration, and the energy transfer type between Tb³⁺ and Eu³⁺ was electric dipole-dipole interaction.

Jiaming Deng et al [9] synthesized Tb³⁺, Eu³⁺ single-doped and co-doped Ca₂Al₂SiO₇ (CAS) phosphors by solgelmethod. CAS:Tb³⁺,Eu³⁺ phosphors demonstrate tunable luminescence under 238 nm excitation, in which the luminescence color gradually changes from purple-red to cool white, and then to warm white by continuously increasing the concentration of Tb³⁺ ions. The photoluminescence emission spectra for CAS:0.04Tb³⁺ sample excited under 238 nm shows the emission bands at 380–460 nm and 480–650nm, which are ascribed to the ${}^5D_3 \rightarrow {}^7F_1$ (J = 6, 5, 4, 3) and ${}^5D_4 \rightarrow {}^7F_1$ (J = 6, 5, 4, 3) transitions of Tb³⁺ ions. The excitation spectra for CAS:0.07Eu³⁺ sample monitored at 623 nm shows the strongest excitation wavelength at 395 nm. Then the phosphor excites with 395 nm and the maximum emission wavelength is observed at 623 nm, which is ascribing to the ⁵D-⁷F₂ transition of Eu³⁺ ions. The emission spectra of CAS:0.04Tb³⁺ and the excitation spectrum of CAS:0.07Eu³⁺ is overlapped in the range of 371–401 nm, indicating that there may exist an ET process of Tb³⁺ →Eu³⁺ in Ca₂Al₂SiO₇host. Since 350 nm can only excite Tb³⁺ but not Eu³⁺, the excitation wavelength of 350 nm is selected for investigation the energy transfers from Tb³⁺ to Eu³⁺. Under 350 nm excitation, the CAS:0.07Eu³⁺ exhibits almost no emission peak at 623 nm. However, the luminescence intensity of Eu³⁺ at 623 nm enhances gradually with increasing the doped ratio of Tb³⁺ ions for the CAS:xTb³⁺,0.07Eu³⁺ samples. To clearly, the intensity of the emission peaks of Tb³⁺ at 549 nm and Eu³⁺ at 623 nm as a function of Tb³⁺ content. It can be seen that the emission intensity of Tb³⁺ at 549 nm increases with the Tb^{3+} doped content and then decreases due to the concentration quenching near x = 0.11, while the emission intensity of Eu³⁺ at 623 nm shows a similar variation trends as Tb³⁺ ion. Thus, Tb³⁺ \rightarrow Eu³⁺ ET occurs in the CAS matrix, which enhances the red emission of Eu³⁺ ions. The fluorescence lifetimes determinated are 1.17 ms, 1.25 ms, 1.66 ms, 1.71 ms, 2.26 ms, for x = 0.01, 0.03, 0.07, 0.09, 0.11, respectively. Therefore, the lifetime of Eu³⁺ gradually increases with increasing Tb³⁺ concentration for a fixed Eu³⁺ concentration, which further indicates the existence of energy transfer from Tb³⁺ to Eu³⁺. The elongation of the fluorescence lifetime of Eu³⁺ with increasing Tb³⁺ ions content further confirms the energy transfer of $Tb^{3+} \rightarrow Eu^{3+}$. The thermal behavior of CAS: Tb^{3+} , Eu^{3+} phosphors shows enhanced luminescence intensity for 404 nm emission while suppressed luminescence intensity for 616 nm emissions withraising temperature, implying its potential in optical temperature sensing.

In previous work [10], we successfully synthesized luminescent nanomaterial CaMoO₄:(0-7%)Eu³⁺ using hydrothermal method. The materials exist in crystalline formscheelite–type tetragonal structure with I4₁/a, with an average diameter according to the Scherrer method of about 26–41 nm. Photoluminescence spectra of CaMoO₄:Eu³⁺ nanophosphors show emission peak at 613–616 nm ($^5D_0 \rightarrow ^7F_2$). The Judd–Ofelt parameters Ω_2 and Ω_4 have been calculated from the photoluminescence emission spectra of CaMoO₄:5%Eu³⁺, in temperature range 293 K–693 K. Judd–Ofelt intensity parameters uniformly decrease with increasing temperature. The Judd–Ofelt parameters radiative lifetimes and emission cross–sections were calculated. The results indicate that the Eu³⁺ doped CaMoO₄ nanophosphors are expected to have applications in the field of solid state lighting and other optical instruments.

In this study, we present the material's characteristics and photoluminescence properties of nano CaMoO₄ co-doped europium (III) and tecbium (III) ions, for the purpose of comparing and showing the effect of 1 mol% Tb³⁺ ion on the photoluminescent properties of CaMoO₄:(1–10%)Eu (CME) materials [10]. The powder X-Ray diffraction,


Raman scattering, FE–SEMand TEM, EDS, UV–Vis–Drs, the photoluminescence excition, the photoluminescence emission and the lifetime spectra of the energy level 5D_0 of europium have been studied. The mechanism, energy transfer efficiency from Tb^{3+} to Eu^{3+} and the influence of concentration of Eu^{3+} ions for photoluminescence properties of $CaMoO_4$ co–doped Eu^{3+} and Tb^{3+} nanophosphors have been analyzed.

Experimental

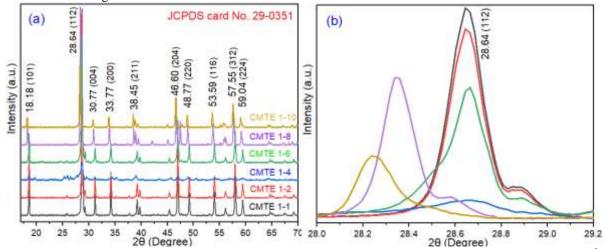
Synthesis nanophosphor

A series of nano-sized Eu^{3+} , Tb^{3+} co-doped $CaMoO_4$ phosphors were synthesized by hydrothermal methodform $Ca_{0.99-}$ y $Tb_{0.01}MoO_4$:y Eu^{3+} (y = 0.01–0.10), using of some chemicals: $Ca(NO_3)_2$.4 H_2O (> 99%), Na_2MoO_4 .2 H_2O (> 99.5%), Eu_2O_3 (99.99%), Tb_2O_3 (99.99%), HNO_3 (65%)and absolute ethanol (d = 0.790 g.cm⁻³) were purchased from Merck. $Eu(NO_3)_3$ and $Tb(NO_3)_3$ solutions was obtained by dissolving Eu_2O_3 and Tb_2O_3 diluted in HNO_3 solution, heating at 60 °C on a magnetic stirrer for 30 min.

The synthesis of $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} nanoluminescents are carried out according to the steps described in the diagram in Figure 1.

Figure 1:- Fabrication process of Ca_{0.99-v}Tb_{0.01}MoO₄:yEu³⁺ (CMTE 1–x) nanophosphors annealed at 600 °C.

Instrumentation


Powder XRD measurement was done on a (D2 Phaser, Bruker, Germany) machine equipped with a $CuK\alpha$ radiation ($\lambda = 1.54056$ Å, 40 kV, 20 mA) in a 20 scanning mode with a step size of 0.02° and acquisition speed of 4° /min. Raman measurement was acquiredusing a (XPLORA PLUS-Horiba) machine equipped with an argon laser(532 nm) in the range of 100-1000 cm⁻¹. The morphological characterization was carried out using a JEOL JSM-7600F fieldemission scanning electron microscopy (FE-SEM) (USA) operating under voltage 5KV. A spectrophotometer UV-Visible/NIR (Hitachi UH4150) were used to record the diffuse reflectance spectra (DRS) at 1 nm intervals and scan speed of 1200 nm/min from 240 to 2600 nm. The EDS system (Hitachi TM4000Plus) is used for analysis

elemental mapping. The measurements of photoluminescence excitation (PLE) and photoluminescence (PL) emission, and lifetime measurements were carried out using NANOLOG spectrophotometer (Horiba, USA) equipped with a 450 W Xe arc lamp and a dual excitation monochromator with divergence gap is 0.2 nm in size.

Results:-

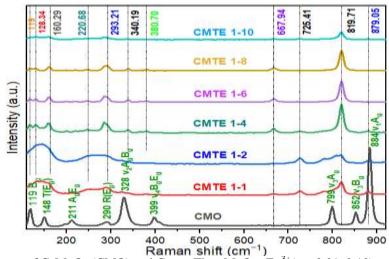
XRD characters

Fig. 2 shows the XRD patterns of Tb^{3+} (1 mol%) and Eu^{3+} (1–10 mol%) co–doped $CaMoO_4$ (denoted as CMTE 1–x) nanophosphors. All the X–ray diffraction peakswere observed at angles $2\theta = \sim 18.18^\circ$, 28.64° , 30.77° , 33.77° , 38.45° , 46.60° , 48.77° , 53.59° , 57.55° and 59.04° corresponding to planes of the samples at (101), (112), (004), (200), (211), (204), (220), (116), (312) and(224) respectively. All the observed diffraction peaks are found to match with the tetragonal phase of $CaMoO_4$:(1–7%)Eu [10]and can be indexed with standard JCPDS card No. 29–0351[1–9, 11]. Table 1 shows that the average particle size (D)was estimated from Scherrer's equation and was found to be inthe range 41.54–62.45 nm.

Figure 2:- XRD patternsofnanophosphorsannealed at 600 °C: (a)CMTE 1–x (x = 1–10), (b) Zooming at $2\theta \approx 28.64^{\circ}$.

Table 1:- Scherre's formula for estimated crystal size (D) of CMTE 1-x at $2\theta \approx 28.64^{\circ}$.

Nanophosphor	CMTE1-1	CMTE1-2	CMTE1-4	CMTE1-6	CMTE1-8	CMTE 1 -10
FWHM (°)	0.12641	0.18946	0.14401	0.19005	0.15013	0.17844
D (nm)	62.45	41.67	54.82	41.54	52.58	44.24


When Tb/Eu is co-doped into the host lattice, it does not affect the crystal structure of the material and the sharp diffraction peaks prove that the CMTE sample has high purity and good crystallinity (Fig. 2a). The results showed that the Eu³⁺ (1.066 Å) and Tb³⁺ (1.027 Å) ions replaced the position of the Ca²⁺ ion (1.040 Å), which has a similar radius [2], but did not replace the position of the Mo⁶⁺ ion (0.410 Å), because its radius is much smaller. In other words, Tb³⁺ and Eu³⁺ ions easily penetrate the host lattice, creating crystals with few defects and strong luminescence.

Raman analysis

The micro–Raman spectra of the $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} phosphors in the range of 100 to 1000 cm⁻¹ are presented in Fig. 3. The disordering of local symmetry can be probed with help of Raman scattering technique. There are 26 different vibration modes in the tetragonal structure $CaMoO_4$ crystal as obtained by the irreducible representation and they are described as follows: $\Gamma = {}^3A_g + {}^5A_u + {}^5B_g + {}^3B_u + {}^5E_g + {}^5E_u$, where: 4A_u and 4E_u are infrared and $({}^3A_g, {}^5B_g$ and ${}^5E_g)$ are Raman-active; 3Bu vibrations are silent modes; 1A_u mode and 1E_u mode are acoustic vibrations.

Result show that only have 9 vibration modes observed. The small change in polarizability will result in less intense peaks, the highly intense bands may hide some peaks, or the overlapping of bands may cause some peaks to unseen in the spectra. In thecase of CaMoO₄ nanophosphor, the modes observed at 119, 128.34, 160.29, 220.68, 293.21, 340.19 and 380.70 cm⁻¹ are attributed to O–Mo–O vibrations. The peak at725.41 cm⁻¹ is due to MoO₄ torsional modes. The peak found at 819.71 cm⁻¹ isassigned as Mo–O₄ torsional mode. The mode at 879.05 cm⁻¹ forms due toMo–O symmetric stretching vibrations. The substitution of Eu³⁺ and Tb³⁺ions in CaMoO₄ give raise to the shifting of the peaks corresponding to theabove discussed modes and are shown in Table 2. A reasonableshift in the

wavenumber of all the modes has been observed when Eu^{3+} , Dy^{3+} ions are substituted at $CaMoO_4$ lattice. The aliovalent substitution of Eu^{3+} , Tb^{3+} ions for Ca^{2+} ions gives raise to the formation of oxygen vacancies inorder to preserve electron neutrality. Also, the entering of smaller Eu^{3+} , Tb^{3+} ions in Ca^{2+} sites causes the tilting of MoO_4 tetrahedralresulting in the distortion of local crystal structure symmetry. Presence of dopant ionsand oxygen vacancies in the system influence the band vibrations andhence modify the Raman modes. A further change in these vibrationalmodes is observed when Eu^{3+} , Tb^{3+} ions are substituted. This is because the substitution of Eu^{3+} , Tb^{3+} ions still enhances the oxygen vacancies and local structure distortion. But small shifts alone are found in the vibrational modes when the concentration of Eu^{3+} , Tb^{3+} ions in $Ca_{0.99-y}Tb_{0.01}MoO_4$:y Eu^{3+} phosphor is altered [6]. The Raman scattering vibrational modes of CMTE 1–x materials are in good agreement with $CaMoO_4$:(1–7%)Eu nanoluminescences, which have been studied and described previously [10].

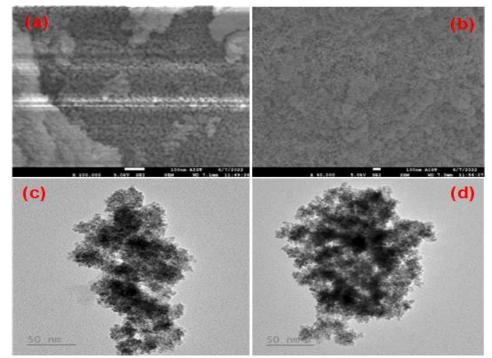
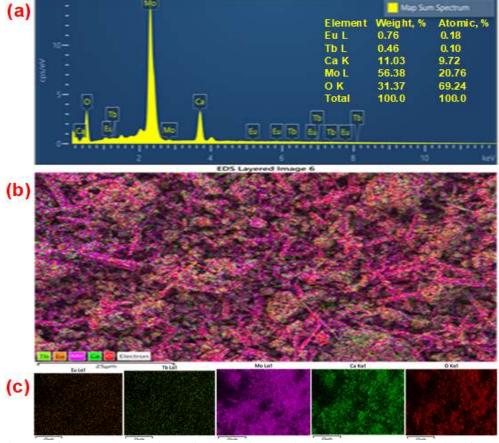

Figure 3:-Raman spectra of CaMoO₄ (CMO) and $Ca_{0.99-y}Tb_{0.01}MoO_4$: $yEu^{3+}(y=0.01-0.10)$ nanophosphorsannealed at 600 °C.

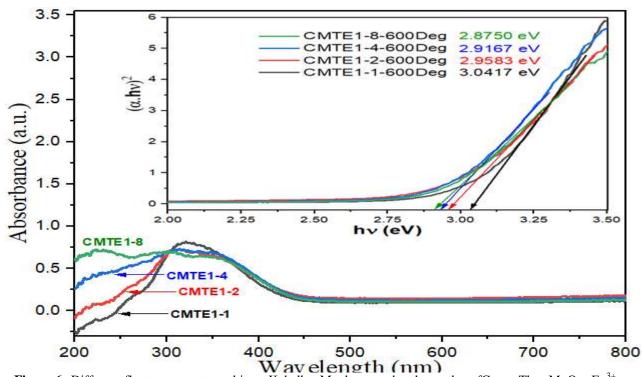
Table 2:- Assignments of Raman	modes of Canon T	Γbο οι MoOα:vEu ³⁺	nanophosphors.
Tuble 21 Hostighinenes of Ruman	1110000 01 00().99=01	100004.724	ilailo pilospilois.


CaMoO ₄ (cm ⁻¹)	CaMoO ₄ :(1-	Ca _{0.99} .	Type of vibrations
	7%)Eu(cm ⁻¹)[10]	$_{y}$ Tb _{0.01} MoO ₄ :yEu ³⁺ , y = 0.01-0.10 (cm ⁻¹)	
		$y = 0.01-0.10 \text{ (cm}^{-1})$	
119	115	128.34	T(B _g), CaMoO ₄ lattice mode
148	140	160.29	T(E _g), O–Mo–O bending mode
211	205	220.68	(A _g E _g), O–Mo–O bending mode
290	267	293.21	R(E _g), O–Mo–O bending mode
328	320	340.19	v ₂ (A _g B _g), O–Mo–O bending mode
399	390	380.70	$v_4(B_g)$ and $v_4(E_g)$, O–Mo–O bending mode
799	790	819.71	$v_3(E_g)$, Mo–O ₄ torsional mode
852-884	845-879	879.05	ν ₃ (B _g), Mo–O ₄ torsional mode and
			ν ₁ (A _g), Mo–O symmetric stretching

Morphology, composition and distribution of elements in the CMTE materials.

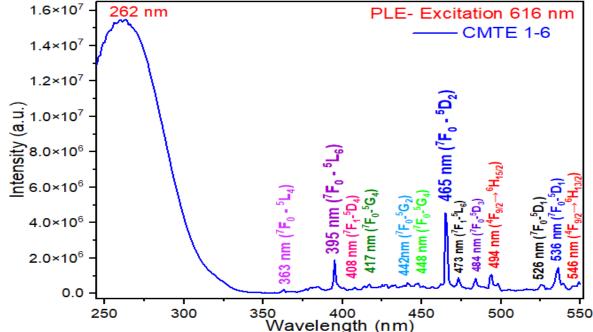
The FE-SEMand TEM observation (Fig. 4a-4d) shows the fabricated CMTE 1-x (x=2, 6). The morphologies of samples with different doping concentrations are similar. The particle sizes are about 15-20 nm and uniformly distributed.

Figure 4:- FE-SEM images of nanophosphors: (a)CMTE 1–2; (b) CMTE 1–6 andTEM images of nanophosphors: (c) CMTE 1–2; (d) CMTE 1–6.


Figure 5:- The EDSof CMTE 1–1: (a) Elementimaging; (b) Mapping imaging; (c) Mapped color of Eu, Tb, Mo, Ca, O.

The EDS spectra of $Ca_{0.98}Tb_{0.01}MoO_4$:0.01Eunanophosphor shown in Fig. 5 confirms the presence of the elements asEu, Tb, Ca, Mo and O in the sample, which has both total weight % and total atomic % are 100 %, demonstrating the high purity of CMTE materials. The quantitative EDS analysis of the phosphor suggests that the obtained concentrations of the elements are close to the theoretical stoichiometry (Inset of Fig. 5a). Figure 5b show the X–ray dot mapping images of $Ca_{0.98}Tb_{0.01}MoO_4$:0.01Eu nanophosphor, results showed uniformly distribution of europium, techium, molybdenum, calcium and oxygen for all host matrix, which suggested that Eu^{3+} and Tb^{3+} co–doped of $CaMoO_4$ occurred homogenously.

Reflectance spectra and band gap

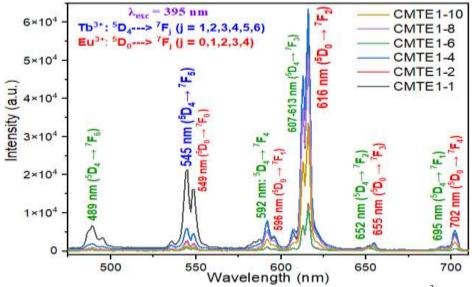

The diffuse reflectance spectra curve and the Kubelka-Munk energy curve of $Ca_{0.99-y}Tb_{0.01}MoO_4:yEu^{3+}$ (y = 0.01; 0.02; 0.04; 0.08) nanophosphors are shown in Fig. 6. The absorption band in the region 200–300 nm is found because of the collective effect of ligand-metal charge transfer transitions in Mo-O, Eu-Oand Tb-O groups. Small absorption peaks at 312–360 nmcorrespond to the intra $f \rightarrow f$ transitions of Eu^{3+} and Eu^{3+} ions.

The absorption wavelength shifts of the $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} are determined about 408-431 nm, so the phosphors is absorbed in the visible light region. The E_g of $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} is identified using Kubelka–Munk method and Tauc's equation as being about 2.8750-3.0417 eV, which is much lower than previous studies [2, 3,4,7]. The reflectancespectra demonstrate the probable excitation of these phosphors by radiations in the visible light region. Herein, the observed photoluminescence is due to the intra4f electronic transitions within the activator Eu^{3+} , Tb^{3+} ions and not due to theband gap absorption of the materials. These transitions occur within theband gap of the materials.

Figure 6:-Diffuse reflectance spectra and inset Kubelka–Munk versus band gap plotsofCa_{0.99-y}Tb_{0.01}MoO₄:yEu³⁺ nanophosphors.

Figure 7:- PLE spectrum of Ca_{0.93}Tb_{0.01}MoO₄:0.06Eu (CMTE 1–6).

The excitation spectrum of the typical $Ca_{0.93}Tb_{0.01}MoO_4$:0.06Eu (Fig. 7) consists of characteristic 4f—4f transition peaks of Eu^{3+} and Tb^{3+} ions. At about 262 nm, which is charge transfer band (CTB), the excitation spectrum of nano–sized $Ca_{0.93}Tb_{0.01}MoO_4$:0.06Eu phosphor shows a broad band and several relatively weak were appeared between 350 and 550 nmdue to the charge transfer of the dominant MoO_4^{2-} group. As shown from Figure 7, the excitation spectrum is predominantly composed of two main parts: (1) The broad band in the range of 245–350 nm, which is ascribed to O^{2-}/Eu^{3+} and O^{2-}/Tb^{3+} charge transfer states (CTS), and Tb^{3+}/Eu^{3+} intervalence charge transfer, due to an electron transfer from 2p an (oxygen) orbital to an empty 4f shell of Eu^{3+} . (2) A different sharp line was found between 350 and 550 nm due to the f-f transition of Eu^{3+} and Tb^{3+} ions.


High extent of spectral splitting in this band is again endowed by the large crystalline field of the nano–sized CMTE samples. The observed excitation peaks are mainly due to the transitions from the 7F0 and 7F1 levels to the higher energy levels of the Eu³+ ion: ${}^7F_0 \rightarrow {}^5D_4(363 \text{ nm})$; ${}^7F_1 \rightarrow {}^5D_4(366 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_1(377 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_2(380 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_2(380 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_2(380 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_2(442 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_2(448 \text{ nm})$, ${}^7F_1 \rightarrow {}^5L_6(473 \text{ nm})$, ${}^7F_0 \rightarrow {}^5D_3(417 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_2(442 \text{ nm})$, ${}^7F_0 \rightarrow {}^5G_4(448 \text{ nm})$, ${}^7F_1 \rightarrow {}^5L_6(473 \text{ nm})$, ${}^7F_0 \rightarrow {}^5D_3(484 \text{ nm})$, ${}^7F_0 \rightarrow {}^5D_1(526 \text{ nm})$, and ${}^7F_0 \rightarrow {}^5D_1(536 \text{ nm})$. The observed relatively weak peaks at 494, and 546 nm are assigned to electronic transitions of ${}^4F_{9/2} \rightarrow {}^6H_{15/2}$, and ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$, respectively, which are originated from the 4f–4f transitions of ${}^7F_0 \rightarrow {}^5D_2$ transitions, have wavelengths consistent with the characteristic emission from near–UV/UV LEDs and blue LEDs, so the prepared Ca_{0.99-y}Tb_{0.01}MoO₄:yEu³+phosphors greatly promises for potential practical applications of wLED and blue LEDs [2–10].

It is to be understood here that f–f transitions are forbidden and are absent in pure Tb_2O_3 . As a result of orbital mixing when incorporated in a crystalline host, these transitions appear due to the relaxation of the LaPorte parity rule. Moreover, symmetry around Tb^{3+} ions has an important role in dictating its intensity and appearance. Intrinsic porous characteristics, high surface area, and defects of the nano–sized sample make it more distorted in nature, and hence, the local symmetry around Tb^{3+} in the nano–sized CMTE is low. Lower symmetry of Tb^{3+} in the nano–sized CMTE relaxes the selection rule, making the appearance of the intra–configurational f–f bands of Tb^{3+} ion in the excitation spectrum. On the other hand, in the case of the bulkCMTE sample, because of the reduced surface to volume ratio and enhanced compactness of the local symmetry around Tb^{3+} , high symmetry around Tb^{3+} ions makes the f–f selection rule more stringent and curtails the appearance of intra–configurational f–f bands of Tb^{3+} ion in the excitation spectrum of the bulk CMTE nanophosphors[2–10].

As shown from Figure 8, the room temperature PL emissionspectra of $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} nanophosphors were measured, in which the excitation wavelength was monitored at 395 nm. The emission spectra were composed of a series of sharp emission lines, corresponding to transitions from the excited states 5D_0 to the ground state 7F_j (j=0,1,2,3,4). At about 596 nm, the emission of orange color was observed which is belongs to the magnetic dipole ${}^5D_0 \rightarrow {}^7F_1$ transition of Eu^{3+} , and the transition hardly varies with the crystal field strength ${}^5D_0 \rightarrow {}^7F_2$ transition of Eu^{3+} , which is very sensitive to the local environment around Eu^{3+} ions, which belongs to the electric dipole effects in which the red emissions were observed at 616 nm. In spite of this, it depends on the symmetry of the crystal field. Two strong peaks which were found at 596 and 616 nm emissions peaks, which are magnetic and electric dipole transitions of Eu^{3+} ions respectively, indicate that there are two Ca^{2+} positions in the $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} lattice. One position, Ca(I), is inversion symmetry and the other side, Ca(II), is noninversion symmetry. Other two emission peaks located at 655 and 702 nm are relatively weak, which is corresponding to the ${}^5D_0 \rightarrow {}^7F_3$ and ${}^5D_0 \rightarrow {}^7F_4$ typical transitions of Eu^{3+} ions, respectively.

A fairly strong peak at 545 nm(${}^5D_4 \rightarrow {}^7F_5$), and emission peaks located at 489 nm, 592 nm, 613 nm, 652 nm, 695 nm are relatively weak, which is corresponding to the ${}^5D_4 \rightarrow {}^7F_j$ (j=6-1)typical transitions of Tb³⁺ ions, respectively, all of which are electric dipole transitions. From this result, it was shown that when doping Eu³⁺ and Tb³⁺ ions into CaMoO₄, there was efficient energy transfer from the matrix to the energy levels of Eu³⁺ and Tb³⁺ions [4–9, 12–13]. The strong luminescence of the electric dipole transitions show that Eu³⁺ and Tb³⁺ions have replaced Ca²⁺ ions.

It can be seen from the figure 8 that there is not much change in the emission spectral features as a function Eu^{3+} ion concentration. However, emission intensity gradually increased when doping 1.0 to 4.0 mol% Eu^{3+} and then gradually decreased when the doping concentration of Eu^{3+} was greater than 4 mol%. This resulted from energy transfer from Tb^{3+} ions to Eu^{3+} ions, which caused concentration quenching of luminescence intensity.

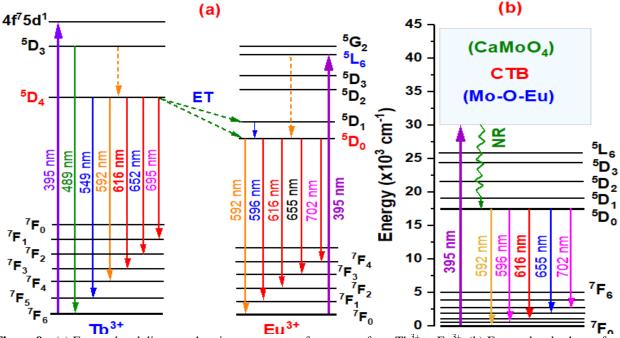
Figure 8:- Photoluminescence (PL) spectra ($\lambda_{\rm exc}$ =395 nm) of Ca_{0.99-y}Tb_{0.01}MoO₄:yEu³⁺ (y = 0.01–0.10)nanophosphors annealed at 600 °C temperatures in air.

Table 3:- The ratio $I_{616 \text{ nm}}/(I_{545 \text{ nm}} + I_{616 \text{ nm}})$ of the CMTE 1-xnanophosphors.

14016 6. The factor 1616 min (1343 min + 1616 min) of the entry 12 1 Antanophiosphoris.						
Nanophosphor						
Intensity (a.u.)	CMTE1-1	CMTE1-2	CMTE1-4	CMTE1-6	CMTE1-8	CMTE1-10
I _{545 nm} (a.u.)	21379	2722	5943	872	2238	1257
I _{616 nm} (a.u.)	58479	12474	63486	11383	51511	33575
$I_{616 \text{ nm}}/(I_{545 \text{nm}} + I_{616 \text{ nm}})$	0.7323	0.8209	0.9144	0.9288	0.9584	0.9639

Table 3 show ratios of the emission intensity at 616 nm (red, ${}^5D_0 \rightarrow {}^7F_2$) to the sum of the intensities at 616 nm and 545 nm (green, ${}^5D_4 \rightarrow {}^7F_5$) in the Eu³⁺ and Tb³⁺ co-doped CaMoO₄nanophosphors. When x value increase, the emission intensities at 616 nm and 545 nm simultaneously increased and decreased, respectively. The ratio of the emission intensity at 616 nm to the sum of the intensities at 616 nmand 545 nm increased with increasing the x value from 1 to 10 mol% in the CaMoO₄:0.01Tb³⁺,xEu³⁺ nanophosphors. Thus, the red emission (${}^5D_0 \rightarrow {}^7F_2$) of Eu³⁺ ion was enhanced in the presence of Tb³⁺sensitizer ion in CaMoO₄:1%Tb³⁺,x%Eu³⁺ nanophosphors. Showing that there is effective energy transfer from Tb³⁺ to Eu³⁺ ions.

In addition, compared with the nano–size CaMoO₄ doped 5% Eu³⁺, which has intensities ratio $I_{616 \text{ nm}}/(I_{545 \text{ nm}} + I_{616 \text{ nm}})$ was $0.9930 \approx 1.0 \text{ [10]}$ and higher than the nanoluminescents CaMoO₄ co–doped Eu³⁺ and Tb³⁺, showing that the CMTE 1–x nanophosphors are colors tunable, the photoluminescent colors could be transferred from green to red easily with of different ratios of Eu³⁺ and Tb³⁺.


The energy transfer mechanism from Tb³⁺ to Eu³⁺

It is well known that energy transfer (ET) of phosphors can be produced by exchange interactions or electrical multipole interactions mainly between luminescent centers. These interactions depend on the critical distance $R_{Tb\to Eu}$ between the Tb³⁺ and Eu³⁺ ions. With 5–7 Å as the boundary, exchange interactions play a role when the critical distance not exceed about 5 Å, while electrical multipole interactions dominate if $R_{Tb\to Eu}$ is larger than 7 Å [8].

To have better understanding of concentration quenching mechanism the critical distance ($R_{Tb\to Eu}$) for the energy transfer has been calculated from the geometrical factors of the host using the relation given by Blasse, according to

formula (1) [4–8]:
$$R_{Tb\to Eu} = 2\left(\frac{3V}{4\pi X_c N}\right)^{\frac{1}{3}}$$
 (1)

where $R_{Tb\to Eu}$ is the critical distance between the dopant ion and quenching site, V is the volume of the unit cell, X_c is thetotal critical concentration of Eu^{3+} and Tb^{3+} ions, and N the number of crystallographic sites available for dopant or the activator ions in the unit cell. For CaMoO₄ host lattice V = 313.013 Å³(a = b = 5.2300 Å, c = 11.4435 Å) [8], N = 4 (four formula units per one unit cell), and $X_c = 0.02-0.11$. Based on the values, the average distances of the donor–acceptor in the current situation are calculated to be 7.786–13.744 Å, which are larger than the critical value (5–7 Å). This result suggests that the energy transfer through the exchange interaction is impossible and the energy transfer from Tb^{3+} to Eu^{3+} ions in the CMTE 1–x phosphors is mainly by an electric multipole interaction.

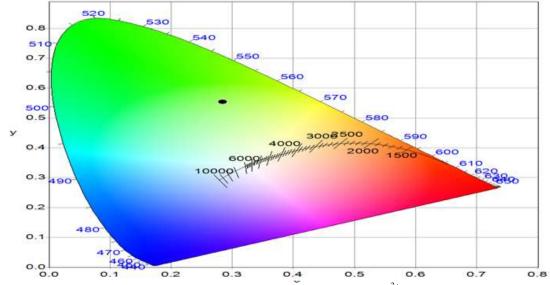


Figure 9:- (a) Energy level diagram showing energy transfer process from Tb³⁺ to Eu³⁺; (b) Energy level scheme for the emission process in Ca_{0.99-v}Tb_{0.01}MoO₄:yEu³⁺nanophosphors.

The proposed path for the energy transfer to occur in co-doped glasses could be 5D_4 of Tb $^{3+}$ to 5D_0 state of Eu $^{3+}$ ions. This is shown in Fig. 9 where an excitation wavelength 395 nm raises Tb $^{3+}$ ions to a higher energy state (4f 7 5d 1) which can relaxe to the 5D_4 state by emitting non-radiative energy which is than absorbed by Eu $^{3+}$ ions in the ground state which are excited to higher energy states and then relaxes to 5D_0 state. Further they cascade non-radiatively to intermediate states 5D_1 and 5D_0 and therefore finally decay radiatively to 7F_0 ground state [8–9, 12–13].

CIE and CCT studies

Figure 10 shows the color coordinate diagram (CIE) and correlated color temperature (CCT) of CMTE 1-x (x = 1-10) materials calcined at 600 °C. The CIE and CCT color coordinate values of the samples are listed in table 4, demonstrating the luminescence of CMTE materials in the red region from (0.484; 0.428) to (0.606; 0.337) with CCT values large in the range 1142-2512 K, which values are equivalent to light on a clear day compared to common color temperature tables. These results are consistent with previous studies [5–6].

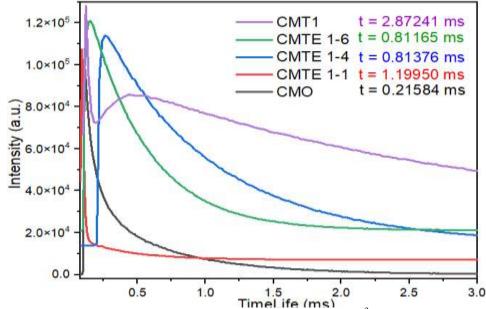
Figure 10:- CIE and CCT diagram ofCa_{0.99-v}Tb_{0.01}MoO₄:yEu³⁺ nanophosphors.

Nanophosphor	CIE	CIE		
	xaxis	yaxis		
CMTE 1–0	0.285	0.554	N/A	
CMTE 1–1	0.484	0.428	2512	
CMTE1–2	0.528	0.373	1745	
CMTE1–4	0.571	0.370	1465	
CMTE1–6	0.606	0.337	1142	
CMTE1–8	0.522	0.367	1748	
CMTE1-10	0.552	0.356	1498	

Table 4:- CIE and CCT values of Ca_{0.99.v}Tb_{0.01}MoO₄:yEu³⁺nanophosphors.

Fluorescencelifetime, energy transfer efficiency and concentration quenching mechanism

The decay profiles of the emission spectra of 1 mol% Tb^{3+} and y (from 0.01 to 0.06 mol%) Eu^{3+} co-doped $CaMoO_4$, are recorded at 395 nm excitation and 616 nm emission wavelength for the energy level 5D_0 . The decay profiles are shown in Fig. 12. The decay curves were observed to have biexponential nature and further analyzed to understand the energy transfer behavior from Tb^{3+} ion to Eu^{3+} ion. The average value of lifetime (τ) was calculated as follows formula (2) and the values are presented in Fig. 11:


$$\tau = \frac{A_1 t_1^2 + A_2 t_2^2}{A_1 t_1 + A_1 t_2} \tag{2}$$

Where t_1 and t_2 stands for fast and slow decay times respectively; A_1 and A_2 are constants. The obtained τ values are 0.81165–1.19950 ms and the lifetime values were decreased as compared to singly doped 1 mol%Tb³⁺(CMT1) such as (τ_{Tb}) is 2.87241 ms, which supported the previous non radiative energy transfer arguments and suggested that Tb³⁺ is acting as sensitizer while Eu³⁺ is acting as activator in this matrix. The trend of observed decay values is also due to mix rare earth ion effect since here concentration of both the RE³⁺ ions are varied [8].

The energy transfer rate $(A_{da(Tb \to Eu)})$ from Tb^{3+} to Eu^{3+} is also calculated by the following equation(3) and the efficiency of energy transfer $(\eta_{Tb \to Eu})$ from Tb^{3+} to Eu^{3+} are calculated by the equation (4), and the efficiency of energy transfer $(\eta_{CMO \to Eu})$ from CMO to Eu^{3+} are calculated by the equation (5). The τ_{Tb} and τ in the above relation are the corresponding lifetime decays of Eu^{3+} ions in single–doped and co–doped Eu^{3+}/Tb^{3+} respectively [8].

$$A_{da(Tb \to Eu)} = \frac{1}{\tau} - \frac{1}{\tau_{Tb}}$$
 (3) $\eta_{Tb \to Eu} = 1 - \frac{\tau}{\tau_{Tb}}$ (4) $\eta_{CMO \to Eu} = 1 - \frac{\tau_{CMO}}{\tau}$ (5)

The $A_{da(Tb \to Eu)}$, $\eta_{Tb \to Eu}$ and $\eta_{CMO \to Eu}$ of CMTE 1–x nanophosphors are presented in table 5.

Figure 11:- Luminescence Decay curves at 616 nm of the $Ca_{0.99-y}Tb_{0.01}MoO_4$:yEu³⁺ (y = 0.01–0.06)nanophosphors annealed at 600 °C under the excitation wavelength of 395 nm.

Table 5:- Average lifetime, energy transfer rate, efficiency, and average distance of CMTE 1–x nanophosphors.

U	, 0,	,	J /		1 1
Nanophosphor	τ	$\eta_{Tb \to Eu}$ (%)	$\eta_{CMO o Eu}$ (%)	$A_{da(Tb \to Eu)}$ (s ⁻¹)	$R_{Tb o Eu}$ (Å)
CMT1	$2.87241 (\tau_{Tb})$	-	-	-	-
CMTE 1-1	1.1995	0.5824	0.8201	485.54	7.7861
CMTE 1–4	0.81376	0.7167	0.7348	880.72	10.5673
CMTE 1-6	0.81165	0.7174	0.7341	883.92	11.8215
CMO	0.21584	-	-	-	-

Table 5 shows, that the lifetime of nanophosphors gradually decreased with increased Eu^{3+} doped in, this is because the electrons have more opportunities to move from a higher energy level to a lower energy level and this can cause the time the electrons spend to stay at the energy level to decrease. The possible energy transfer channels attributed to the going out of 5D_4 fluorescence of Tb^{3+} by Eu^{3+} are shown in Fig. 9a. The energy transfer from Tb^{3+} ionto Eu^{3+} ion is very efficient because they have large emission spectra overlapping each other. Addition, the increasing of Eu^{3+} co-doped, both $\eta_{Tb\to Eu}$ and $A_{da(Tb\to Eu)}$ are increased.

The concentration dependent luminescence intensities are fitted to Dexter's energy transfer formula for multipolar interaction and Reisfeld's approximation by equation (6) below:

$$\log(I/(0.01+y)) = C - (\theta/3) * \log(0.01+y)$$
(6)

where I is emission intensity, (0.01+y) is the total concentration of Tb³⁺ and Eu³⁺, C and θ are fitting constants. As per the above formalism, the value of the fitting constant θ is in the increasing order for exchange coupling, electric dipole–dipole, dipole–quadrupole and quadrupole–quadrupole interactions and the values are 3, 6, 8 and 10, respectively [4, 6–8]. The intensity data is fitted to Equ. (6) and given in Fig. 12. From the slope, the θ value is ~ 6.004 which is close to 6 showing that the dominant concentration quenching mechanism of Tb³⁺ and Eu³⁺ in CaMoO₄ is the non–radiative dipole–dipole interaction [8].

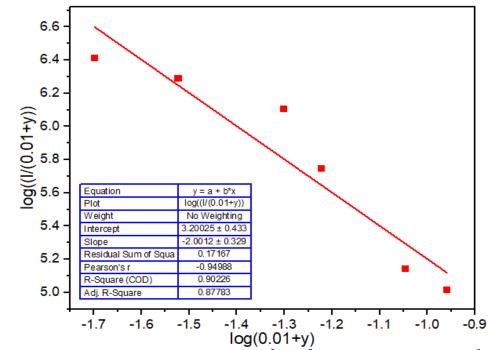


Figure 12:- $\log(I/(0.01+y))$ vs $\log(0.01+y)$ plot of the ${}^5D_0 \rightarrow {}^7F_2$ transition intensity (I) of Eu³⁺ ions in $Ca_{0.97-y}Tb_{0.01}MoO_4$:yEu³⁺(y = 0.01–0.10) and the line and co–doping concentration (0.01+y) is fit with equation (6).

Conclusions:-

The influence of co-doped Tb^{3+} ion in enhancing the photoluminescence properties of $CaMoO_4$: Eu^{3+} was studied by examining characteristics of nanophosphors using modern analysis methods. The $Ca_{0.99-y}Tb_{0.01}MoO_4$: yEu^{3+} materials as well as red nanophosphors, were successfully prepared viahydrothermal technique.

The nanostructure analysis and surface morphology were studiedusingscanning and transmission electron microscopy spectroscopy techniques. Eu³⁺ and Tb³⁺ ions occupied the position of Ca²⁺ ions, were verified by XRD pattern, Raman scattering and EDSelemental/mapping studies. The Raman spectra analysis confirmed that the substitution of rare earth ions altered the local crystal structure symmetry. The photoluminescence (PL) spectra of Ca_{0.99-y}Tb_{0.01}MoO₄:yEu³⁺ nanophosphors show emission peak at 616 nm (5 D₀ \rightarrow ⁷F₂) corresponding to the red region from (0.484; 0.428) to (0.606; 0.337) of CIE. The co–doped of Tb³⁺ ions brought about 5.6 timesenhancement of luminescence intensity and the luminescence lifetime value calculated about0.81165–1.19950 ms. The increasing of Eu³⁺ co–doped, both the energy transfer rate and the efficiency of energy transfer from Tb³⁺ ions to Eu³⁺ ions is are increased. This research showed that co–doped CaMoO₄:1%Tb³⁺,x%Eu³⁺nanophosphorshave a potential for application as a red–emitting powder for warm white LEDs.

Author Contributions:

N.C.M has contributed to Sample synthesis, Sample processing, Data analysis, Intellectual content design, Result interpretation and Writing-original draft preparation. Collection of samples, Interpreting resultdata curation, Software and Conceptualization by H.P.V, M.A.P. Writing-review and editing by N.C.M, H.P.V. All authors have drafted, read and agreed to the published version of the manuscript.

Supervision:

N.C.M.

Acknowledgments:-

This research is funded by Thai Nguyen University under grant number ĐH2022-TN04-01.

Ethical approval and consent:

Not applicable.

References:-

- [1].A. Khanna, P.S. Dutta. Narrow spectral emission CaMoO₄: Eu³⁺, Dy³⁺, Tb³⁺ phosphor crystals for white light emitting diodes. Journal of Solid State Chemistry,vol.198 (2013): 93–100.http://dx.doi.org/10.1016/j.jssc.2012.08.060.
- [2].Akta Verma, S.K. Sharma.Rare-earth doped/co-doped CaMoO₄ phosphors: A candidate for solar spectrum conversion.Solid State Sciences 96 (2019) 105945: 1–10, 2019. https://doi.org/10.1016/j.solidstatesciences.2019.105945.
- [3]. Anees A. Ansari, A.K. Parchur, M. Alam, Abdallah Azzeer. Structural and photoluminescence properties of Tb-doped CaMoO₄ nanoparticles with sequential surface coatings. Materials Chemistry and Physics147 (2014): 715–721,2014. http://dx.doi.org/10.1016/j.matchemphys.2014.06.011.
- [4]. Yongqing Zhai, Xin Zhao, Chang Liu, Pengfei Song, Xuemeng Jing, Ying Han, Jing Wang. $CaMoO_4:Dy^{3+}$, Eu^{3+} phosphors: microwave synthesis, characterization, tunable luminescence properties and energy transfer mechanism. Optik 164 (2018): 433–442. https://doi.org/10.1016/j.ijleo.2018.03.049.
- [5].Shidong Li, Qingyu Meng, Shuchen Lü, Wenjun Sun. Study on optical temperature sensing properties of Tb³⁺, Eu³⁺ co-doped CaMoO₄ phosphor. Journal of Luminescence 200 (2018): 103–110. https://doi.org/10.1016/j.jlumin.2018.04.009.
- [6]. Hyun-Woo Lee, Young-Duk Huh. Preparation of transparent suspensions of tunable-emission $CaMoO_4$: $(1-x)Eu^{3+}$, $(x)Tb^{3+}$ nanophosphors. Optical Materials 111 (2021) 110594: 1–7. https://doi.org/10.1016/j.optmat.2020.110594.
- [7].R. L. Tranquilin, L. X. Lovisa, C. R. R. Almeida, C. A. Paskocimas, M. S. Li, M. C. Oliveira, L. Gracia, J. Andres, E. Longo, F. V. Motta, and M. R. D. Bomio. Understanding the White-Emitting CaMoO₄ codoped Eu³⁺, Tb³⁺, and Tm³⁺ Phosphor through Experiment and Computation.J. Phys. Chem. C 2019, 123: 18536–18550.DOI: 10.1021/acs.jpcc.9b04123.
- [8]. XIONG Jianhui, MENG Qingyu, SUN Wenjun. Luminescent properties and energy transfer mechanism from Tb^{3+} to Eu^{3+} in $CaMoO_4$: Tb^{3+} , Eu^{3+} phosphors. Journal of rare earths, Vol. 34, No. 3: 251–258, 2016. DOI: 10.1016/S1002-0721(16)60022-4.
- [9]. Jiaming Deng, Zihao Wang, Weiping Zhou, Mingyuan Yu, Jiangen Min, Xunliang Jiang, Ziyan Xue, Chunlin Ma, Zhenzhi Cheng, Guangsheng Luo. Energy transfer of Tb³⁺→Eu³⁺ in Ca₂Al₂SiO₇ phosphors with multicolor tunable and optical temperature sensing properties. Ceramics International49 (2023):14478–14486.https://doi.org/10.1016/j.ceramint.2023.01.036.
- [10]. N.C. Manh, L.T.H. Nguyen, T.M. Xuan, H.D. Tra, T.T. Anh Duong, L.T.T.Nguyen, H. Van Pham, M.N. Ha, V.H. Nguyen, H.D. Chau, T.K. Ngan Tran. Temperature affects on the photoluminescence and Judd-Ofelt intensity parameters of CaMoO₄:Eu³⁺ nanophosphor. Journal of Luminescence(2023), 119776: 1–9. Doi: https://doi.org/10.1016/j.jlumin.2023.119776.
- [11]. Zhi-Jun Zhang, Hao-Hong Chen, Xin-Xin Yang, Jing-Tai Zhao. Preparation and luminescent properties of Eu³⁺ and Tb³⁺ ions in the host of CaMoO₄. Materials Science and Engineering B 145 (2007): 34–40. Doi:10.1016/j.mseb.2007.09.091.
- [12]. D. Rajesh, K. Brahmachary, Y.C. Ratnakaram, N. Kiran, A.P. Baker, G.G. Wang. Energy transfer based emission analysis of Dy^{3+}/Eu^{3+} co-doped ZANP glasses for white LED applications. J. Alloys Compd. 646 (2015): 1096-1103. https://doi.org/10.1016/j.jallcom.2015.05.138.
- [13]. B. Devakumar, P. Halappa, C. Shivakumara. Dy^{3+}/Eu^{3+} co-doped $CsGd(MoO_4)_2$ phosphor with tunable photoluminescence properties for near-UV WLEDs applications. Dyes Pigments 137 (2017): 244–255. http://dx.doi.org/10.1016/j.dyepig.2016.10.016.