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Often clinical studies on image based respiratory systems either suffer road 

blocks or yield inconsistent results due to artifacts from a variety of subjects‟ 

erratic breathing patterns. This leads to loss of resources and time to 

ultimately get inconclusive and potentially wrong results. The proposed work 

can be seen as an automatic way of computing average thoracic deformation 

for a set of diverse subjects. In an image sequence, corresponding control 

point pairs or landmarks can be used to define the internal deformations with 

respect to time, point of view or modality.  Defining enough number of 

control points in a thoracic image temporal sequence to describe the 

deformations happening in it is a tedious task. This inspired the use of 

automatic definition of control points in the proposed work. The paper 

proposes an automatic registration process for tracing deformity paths of the 

thoracic region between full inhale and exhale positions based on Hessian-

matrix based feature detector and Haar wavelets based descriptor along with 

Optical Flow Motion (OFM) estimation technique. The proposed work 

presents a unique and innovative arrangement of methods to compute the 

average deformation of the thoracic region from all anatomical positions. 

The credibility and performance of the above proposed method is 

demonstrated by its exemplary experimental results. 

 
                   Copy Right, IJAR, 2016,. All rights reserved.

 

Introduction:- 
Accounting for organ motion in image based lung cancer radiation treatment is considered as an important challenge 

in medical imaging [9]. Lung deformations have been constant focus of studies for the verification of medical 

imaging equipments and for medical training purposes for a long period of time and still, physiologically speaking, 

very little is understood about the respiratory movement [25]. The movement of the lung is passive; a result of the 

movement of other parts of the body, such as the diaphragm and the thoracic cage, and it is not possible to observe 

the lung directly, as it would collapse if the thoracic cage is opened. The clinical relevance of this research is 

diverse. Respiratory motion is related to the function of the lung and therefore a diagnostic value in itself [8]. 

Furthermore, breathing induced organ motion potentially leads to image artifacts and to position uncertainty in 

image guided procedures. Particularly in radiotherapy planning of thoracic and abdominal tumors, the respiratory 

motion causes important uncertainties and is a significant source of error [11]. Therefore, there has been a large and 

continuing growth in studies and applications of 4D CT images for motion measurement, radiotherapy treatment 

planning, as well as functional investigations [21]. “A non-invasive method to describe lung deformations was 

proposed using NURBS surfaces based on imaging data from CT scans of actual patients” [25, 29]. Zordan et al [34] 

created an anatomical inspired, physically based model of human torso for the visual simulation of respiration. It has 

been shown that breathing motion is not a robust and 100% reproducible process [18, 30] and now there is a 

widespread common consent that it would be useful to use prior knowledge of respiratory organ motion and its 

“variability to improve radiotherapy planning and treatment delivery” [6]. 
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The framework that has been acquired in this article is that the constituents of a thoracic image sequence with 

starting frame as the full inhale and ending frame as the full exhale are compared to find a set of common feature 

points, only distinction in them being different coordinate values (may be) and that they exist in different temporal 

frames. These common feature points are collectively called as the corresponding feature set. This feature set then 

serves as input to an OFM estimation algorithm as control point cloud corresponding to the thoracic image 

sequence. The estimation algorithm then traces the deformation in the thoracic image sequence right through initial 

to final frame. 

 

The role of image registration techniques is increasing in these applications. Image registration enables the 

estimation of the breathing-induced motion and the description of the temporal change in position and shape of the 

structures of interest by establishing the correspondence between images acquired at different phases of the 

breathing cycle. A variety of image registration approaches have been used for respiratory motion estimation in 

recent years [22]. Image Registration is the alignment/overlaying of two or more images so that the best 

superimposition can be achieved. These images can be of the same subject at different points in time, from different 

viewpoints or by different sensors. This way the contents from all the images in question can be integrated to 

provide richer information. It helps in understanding and thus reducing the differences occurred due to variable 

imaging conditions. Most common applications of Image Registration include remote sensing (integrating 

information for GIS), combining data obtained from a variety of imaging modalities (combining a CT and an MRI 

view of the same patient) to get more information about the disease at once, cartography, image restoration etc. An 

image registration method targets to find the optimal transformation that aligns the images in the best way possible. 

If the underlying transformation model allows local deformations, i.e. nonlinear fields‟ u(x), then it is called 

Deformable Image Registration (DIR) [17]. 

 

Image registration has been categorized into two kinds based on the type of image it is being applied for. The two 

kinds of images are Rigid Images and Deformable Images. Rigid images are those of structures with rigid 

morphological properties e.g. bones, buildings, geographical structures etc. Deformable images are those of 

structures shape and size of which can be modeled after tangible physically deformable models [24]. Rigid image 

registration although is an important aspect of registration it is not the topic of discussion in this article. Since the 

discussion is about Medical Image Registration and almost all anatomical parts or organs of the human body are 

deformable structures, the concentration here is on DIR [19]. 

 

One of the three basic categories of physical models [16] conceptually utilized in this article is the Diffusion models. 

Thirion, inspired by Maxwell‟s Demons [28], proposed to perform image matching as a diffusion process, his work 

in turn inspired most of the work done in image registration using diffusion models [27]. Peyrat et al. used multi-

channel Demons to register time-series of cardiac images by enforcing trajectory constraints [20]. Each time 

instance was considered as a different channel while the estimated transformation between successive channels was 

considered as constraint. Yeo et al. [33] derived Demons forces from the squared difference between each element 

of the Log-Euclidean transformed tensors while taking into account the reorientation introduced by the 

transformation. 

 

A safer and more accurate evaluation of the respiratory movement will help in the selection of the appropriate 

medicine, the determination of the effectiveness of a treatment, to reduce the number of cases of clinical trial, 

observe the progress of rehabilitation treatments, among other possible applications. The present work uses a novel 

and never-tried-before automatic approach for deformity estimation in a temporal sequence of thoracic CT images. 

 

Material and Methods:- 
The dataset used comprised of a total (3×6)×10 i.e. 180 thoracic CT images across 10 subjects. There were 6 frames 

from a temporal thoracic image sequence each for every Anatomical Plane (AP) i.e. Axial (supine), Coronal and 

Sagittal for all the 10 subjects acquired simultaneously with a gap of 0.1 second starting from time t= 0 and ending 

at 0.6 seconds. All images were identified as  tyxI
AP
N ,, where 6.01.0;101|, 


tNtN  (x, y) 

coordinates in the Cartesian plane, t being the timestamp at which the particular frame/image was recorded, N would 

be the number assigned to the test subject and AP signifies the three anatomical planes of view i.e. Axial (a), 

Coronal (c) and Sagittal (s). So, the sixth subject‟s Coronal CT image acquired at t=0.3 sec would be identified as
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 3.0,,6 yxI
c . Samples of images used from all viewpoints and all subjects from timestamps 0.1 to 0.6 seconds are 

summarized in Table 1. 
Table 1: Working database through all anatomical planes from t=0.1 to 0.6 sec 

ANATOMICAL PLANES  6.01.0  t  

 Axial Coronal Sagittal 

1 
   

2 
   

3 
   

4 
   

5 
   

6 
   

7    

8    

9 
   

10 
   

 

The procedure acquired is as such that a temporal thoracic image sequence from time t=0.1 to 0.6 sec is taken such 

that first frame of the sequence is the full inhale frame and the last frame is full exhale frame. This paper uses the 

Speeded up Robust Feature detector (SURF) [4, 3] to obtain a feature set comprising of common feature points 

throughout the image sequence. It detects and describes the feature set irrespective of any scaling and /or rotation in 

the corresponding images. SURF provides better approximations in comparison to previously proposed schemes 

with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster than 

any other state of the art feature detector. These feature sets are then fed into the OFM estimation algorithm to 

identify the deformation path throughout the temporal sequence, be it peripheral or local. This complete process is 

shown in figure 1. 

 

Optical flow has been successfully applied to motion estimation of points/point clouds and other point set surface 

definitions over a temporal sequence [26]. It performs better than its contemporaries while tracing deformations that 

are realistic and guides the user in manipulation of real-world objects. It also allows the user to specify the 

deformations using either sets of points or line segments, the later useful for controlling curves and profiles present 

in the image. For each of these techniques, it provides simple closed-form solutions that yield fast deformations, 

which can be performed in real-time. The proposed methodology aims to track and estimate the deformations by 

tracking the transition of the interest points through the sequence from full inhale to full exhale frame. 
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Figure 1: (a) the proposed framework structure, (b) the working of SURF 

A novel scale- and rotation-invariant detector and descriptor, has been coined as Speeded-Up Robust Features 

(SURF) by Herbert Bay et.al in 2006 [4] and 2008 [3]. It provides better approximations in comparison to 

previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and 

compared much faster. 

Focus is on scale and in-plane rotation-invariant detection and descriptions. These seem to offer a good compromise 

between feature complexity and robustness to commonly occurring photometric deformations in thoracic images. 

Skewing, anisotropic scaling, and perspective effects are assumed to be second order effects, that are covered to 

some degree by the overall robustness of the descriptor. For guaranteed invariance to any scale changes the input 

thoracic images are analyzed at different scales. The detected interest points are provided with a rotation and scale-

invariant descriptor. 

The detector is based on Hessian matrix based on its good performance in accuracy [3]. Blob-like structures are 

detected at locations with maximum determinant. In comparison to the Hessian-Laplace detector [15] Hessian 

determinant is used for scale selection [14]. 

Given a point a = (x, y) in an image
AP

NI ,the Hessian matrix Ĥ(a, σ) at scale σ is defined as follows: 











),(),(

),(),(
),(

^






aLaL

aLaL
aH

yyxy

xyxx  (1) 

where ),( aLxx  is the convolution of the Gaussian second derivative 2
)(

a

g



 
with the image AP

NI at point a, 

similarly for ),( aLxy & ),( aLyy . 

Though, Gaussians are optimal for scale-space analysis [13], they have to be made discrete and cropped in practice. 

This results in loss in repeatability of the detector for thoracic CT image rotations around odd multiples of π/4. 

The SURF method consists of multiple stages to obtain relevant feature points from a sequence of thoracic images. 

The single SURF stages are: 

1. An integral image is constructed for each frame of the input thoracic image sequence, it allows for fast 

computation of box type convolution filters [31]. This enables very few memory accesses and hence results 

in drastic improvement in computational time [7], which is especially crucial when we are dealing with a 

sequence of images. An integral image  aI AP

N 
 at a location a= (x, y)

T
 represents the sum of all pixels in 

the input image 
AP

NI within a rectangular region formed by the origin and a. 
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2. Candidate feature points are searched by the creation of a Hessian scale-space pyramid (SURF detector). 

Approximation of the Hessian as a combination of box filters allows fast filtering. High contrast feature 

points are selected. 

3. Feature vector is calculated (SURF descriptor) based on its characteristic direction to provide rotation 

invariance. Feature vector is normalized for immunity to changes in lighting conditions. 

4. Matching of descriptor vectors between the thoracic image sequence frames using distance measures such 

as Mahalonobis distance and Euclidean distances etc. 

 

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative 

motion between an observer (an eye or a camera) and the scene [32]. In recent times, the term optical flow has been 

co-opted by computer vision experts to incorporate related techniques from image processing and control of 

navigation, such as motion detection, object segmentation, time-to-contact information, focus of expansion 

calculations, luminance and motion compensated encoding and stereo disparity measurement [5]. Sequences of 

ordered thoracic images allow the estimation of motion as either instantaneous image velocities or discrete image 

displacements [1]. Barron et.al provided a performance analysis of a number of optical flow techniques. It 

emphasizes the accuracy and density of measurements [2]. 

Suppose we have a continuous thoracic image frame  tyxI
AP
N ,, ;  tyxf ,,  refers to the gray-level of (x, y) at time 

t. It represents a dynamic thoracic image as a function of position and time. Few assumptions also work in hindsight: 

 The detected feature point moves but does not actually change intensity. 

 Feature point at location (x, y) in frame i is the feature point at (x+∆x, y+∆y) in frame i+1. 

For making computation simpler and quicker the real world three dimensional (3-D+time) objects are transferred to 

a (2-D+time) case. Then the thoracic image can be described by the 2-D dynamic brightness function of ),,( tyxI . 

Provided that in the neighborhood of the feature point, change of brightness intensity does not happen in the motion 

field, following expression can be used: 

),,(),,( ttyyxxItyxI    (3) 

Taylor series is used for the right-hand side of the above equation, to obtain: 


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(4) 

From equations 3 and 4; neglecting the higher order terms, 
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Dividing the terms in equation 5 by t on both sides (to get the equation in terms of x, y component velocity) 
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Where xV  and yV are the x and y components of velocity or optical flow of ),,( tyxI ;
x

I




, 

y

I




and 

t
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
being the 

spatio-temporal derivatives of ),,( tyxI  

tyyxx IvIvI  ..  (8) 

Vector representation being 
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tIvI  .  (9) 

Where I is the spatial gradient of brightness intensity and v  is the optical flow (velocity vector) of the previously 

detected feature points, tI being the time derivative of the brightness intensity. This flow of a feature point (x, y) 

across a sequence of image frames is shown in figure 2. 

 
Figure 2: Flow of a common feature point (x, y) through a sequentially temporal thoracic image sequence with N frames, 

arrows indicating the changing velocity vector v . 

Result and Discussion:- 
The feature detector/descriptor implemented on the temporal image sequence gave out matching feature points 

among the six continuous frames of the thoracic continuous temporal image sequence  6.01.0  t  where t is the 

timestamp of frames in the sequence for all Anatomical Positions (AP) with average translation values as seen in 

tables 2 to 4 & figures 3 & 4 below. 

 
Table 2: Average translation for all 10 subjects against inter-frame durations in Axial AP 

AXIAL Average translation (pixels) 

slices case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 

1 0.046561 0 0.049624 0.128273 0.102524 0.122075 0.104956 0.081344 0.147959 0.235239 

2 0.073944 0.054379 0.211599 0.263143 0.220326 0.191888 0.172506 0.176225 0.156951 0.234938 

3 0.121425 0.089757 0.07818 0.260438 0.217009 0.23198 0.16049 0.196808 0.154188 0.491434 

4 0.23625 0.040567 0.077135 0.120165 0.335052 0.223568 0.123352 0.236095 0.272783 0.549633 

5 0.164686 0.087393 0.235022 0.054348 0.229467 0.276633 0.174664 0.226786 0.346062 0.414524 

 
Table 3: Average translation for all 10 subjects against inter-frame durations in Coronal AP 

CORONAL Average translation (pixels) 

slices case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 

1 0.048984 0.241160 0.090254 0.337341 0.089902 0.272166 0.413222 0.316280 0.705058 0.388508 

2 0.256533 0.444705 0.283750 0.441339 0.545150 0.444112 0.574094 0.563048 1.515027 0.586950 

3 0.544413 0.451036 0.490317 0.435855 0.574323 0.433924 0.547459 0.600381 1.540612 2.593868 

4 0.554775 0.395562 0.443058 0.414418 0.617033 0.458451 0.522414 0.699724 1.507699 0.706559 

5 0.360829 0.380994 0.528879 0.494821 0.682199 0.532425 0.503148 0.645080 1.431860 0.585679 
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Table 4: Average translation for all 10 subjects against inter-frame durations in Sagittal AP 

SAGITTAL Average translation (pixels) 

slices case1 case2 case3 case4 case5 case6 case7 case8 case9 case10 

1 0.056349 0.101943 0.033191 0.197714 0.021831 0.218298 0.283102 0.387337 0.318476 0.347647 

2 0.066874 0.037726 0.030762 0.224660 0.080744 0.514823 0.450867 0.602718 0.410166 0.438517 

3 0.228785 0.144020 0.036248 0.183792 0.130526 0.511193 0.503673 0.639201 0.335686 0.476230 

4 0.119935 0.124705 0.041039 0.228293 0.091893 0.482862 0.573929 0.666332 0.373603 0.521382 

5 0.131468 0.042193 0.026666 0.237422 0.078702 0.544569 0.504332 0.658937 0.326333 0.505156 

The feature points are color coded with respect to the indices and IDs assigned to them throughout the process. The 

trails they leave (see figure 3) after motion also exhibit the same color combination as assigned to respective feature 

points. The translations obtained are inherently in pixel units. With the knowledge of PPI (pixel per inch) value of 

the respective images in question, the displacements can be converted into more tangible units. A corresponding 

registered image representation is shown as figure 3. 

 

 
Figure 3: (a) The color coded feature points and their colored trails showing the distinct paths for Sagittal AP ‘case 5’; 

(b) The registered image for the corresponding sequence. 

 

As we can see in figure 4 (a), the axial translations were recorded highest for subject „case 10‟ and the lowest 

corresponding values for „case 2‟. The average value for „case 10‟ was recorded at 0.3851 pixels, which was way 

above the population average of 0.184 shown by a line across the plot. In case of coronal AP as can be seen in figure 

4 (b), the biggest deformations throughout the sequence are exhibited by the subjects „case 10‟ and „case 9‟ at 2.594 

and 1.54 pixels respectively. The population average in this case being 0.5847 marked by a straight line in the 

corresponding plot. Though apart from „case 10‟ only „case 9‟exhibited bigger deviations than the average value, the 

change in deformation with respect to inter-frame durations was more or less constant; on the other hand „case 10‟ 

exhibited enormous shift from the average value while transitioning from 3rd frame to 4th frame. Looking at figure 

4 (c) for the sagittal AP, all subjects though a bit above and below the average maintain an almost constant rate of 

change in the deformations and do not exactly exhibit any erratic patterns through the observed full inhale to exhale 

process. 
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Figure 4: Average translations for all subjects in (a) axial, (b) coronal & (c) sagittal APs respectively 

After having a comprehensive look at all subjects‟ deformation pattern data through axial, coronal and sagittal APs 

collectively, it was inferred that subject „case 10‟ singled out as the only one with maximum deformation. This 

analysis indicates anomalous breathing patterns from the aforementioned subject among the considered consensus 

average. 

 

Conclusion:- 

A framework has been presented showing how to use a feature point set generated using a Hessian-matrix based 

feature detector and Haar wavelets based descriptor such as SURF through a motion estimation technique such as 

OFM tracking for deformable image transformations in medical images such as the thoracic „pectus excavatum‟ [10, 

12] full exhale and full inhale used in this work. 

This conclusion is of high clinical relevance from a diagnostic point of view as well; the artifacts and position 

uncertainties due to uneven breathing patterns which hamper the image guided clinical interventions can be 

corrected to a point where there influence on the actual data and the diagnostics based on them is brought down to 

the least. 

This work can be looked upon as an automatic way of deformable image registration for high contrast medical 

images using landmark (control) points. Although the proposed methodology provides with a fast and accurate way 

of DIR for medical images and thus an account of deformity in the thoracic periphery, there is much scope for 

improvement in the overall process. One way this can be achieved in future is by modifying the SURF and/or the 

Motion estimation procedure involved in the process. Another way is to improve and enhance the quality as well as 

the quantity of the database used. Also, the aforementioned procedure can provide better results if applied for a 

different human anatomy altogether. 

However diligently and accurately it may have been done, there might still be some scope of improvement and 

betterment in the methodology and also in its presentation. The search and pursuit of better methods for deformable 

medical image registration is still on.  
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