

RESEARCH ARTICLE

ETIOLOGICAL REVIEW OF BRAIN INJURIES ON CT SCANNING IN THE ASSESSMENT OF PSYCHOMOTOR DEVELOPMENT DELAY IN CHILDREN UNDER FIVE (5) YEARS OF AGE AT THE "LUXEMBOURG" MOTHER-CHILD CHU

Alassane Kouma^{1,2}, Mamadou Dembele², Sylvain Coulibaly¹, Bourehima Guindo¹, Dramane Coulibaly¹ Seydou LY¹, Issa Cisse^{1,2}, Souleymane Sanogo^{1,2}, Cheick Zoumana Berete³, Boubacar Togo^{2,4}, Adama Diaman Keïta² and Siaka Sidibe²

.....

1. Radiology Department of the Mother-Child University Hospital Center "Luxembourg" (Bamako, Mali).

2. Faculty of Medicine and Odontostomatology (FMOS).

3. Department of Teaching and Research in Public Health and Specialties (DERSP) (Bamako, Mali).

4. Onco-Pediatrics Department of the Gabriel TOURE University Hospital Center (Bamako, Mali).

Manuscript Info

Manuscript History Received: 05 January 2024

Published: March 2024

Key words:-

.....

Final Accepted: 09 February 2024

Delay in Psychomotordevelopment,

Child, CT Scan, "Le Luxembourg" Mother-Child University Hospital

Abstract

Objective: Our workaimed to describe the scan semiology of lesionsencountered in delayedpsychomotordevelopment (DPMD) in childrenunder 5 yearsold at the Mother-Child University Hospital Center "Le Luxembourg"

Methodology: This is a prospective analytical and descriptive studycarried out over a period of 18 months (from April 15, 2021 to September 15, 2022) in the radiologydepartment of the CHU-ME Mère et Enfant "Le Luxembourg". It concerned all patients aged 0 to 5 yearsadmitted to the medicalimagingdepartment of the Luxembourg Mother and Child University Hospital for psychomotordelaywhohadundergone brain scan. а Childrenwithoutpsychomotordelaywereexcludedfromourstudy.

Results:Weretained 150 cases of psychomotordelayduringourstudyperiod. The age group of 0 to 02 yearswas the majority (67%) with an average of 1.33 years, an extreme of 1 month to 5 years and standard deviation of 5.807. The male genderwas in the majority with (55%) with a sex ratio of 1.22. The mostcommon type of deliverywas normal deliverywith a frequency of 62.0%. Prematuritywas the mostrepresented obstetricrisk factor (18.0%).Convulsion was the mostrepresentedneonatalrisk factor (16.7%).Epilepsywas the mostcommon postnatal neurologicalantecedent (6.7%). The scan resultwasabnormalin 75% of our patients. The lesionsfoundwere:anoxoischemicleukoencephalopathy hydrocephalus (17%). (47%), malformative lesions (7%), sequelae of brain infections(3%) and tuberoussclerosis of Bourneville (1%)

Conclusion: ChildhoodDPMDrepresents a major healthproblemwith a relatively high prevalence. This studydemonstrates the diagnostic value of CT in the exploration of RPM in children. Of the 150 patients explored, brain CT revealed a lesionin 75.0% of cases.

Copy Right, IJAR, 2024,. All rights reserved.

.....

Introduction:-

Psychomotordelayrefers to any notable differencebetween a child's acquisitions and that of normal children of the sameage group [1]. This is a real obstacle to the development of the child and his or herfulfillment in society. Psychomotordelay (RPM) is a frequentreason for consultation in pediatrics. Studiesconducted by WHO from 1979 to 1999 revealedthat more than 120 million people worldwide are affected by RPM with a prevalenceamongthoseunder 18 years of age of 2 to 25 per 1000 in developed countries and 46 per 1000. 1000 in developing countries [2].

The prevalence of RPM isestimated in France at 1-3% in childrenunder five (05) yearsold, i.e. 6,000-18,000 new cases per year. According to the Canadian Pediatric Society, PMR and intellectualdisabilityrepresent 3% of the global pediatric population.

In Mali, the surveycarried out by the Malian Association for the Fightagainst Mental Deficiency (AMALDEME) in 1987 found a prevalenceestimated at 14.6% in a population of 9,000 childrenaged 0 to 5 years in the district of Bamako [2].

RPM has various causes. The diagnosisisclinical and this condition ischaracterized by the absence of curative therapy. The interest of imagingmethods lies in the establishment of an etiological diagnosis, a prognostic evaluation and the assessment of a possible intrafamilial recurrence [3].

In the literature, itisremarkable to note that observations specificallyconcerning the radiological aspects of RPM in childrenremainverylimited in number in Mali [3]. It is in thiscontextthatweestablishedthisstudy with the aim of studying the CT aspects of RPM in childrenunder 5 yearsold at the Mother-Child Hospital and University Center in "Luxembourg".

Methodology:-

Study Framework:

Ouranalytical and descriptive studytook place in the radiology and medicalimagingdepartment of the Mother-Child University Hospital Center "Le Luxembourg".

Study Period:

The studytook place over a period of 18 months from April 15, 2021 to September 15, 2022.

Sampling:

We collected 150 patients duringour studyperiod, who met the inclusion criteria.

Inclusion Criteria:

All patients agedfrom0 to 5 years admitted to the medical imaging department of the Luxembourg Mother-Child University Hospital for psychomotor delay who have received a brain scan.

Non-Inclusion Criteria:

Childrenwithoutpsychomotordelay. Childrenwhose parents have not given consent.

Data Collection Method And Technique:

The supports usedwere:medical files of patients, individual investigation sheets and reports.

Materials Used:

The equipmentwithwhich the examinationswere carried out was a HITACHI SUPRIA 16 BARRETTES brand CT scanner equipped with a CARESTREAM DRY VIEW 5950 brand printer: (installedin 2015)

Results:-

We collected a total of 1459 CT (brain) examinations during our studyperiod, including 175 cases of PROM. We retained 150 cases meeting our criteria, i.e. a frequency of 10.3%.

The age group 0 to 02 yearswas in the majority with 67.0%, an average of 1.33 years, an extreme of 1 month to 5 years and standard deviation of 5.807.

The male genderwas in the majority with 55% with a sex ratio of 1.22.

In ourstudy, normal deliverywas the majoritywith 62.0% of cases.

OBSTETRIC RISK FACTORS	NUMBER	PERCENTAGE%
ABSENT	114	76,0
PREMATURITY	27	18,0
POST-TERM	4	2,7
MATERNAL-FETAL INFECTION	4	2,7
ULTRASOUND ABNORMALITY	1	0,7
TOTAL	150	100

Table I:- Distribution According to Obstetric Risk Factor.

In ourstudy, prematuritywas the mostrepresentedobstetricrisk factor with 18.0%.

Table II:- Distribution According to Neonatal Risk Factor.

NEONATAL RISK FACTORS	NUMBER	PERCENTAGE %
ABSENCE OF RISK FACTORS	105	70,0
NEONATAL HYPOGLYCEMIA	4	2,7
DEEP JAUNDICE	16	10,7
CONVULSION	25	16,7
TOTAL	150	100

In ourstudy, convulsion was the mostrepresented neonatalrisk factor with 16.7%.

Table III:- Distribution According to Postnatal Neurological History.

POSTNATAL NEUROLOGICAL HISTORY	NUMBER	PERCENTAGE %
NOT ATCD	132	88,0
EPILEPSY	10	6,7
HEAD TRAUMA	5	3,3
CNS INFECTION	3	2,0
TOTAL	150	100

In ourstudy, epilepsywas the mostrepresented postnatal neurologicalantecedentwith 6.7%.

CLINICAL INFORMATION	NUMBER	PERCENTAGE %
ISOLATED DIET	33	22,0
CRANIAL PERIMETER	45	30,0
ABNORMALITY		
PERINATAL ANOXIA	15	10,0
HEMIPARESIS	5	3,3
CEREBRAL PALSY	8	5,3
HEMIPLEGIA	12	8,0
SEIZURES	14	9,3
AXIAL HYPOTONIA	9	6,0
BEHAVIORAL DISORDERS	9	6,0
TOTAL	150	100

In ourstudy, cranialperimeterabnormalitywas the majority, i.e. 30.0%.

Figure 4:- Distribution According to CT Result.

In ourstudy, 75% of patients had an abnormal scan result (pathology).

Table V:- Distribution	According to	Hydrocephalus :

HYDROCEPHALUS	NUMBER	PERCENTAGE %
ABSENT	124	82,7
UNIVENTRICULAR	2	1,3
BI-VENTRICULAR	4	2,7

TRI-VENTRICULAR	12	8,0	
TETRAVENTRICULAR	8	5,3	
TOTAL	150	100	

The tri-ventricularhydrocephalus was the mostrepresented with 8.0%.

In ourstudy, 96% of patients had no after-effects of brain infection.

In ourstudy, 99% of patients did not have phacomatosis.

Tables VI:- Distribution According to Malformative Lesions.

MALFORMATIVE LESIONS	NUMBER	PERCENTAGE (%)
ABSENT	140	93,3
DANDY WALKER	3	2,0
SUBARACHNOID CYST	1	0,7
SEMILOBAR HOLOPROENCEPHALY	1	0,7
MENINGOENCEPHALOCELE	5	3,3
TOTAL	150	100

In ourstudy, meningoencephalocelewas the mostobserved malformative lesionwith 03.3%.

Tables VII:- Distribution According to Anoxo-Ischemic Leukoencephalopathy.

ANOXIC-ISCHEMIC	NUMBER	PERCENTAGE (%)
LEUKOENCEPHALOPATHY ABSENT	80	53.3
BRAIN ATROPHY	40	26,7
PORENCEPHALIC CAVITIES	7	4,7
VASCULAR LEUKOPATHIES	3	2,0
RASMUSSEN SYNDROME	1	,7
CEREBRAL ISCHEMIA	19	12,7
TOTAL	150	100

In our study, 26.7% of patients had cortical atrophy.

Iconography:

Observation 1:

CHILD. M S 06 months, sex: F Sent on 08/08/2023 to the department for axial hypotony.

Figure 7 and 8:- Axial CT sections without PDC injection showing areas of bilateralhemispherical corticosubcortical hypodensitywithporencephaliccavitiesassociatedwithsignificantenlargement of the furrows, lateralventricles, V3 and V4 (multicysticencephalopathywithsigncerebralhypoxia).

Observation 2:

CHILD. B D 09 months, gender: M Sent on 05/10/2023 to the macrocraniadepartment.

Figure 9 and 10:- Axial CT section without IV of PDC showing partial agenesis of the vermis associated with a cystic formation of the posterior fossacommunicating with V4 responsible for supratentorial hydrocephalus suggesting: atrue **Dandy Walker malformation**.

Observation 3:

INFANT S T 01 months, gender: M Addressed on 08/18/2023 to the department for Hypertonia of the upper and lowerlimbsaltered consciousness.

Figure 11 and 12:- Axial brain CT section after injection of contrastproduct.

Bilateral cortico-subcortical parenchymalhypodensity and periventricular white matter not enhancedafter PDC injection,

Widening of cortico-subcortical furrows, sylvianvalleys and ventricularsystems, spontaneoushyperdensity of bilateralparenchymalpunctiformNGCs: CT appearance of anoxo-ischemicencephalopathyassociatingsignificant cortico-subcortical atrophyaftereffect.

Observation 4:

INFANT B G B 01 months, sex: M Addressed on 08/08/2023 to the department for Hypertonia of the upper and lowerlimbsaltered consciousness.

Figure 13 and 14:- Axial CT sections without injection of contrastproductrevealingwidening of the lefthemispheric subcortical furrowswith attraction and dilation of the ipsilateralventricle: appearance of leftcerebralhemi-atrophy.

Observation 4: INFANT. S D, 11 months, sex: M Sent on 08/15/2023 to the service for delay in psychomotor acquisition.

Figure 15 and 16:- Axial CT sections without injection of contrastproducthighlightingsubependymal calcifications associated with a discreet widening of bilateral corticosub cortical furrows: appearance of tuberouss clerosis of Bournéville.

Comments and Discussion:-

Duringthisstudyweencountered certain difficultiesrelating to certain clinical information, whichwas not available and technical breakdowns of the deviceamongothers.

Sociodemographic Data:

□ Age

The age group mostrepresented in ourstudywasthat of 0 - 02 yearsoldwith 67%. This age range is comparable to those btained by M K Dembélé with 0 - 03 years in Mali [4] and by R. L. Andrianina [5] with 01 months - 03 years in Antananarivo (Madagascar) [5]. This could be explained by the fact that this age range essentially constitutes the diagnosisperiod, following either the parents' observation, or during a clinical examination.

\Box Sex

Wenoted a male predominance of 55% with a sex ratio of 1.22. This male predominancewasfoundamong certain authorssuch as M K Dembélé in Mali [4] and R. L. Andrianina in Antananarivo (Madagascar) [5]

Clinical Data:

□ CTIndications

In ourstudy, PC abnormalities was the main indication, i.e. 30%. This result comparable to that of Dembélé [4] whofound 23.77%. This explains the fact that brainlesions alone constitute the majority of RPM pictures.

□ Risk Factors

In ourstudy, prematuritywas the mostrepresented obstetricrisk factor with 18.0%. This is comparable to that obtained by Dembélé M K [4] whofound 20.49% and by R. L. Andrianina [5] with 19.7%.

In ourstudy, convulsion was the mostrepresentedneonatalrisk factor with 16.7%. This result is comparable to thatobtained by R L adrianinawhofound 22.0% of cases presenting convulsive seizures

In ourstudy, epilepsywas the mostcommon postnatal neurologicalhistorywith 6.7%.

□ CTResults

CT waspathologicalin 75% of cases. This result comparable to that of Dembélé M K [4] whofound 72.13%. Our resultishigher than the values reported by Bouhadiba and Demaerl (65.5%) [6], slightlylower than those reported by N. ALIOU et al (83%) [7].

□ Anoxo-Ischemic Leukoencephalopathy

In ourstudy, anoxic-ischemicleukoencephalopathywas the mostfrequentlyencounteredlesionwith a frequency of 47%; this result is comparable to that of Amadou et al [8] who found 51.66% of cases.

□ Malformation

Brain malformation represented 7% of cases. This resultislower than the values found by certain authorssuch as Dembélé [4] with 14.75%, Amadou et al [8] with 11.16%, Majnemer A and Shevell [3] with 21.64%

Hydrocephalus :

Hydrocephalusaccounted for 17.0%. This resultishigherthanthose of M K Dembélé [4] with 12.3%; but lowerthan the values obtained by R L Adrianinawith 29.9% and by Amadou et al 23.14% of cases. This couldbe due to sample sizes.

□ Sequelae of Brain Infections:

The after-effects of infections represented 3.0% of cases. This resultislower than the values obtained by Dembélé, Majnemer A and Shevell [3] with 5.74% and 10.27% respectively.

Conclusion:-

Childhoodmotor psycho delay (MPD)represents a major healthproblemwith a relatively high prevalence. This studydemonstrates the diagnostic value of CT in the exploration of MPDin children; of the 150 patients explored, brain CT revealed a lesionin 75.0% of cases.

PC anomalyrepresented the main indication for CT with 30.0% of cases, affecting boys more than girls.

The main CT lesionswereanoxic-ischemicleukoencephalopathy, hydrocephalus and malformative lesions; i.e. 47.0%, 17.0% and 7.0% of cases respectively.

In the cerebral exploration of childrenwithpsychomotordelay, it is essential that this morphological exploration is integrated into a complete evaluation carried out in a specialized environment.

CT, although non-specific, helpswithetiologicaldiagnosis, its diagnostic profitability justifies itsimplementation.

It makes to carry out a braininjury assessment, to label a malformation and to avoid the risk of intrafamilial recurrence.

References:-

1-LAURIANE GRZELKA. Assessment of the psychomotordevelopment of childrenunder 3 yearsold and difficulties encountered in general medicine: qualitative study among 14 Béarnais doctors. [UFR of medical sciences]: University of Bordeaux; 2020. [Internet]. [cited May 23, 2023]. Availableat: https://dumas.ccsd.cnrs.fr/dumas-02866558/document

2-OWAIGALO. Support for the mentallyretarded: AMADEME requests support from goodwill [Internet]. Studio Tamani - Information, debates, magazines: all the news from Mali, in 5 languages. 2020 [cited May 23, 2023]. Availableat: https://www.studiotamani.org/48060-prise-en-charge-des-deficients-mentaux-l-amademe-demande-le-soutien-de-bonnes-volontes

3-MAJNEMER A, SCHEVEL MI. Diagnostic yeld of the neurologicassessment of the developmentallydelayedchild. J Pediatr1993;127:193–9. 20 [Internet]. [cited May 23, 2023]. Availableat: https://www.rapport-gratuit.com/apport-du-scanner-dans-lexploration-des-retards-psychomoteurs-de-lenfant/

4-DEMBELE MK Contribution of the scanner in the exploration of psychomotordelays in children 2014 [Internet]. French Adoption Agency. [cited May 23, 2023]. Availableat: https://www.agence-adoption.fr/lafa-vous-entreprises/vous-et-votre-enfant/reperes-de-developpement-psychomotor-chez-lenfant-de-0-a-6-ans /2/

5-RAZAFINDRAKOTO LOVA A. Contribution of the scanner on psychomotordevelopmentdelay in children. University of Antananarivo Faculty of Medicine 2020.pdf [Internet]. [cited June 16, 2023]. Availableat: http://biblio.univ-antananarivo.mg/pdfs/RazafindrakotoLovaA_DOC_MED_2020.pdf

6-BOUHADIBA Z, DACHER JN, MONROC M, VANHULLE C, MENARD JFKHALFA G. Contribution of MRI to the exploration of psychomotordelay in children. J radiol2000;81:870–3.

7-N. ALIOU, I. BELLAGHA, A. HAMMOUPsychomotordelay in children. Contribution of MRI on 100 observations. Tunis ELSEVIER journal of pediatrics and childcare 17 (2004): 246-248.

8-AMADOU A., SONHAYE L., ASSIH K., HEMOU M., KOMBATE D., D'ALMEIDA DM, ET AL. Imaging PsychomotorDelays in Children in Lome. European Scientific Journal. Vol.13, No.27 ISSN: 1857 – 7881 (Print) e-ISSN 1857-7431. Sep 2017;11.