

Journal homepage:http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

Phylogenetic analysis of heavy metal resistant *Streptomyces* spp. isolated from soil in Mosul / Iraq

Essra Gh. Alsammak

University of Mosul / college of science /department of biology / microbiology / Mosul/ Iraq.

Manuscript Info Abstract	
Manuscript History:	Biosurfactants are heterogeneous surface active compounds and can be
Received: 14 December 2014 Final Accepted: 29 January 2014 Published Online: February 2014	potentially deployed for bioremediation hydrocarbons. In present study 7 strains of <i>Streptomyces</i> spp. from 21 hydrocarbons contaminated soil have been isolated and identified through morphological cultural and biochemical tests. Biosurfactant production was confirmed byconventional screening
<i>Key words:</i> Streptomyces, 16s rDNA Taxonomy,biosurfactant,heavy	methods including hemolytic, lipase production, modified drop collapsing and oil spreading methods. Antibiotic & heavy metal resistance phenotypes were determined.
metal	The results showed that most of strains were resistance to penicillin10 IU, methicillin 5 μ g, erythromycin 10 μ g, ceftriaxone 30 μ g, tetracycline 30 μ g, ampicillin 10 μ g, cephalothin 30 μ g, trimethoprim and sulfaminoxazole 25
	μ g.The isolates showed resistant to 1000μ g/ml of Nickel sulphate , Zinc sulphate , Lead acetate& nitrate, Silver acetate& chloride, Titanium dioxide , Cobalt nitrate & chloride. Also all isolates showed sensitive to Mercuric subsets & showed sensitive to Mercuric
	Suprate & chioride. The results of polymerase chain reaction (PCR)showed that bands of 16s rDNA using universal primers 27f & 1392r were found at 1350 bp compare with the 100bp ladder. The nucleotide sequence of the 16s rDNA gene identified two strains that similar to <i>Strepto.flavogriseus</i> ATCC 33331 & five strains belongs to <i>Strepto.albus</i> J1074.
	Thefive strains belongs to <i>Strepto.albus</i> J1074 grouped in cluster A at similarity of 97.5% the two strains that belongs to <i>Strepto.flavogriseus</i> ATCC 33331 accumulate in cluster B at similarity of 99%. The phylogenetic tree depending on the nucleotide sequence using Clustal W program and the UPGMA method. The evolutionary distances were computed using the Maximum Composite Likelihood method based on the Tamura model distance coefficient with neighbor joining (NJ), using
	Mega 0.5 Copy Right, IJAR, 2014,. All rights reserved.

Introduction

Streptomycetes are Gram-positive aerobic members of the order Actinomycetales within the class Actinobacteriaand have a DNA G-C content of 69 ± 78 mol% (Garrity, et al., 2004). Streptomyces is a large genus; there are around 150 species. Members of the genus are strict aerobes and form chains of nonmotile spores. Streptomycetes are very important both ecologically and medically (Madigan, et al., 2013) .The natural habitat of most Streptomycetes is the soil, where they may constitute from 1 to 20% of the culturable population. In fact, the odor of moist earth is largely the result of Streptomycetes production of volatile substances such as geosmin. Streptomycetes play a major role in mineralization. They are flexible nutritionally and can degrade resistant substances such as pectin, lignin, chitin, keratin, latex, agar, and aromatic compounds. Streptomycetes are best known for their synthesis of a vast array of antibiotics(Willey, etal., 2009; Chater , et al., 2010).

The genus Streptomyces remains a focus of systematics research, not only because Streptomycetes are still a promising source of commercially significant compounds, but also because of taxonomic difficulties within the genus caused by

the large number of isolates and insufficient species definition. The classification of Streptomycetes is strongly influenced by polyphasic taxonomy, taking into account genetic characteristics as well as phenotypic characteristics. Nevertheless, closely related Streptomyces species within species groups are incompletely circumscribed (Rong and Huang., 2010).

Actinomycetes are unsurpassed as producers of bioactive metabolites, primarily those with antimicrobial, anticancer properties; however, their capacity for producing other natural products such as biosurfactants, has been less explored. Biosurfactants are heterogeneous surface active compounds and can be potentially deployed for bioremediation of hydrocarbons and as emulsifying agents in agriculture, pharmaceutical and food industries(Karanth, etal., 2005).Hydrophobic pollutants present in petroleum hydrocarbons, soil and waterenvironment require solubilization before being degraded by microbial cells.Surfactants canincrease the surface area of hydrophobic materials, such as pesticides in soil andwater environment, thereby increasing their water solubility.Hence, the presence of surfactants may increase microbial degradation of pollutants(Hamzah, et al., 2013).

Environmental contamination caused byindustrial activity is due to accidental or deliberate releaseof organic and/or inorganic compounds into the environment.Such compounds pose problems for remediation, asthey become easily bound to soil particles(Lakshmipathy, 2010). The applicationof biosurfactants in the remediation of organic compounds, such as hydrocarbons, aims at increasing their bioavailability(biosurfactant-enhanced bioremediation) or mobilizing and removing the contaminants by pseudosolubilisation andemulsification in a washing treatment. The application ofbiosurfactants in the remediation of inorganic compoundssuch as heavy metals, on the other hand, is targeted atchelating and removal of such ions during a washing stepfacilitated by the chemical interactions between the amphiphilesand the metal ions(Banat, etal., 2010). Biosurfactants play a number of roles including increasing the surface area and bioavailability of hydrophobic water-insoluble substrates, binding of heavy metals, quorum sensing and biofilm formation.Compared with synthetic surfactants, biosurfactants have higher surface activity, lower toxicity, higher biodegradability and better environmental compatibility (Hamzah , et al., 2013).

This article emphasizes in the heavy metal resistance & the production of biosurfactants from *Streptomycess*pp. phylogenetic analyses in which 16s rDNA sequencing are used may need to be included in Streptomycetes classification systems, as demonstrated in this study.

So to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of *Streptomyces* spp. isolated from hydrocarbon contaminated soil, and to confirm if there is a relationship between antibiotic and heavy metal resistance.

Materials and Methods

Bacterial isolates & identification

Twenty sample were collected from uncontaminated &contaminated soil with organics (petroleum hydrocarbon,oil, diesel). Soil samples were serially diluted and 1ml from 10^{-3} dilution sample was plated on Actinomycetes agar by pour plate technique. The plates were incubated at 28°C for 7-10 days. Seven isolates from 21 isolates were collected and identified by morphological characters using slid culture technique. The ability to growth in deferent concentration of (1,3,5,7%) NaCl. Sensitivity to antibiotic using modified Kirby-Bauer method in Mueller-Hinton agar. Sensitivity to mineral salts using well diffusing method, and the ability to produced antibiotics also cared out.

Biosurfactant production by Streptomyces spp.

- 1- Hemolytic Activity: All the strains were streaked on blood agar plate and incubated for 7 days at 28°C. The plates were visually observed for the zone of clearness around the colony. The concentration of biosurfactant is depends on the diameter of the clear zone(Karthik, et al .,2010).
- 2- Lipase production: Lipase production by the actinobacteria was determined usingTributyrin agar plates, incubated at 28°C for 7 days, and examined for clear zone around the colonies(Karthik, et al.,2010).

Seven isolates givepositive results for both hemolysis and lipase were culture for 5 days inmaltose yeast extract broth (Maniyar, et al., 2011) the culture medium was centrifuged at 3000 rpm at 4°C for 30min. The supernatant was collected and used for screening for biosurfactant present using a drop-collapse test, oil spreading technique:

3-Drop Collapsing Test: A modified drop collapse method was carried out using microscope slidescoated with crude oil. $10 \mu l$ of the sample tested were placed on the slides.Biosurfactant productionwas considered positive when the drop diameter was larger than those produced by distilled water and also by culture medium as negative controls(Čipinytė, et al., 2011).

4-Oil Spreading Method : 50ml of distilled water was added to the large petriplate followed by $20 \ \mu$ l of crude oil on the surface of the water. Ten microliters of culture were then added to the surface of oil. The diameter of the lysis was measured compared with unculture media. (Thampayak, et al., 2008, Hamzah, et al., 2013).

Heavy Metal Resistance:

Screening for heavy metal resistance wascarried out using standard heavy metal salt solutions of Nickelsulphate, Zinc sulphate, Mercuric sulphate, Mercuric chloride, Lead acetate, Lead nitrate, Silver acetate, Silverchloride, Titanium dioxide, Cobaltnitrate and Cobalt chloride. The concentration of thestandard heavy metal solutions was 1000µg/ml. The salt solutions were prepared with phosphatebuffer saline, PBS (pH 6.8). The standard and saltsolutions were sterilized separately for 15min at 120°C.

Agar Diffusion Method:Lawn culture of the isolates, grown for 7days in broth was prepared on Mueller Hinton agar. Using a sterile well borer wells were made on the surface of the media seeded with the *Streptomycess*pp. To each well 100µl of eachsalt solution were added and incubated at 28°C for 7 days. The area of inhibition (mm) was measured. An inhibition zone of 10mm on the agar surface was considered as resistant to metal salt solution (Lakshmipathy, et al.,2010).

Antimicrobial Susceptibility Testing:

Antimicrobial susceptibility testing was carried out by Kirby-Bauerdisk diffusion method following National Committee for Clinical Laboratory Standards (NCCLS,2011). As recommended by the NCCLS, Mueller-Hinton agar were used as the culture medium. The antimicrobial agent disks used in this study were erythromycin10 μ g, ciprofloxacin10 μ g,ceftriaxone 30 μ g, gentamicin10 μ g, cephalothin 30 μ g,methicillin5 μ g, tetracycline 30 μ g, chloramphenicol 30 μ g, trimethoprim and sulfaminoxazole 25 μ g, vancomycin 30 μ g, amikacin 10 μ g, imipenem 10 μ g, tobramycin 10 μ g, norfloxacin 10 μ g, ampicillin 10 μ g, penicillin 10 IU. The zone diameters around all disks were interpreted by using the recommendations of the NCCLS.

DNA preparation and PCR:

A PCR reaction with specific primers as in the Table 1 were performed to identified genotypes of each 7 isolates. DNA template was prepared using colony PCR by tack one milliliter of bacterial culture was centrifuged at 3,000 rpm for 2 min, poured, and resuspended in 1 ml of distilled water. One hundred microliters of resuspended cells was heat lysed at 95°C for 15 min in a eppendorf PCR (Germany) thermo cycler¢rifuged at 13.000 rpm for 15 min.

The PCR mixture (total volume, 50 μ l): Green master mix 25 μ l, forward & reverse universal primers (10 pmol)1.5 μ l for each one (promega). Primersnucleotide sequences as in the Table 1, DNA template 8 μ l (50ng/ μ l),nuclease free water 14 μ l in eppendorf tube.

DNA amplification was carried out in a eppendorf PCR (Germany) by using the following conditions:

1 cycle 94 5 min 35 cycle 94 35 sec

58 1.35 min

72 1.35 min

1 cycle 72 10 min

A 5 µl of the PCR product was electrophoresis in 2% agarose using 50 volt at 75 min., the 1350 bp band position of 16s rDNA were compared with 100bp ladder from promega. Modified from (Bodour, et al.,2003).

DNA sequence analysis:

Sequencing of 16 s rDNA gene in 7 strains was performed by Macro gen company, USA. Homology search was conducted using Basic Local Alignment Search Tool (BLAST) program which is available at the National Center Biotechnology Information (NCBI) online.

Construction of the phylogenetic tree

The phylogenetic analysis of nucleotide composition of each aligned sequence were conducted Mega 0.5 by Clustal Wusing UPGMA method with Maximum Likelihood method and the distance coefficient with neighbor joining (NJ), based on the Tamuraet al 2004 model.

Results and Discussion:

Seven isolates from twenty one isolates were have the ability to hydrolyze both blood and lipid were selected for production of biosurfactant by drop collapsing and oil spreading methods as in the Table 2: it indicate that not all the strain that hydrolyze the blood and lipid give positive results to drop collapse that depending on the quantity of biosurfactant as well as oil spreading method this depending on culture condition, although the type and amount of the microbial surfactants produced depend primarily on the producer organism, factors like carbon and nitrogen, trace elements, temperature, and aeration also affect their production by the organism (Karanth, etal., 2005). These

results suggested that the oil-spreading technique is more sensitive and detecting low levels of biosurfactant production than the other methods for biosurfactant detection in the supernatant from a culture medium (Hamzah, et al.,2013).

Table 1. Nucleotide sequences of 1 CK primers													
Primer	Sequence 5-3	Amplicon 1	6s	Reference									
		rDNA size (bp)											
27f	5' AGAGTTTGATCCTGGCTCAG 3'	1350		(Lane, 1991)									
1392r	5' GACGGGCGGTGTGTAC 3'												

Table 1: Nucleotide sequences of PCR primers

Table2: The ability of *Streptomyces* spp. to produce biosurfactant

methods	Blood hydrolysis	Lipid hydrolysis	Drop collapse	Oil spreading
strains				
(1)	+	+	-	_
(2)	+	+	+	++
(3)	+	+	-	++
(4)	+	+	-	++
(5)	+	+	-	++
(6)	+	+	_	+
(7)	+	+	+	++

Seven isolates that have the ability to produced biosurfactant, characterized by formation of substrate and aerial mycelium using slide culture technique, production of earthy odor and pigments, that is belongs to Streptomyces as in the Table 3.

Fable 3: Identification	characteristics of	Streptomycesspp.
--------------------------------	--------------------	------------------

racters	Colony color hinton	s in Mueller agar	Soluble Pigmen ts	Shape of Aerial mycelium	Blo	ood olysis	Colonyc actinomyc	olors in etes agar	(Growth & producti Pig	in NaCl % on of Solubl ments	e
Cha	substrate mycelium	Aerial mycelium		24 h 72 h		substrate mycelium	Aerial mycelium	1	3	5	7	
(1)	orang	gray	brown	Rectalflex	+	+	Light yellow	Light gray	+	+ Orang to brown	+ Light pink	_
(2)	brown	Gray &white		branched open spiral lop	+	+	Light yellow	Light gray& white	+	+	+	+

(3)	brown	gray		branched open	+	+	yellow	Light grav&	+	+	+	+
				spiral lop				white				
(4)	Light brown	gray		branched condense spiral lop	_	+	Light yellow	Light gray& white	+	+	+	_
(5)	Light brown	Light blue	brown	branched condense spiral lop	_	+	Light yellow	white	+	+ Light brown	+ Light brown (w)	+
(6)	Light brown	Gray & white		Pranged condense spiral lop	_	+	Light yellow	Light gray& white	+	+	+	+
(7)	orang	Light gray &white	brown	Rectalflex	+	+	Light yellow	Gray	+	+ Orang to brown	+ Light pink	_

• All produces earthy odor, (w) weak

The isolates show resistant to penicillin 10 IU, methicillin 5 μ g, erythromycin 10 μ g, ceftriaxone 30 μ g, tetracycline 30 μ g, ampicillin 10 μ g, cephalothin 30 μ g, trimethoprim and sulfaminoxazole 25 μ g. most of them resistant to erythromycin & tetracycline but this antibiotics inhabit the formation of aerial mycelium of the strain number 1&7 as in the Table 4.

Strains	penicillin	chloramphenico I	methicillin	erythromycin	ceftriaxone	tetracycline	ampicillin	cephalothin	trimethoprim and sulfaminoxazole	amikacin	vancomycin	norfloxacin	ciprofloxacin	tobramycin	gentamicin	imipenem
1	0	1-0	0	0*	0	0*	0	0	0	1	1	1-0	1	1	1	1
2	0	0	0	0	0	0	0	0	0	1	1	1-0	1	1	1	1
3	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1
4	0	1-0	0	1	0	1	0	0	0	1	1	0	1	1	1	1
5	0	1	0	0	0	1	0	0	0	1	1	1	1	1	1	1
6	0	1-0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
7	0	1	0	0*	0	0*	0	0	0	1	1	0	1	1	1	1

Table 4: Susceptibility of *Streptomyces* spp. toantibiotics

0= resistance 1= sensitive 1-0= moderate sensitive *inhabit formation of aerial mycelium

With deference to heavy metal-containing soils, resistance is a requirement for survival and contribution to biogeochemical processes. All the isolates show resistant to Nickel sulphate, Zinc sulphate, Lead acetate, Lead nitrate, Silver acetate, Titanium dioxide, Cobalt nitrate and Cobalt chloride, some of them sensitive to Silver chloride and all of them sensitive to Mercuric sulphate & Mercuric chloride as in the Figure 1. In the study of (Lakshmipathy, et al., 2010) the isolates belong to *Streptomyces* spp. Show resistant to cadmium and lead. Will Cobalt nitrate and Cobalt chloride increase the production of melanin pigments as in the Figure 2.

Figure 1:Heavy metal resistantof seven strains belong to Streptomyces spp.

Figure 2: Sensitivity of strain number 5 to Mercuric sulphate & Mercuric chloride and increasing of melanin pigments production byCobalt nitrate and Cobalt chloride

Phylogenetic analysis.

The PCR products bands of 16s rDNA were 1350 bp compare with the 100bp ladder as in the Figure 3

The 16S rDNA gene sequence obtained was analyzed by an NCBI Blast search which clearly showed that the organism belongs to the genus Streptomyces and that the closest matches to sequences from dependably described species *Sterpto.albus*J1074and*Strepto.flavogriseus* ATCC 33331as in the Table5.

strains	Scientific name	Percentage of similarity%	Numberof 16s rDNA gene bp
1	Strepto.flavogriseus ATCC 33331	95	1249
2	Strepto.albus J1074	96	1255
3	Strepto.albusJ1074	98	1313
4	Strepto.albusJ1074	98	1296
5	Strepto.albusJ1074	98	1295
6	Strepto.albusJ1074	97	1204
7	Strepto.flavogriseusATCC 33331	96	1172

The genetic distances between sequences were estimated by using MEGA 0.5. A phylogenetic tree was constructed using the UPGMA method as in the Figure 4., The strains grouped into two major clusters A&B. Within each of clusters A and B strains shared identical 16S rDNA gene sequences compared with the sequencing of the species *Strepto.albus*J1074&*Strepto.flavogriseus*ATCC 33331 respectively taken from NCBI.

Figure 5: phylogenetic tree of *Streptomyces* spp. depending on 16s rDNA by Clustal W using UPGMA method .The evolutionary distances were computed using the Maximum Likelihood method based on the (Tamura, et al 2004) model distance coefficient with neighbor joining (NJ), Nucleotide composition of each aligned sequence was carried out using Mega 0.5. the cluster A have 5 strains(2, 3,4,5,6,) belong to *Strepto.albus* J1074& the cluster B have 2 strains (1,7) belong to *Strepto.flavogriseus* ATCC 33331

The strains 2,3,4,5,6, in cluster A which belongto *Strepto.albus*grouped in 98.3%, that have branched open spiral lop, growth in the presence of 7% NaCI.The two strains 1&7 in cluster B that correlated in 98.5% belongs to the species *Strepto.flavogriseus*. This species is characterized by rectalflex grey spores, with melanin production, no growth in the presence of 7% NaCI, resistant to erythromycin & tetracycline but inhabit the formation of aerial mycelium only.The cluster A and B correlated in 96.9% these results suggest that strains of each cluster phylogenetically related and confirmed the lack of close relationships among the *Streptomycess*pp.

All the strains have the ability to produce biosurfactant and resistance to same antibiotics and heavy metals in spite it is belong to deferent species. This important features made it so important to use it in the remediation of organic or inorganic compounds, such as hydrocarbons orheavy metals, in polluted area.

The sequence alignment of 16s rDNAs of the 7 strains using MEGA O.5 shows that the *Streptomycesspp*. Have a highly variable region between the 7 strains under the study in the position 30-48 bp&159-252bp&938-1300 bp.this regions may be valuable for rapid identification of *Streptomycesspp*.as in the Figure 5:

Figure 5: Variable regions of multiple sequence alignments (partial presentation).sequence alignments of the four strains belongs to *Strepto.albus* with two strain of *Strepto.flavogriseus* were compared by Clustal W sequence alignment in MEGA 0.5. The identical regionshow indots and the insertion- deletions (indels) are indicated by dashes. The most highly variable regions in the alignments sequence of the 7 strains of *Streptomyces* spp.in position 30-48bp &159-252bp& 938-1300bp

1_F 2_F 3_F 4_F	GGG	AGG G	TT GTA	AAA :	C G TTA C -CG A	GC CGG	CAG GI GTA C. GG. C.	AT GCT 	TAA CI C . C .	ATG 	CAA 	GTC 6	GAA CG	A TGA • •••	AGC (.C. 1 .C. 1	ст то	G(G GGT . T.G . T.G . G	GGA 1	TTA 	30-48 bp
.5_F 6_F .7_F Streptomyces flavogrisev	 CCG us 8	ACG G	 G TTT 	G (CTT 2	GAG . AGG . A .	.T TT. .GC .G	.GC TT. C. GGC	: A	C A C . C .	 .C A				· · · · ·	.c. 1	.с.т	 c g. 	. T.G . A.G		· · · · · · · ·	
Streptomyces_albus_J1074	4 GTG	GCG A	AC GGG	·	 GTA 4		GGG CI	 A TCT	GCC C	.c a tt cac	 тст	GGG A	ICA AG	 с сст	.c. (GGA #	т АС GG	G GT	. с.с с таа	TAC (CGG	
.2_F .3_F .4_F .5_F				· · · · · · ·	· · · · · ·	··· ··· ·· ···		· ···	···· · ··· ·	.G .G .G .G	···· ····	···· ·	··· ·· ··· ··	· · · · · ·		··· ·· ·· ··	· · · ·	· · · · ·		1	.59 -252 bp
.6_F .7_F Streptomyces_flavogriseu	 us_8	···· ·		· · · · · · ·	· · · · ·	· · · · ·	· · · · · · · ·	· · · · ·	···· · ··· ·	.g	···· ····	· · · · · ·	· · · · ·	 		··· ·· ·· ··	· · · ·	· · · · ·			
1_F 2_F	4 ATA 	C-G A	сс тдс г. ст.	CGA (GC.	GGC #		GCG G0	GT GGA	AAG C	TC CGG	CGG	TGA A	AGG AT	G AGC	CCG (:GG CC	T AT(C AGC	TTG I		
3_F .4_F .5_F .6 F		.T .T .T .T	Г. СТ. Г. АТ. АС. Г. АТ.	GC. TTG TTG TTG	· · · · · ·		.A1 .GT .4 .GT .1 .GT .4	. c . c . c	···· · ··· ·	· · · · · · · · · · · · · · · · · · ·	···· ····	c. c. c.	··· ·· ··· ··	· · · · ·		··· ·· ·· ··	· · · ·	· · · · ·	.A	· · · · · · · ·	
_7_F Streptomyces_flavogriseu	 us_8	 А-С . Т	T CTG	TCC (c	 .G GGA		 . TA.	···· ·			···· ·						· · · ·			
Streptomyces_albus_J1074	· ···	1	.1 GI.	.AI (.G GI.	.AI													•••	
Streptomyces_albus_J1074	GA -CC 1 A	TA CCA	AGG	CTT G	AC A1	c	CGG 1	GCA AAC AAC	TC- A C.T G C.T G	GA GA:	T GGT C A.G C A.G	GCC .T. .T.	ccc -	-TT GT	G GTC	GGT	АТА G G	CAG G	GTG GI	 IG 	938 bp
Streptomyces_albus_J1074	GA -CC I A A A A A	TA CCA	AGG	.AI (AC A:		CGG 1	GCA AAC AAC A.C A.G . A.C	TC- A C.T G C.T G CT- G C . CT- G	AGA GA 	T GGT C A.G C A.G C A.G G C A.G 	GCC .T. .T. .T. CG. .T.		-TT GT	G GTC	GGT 	ATA G G G G G	CAG G	FTG G1	rg 	938 bp
Streptomyces_albus_J1074 .1_F AG .2_F .3_F .5_F .5_F .6_F .5treptomyces_flavogriseus_8 Streptomyces_albus_J1074	GA -CC I A A A A A A A A	TA CCA	AGG	.AI (CTT GJ 	AC AT	TA TAC C C C C C C C	CGG 1	GCA AAC AAC A.C A.G . A.C . A.G . A.G	TC- A C.T G C.T G CT- G C . CT- G T G GTT A	AGA GA 	I GGT C A.G C A.G C A.G C A.G C A.G C A.G C A.G C A.G	GCC .T. .T. .T. .T. .T. CG. CG.	CCC -	-TT GT	G GTC	GGT 	ATA G G G G G G CCT	CAG G	STG GI	IG C-	938 bp
Streptomyces_albus_J1074 .1_F AG .2_F .3_F .5_F .7_F .Streptomyces_flavogriseus_8 .Streptomyces_albus_J1074 '1_F CF 2_F 3_F 5_F	GA -CC 1 A A A A A A A A A A A A A A	TA CCA	AGG	CTT G	AC A	TA TAC C C C C C C C C C 	CGG 1	GCA AAC AAC A.G . A.C . A.G . T.GG . T . T . T	TC- A C.T G C.T G CT- G C . CT- G T G GTT A 	AGA GA 	I GGT C A.G C A.G C A.G C A.G C A.G C A.G C A.G C CGC 	GCC .T. .T. .T. CG. .T. CG. A-C .A. .A.	CCC -	-TT GT	G GT(GGT 	ATA G G G G G G CCT C C	CAG G	STG GI	 IG 	938 bp
Streptomyces_albus_J1074 .1_F AG .2_F .3_F .5_F .7_F .5treptomyces_flavogriseus_8 .5treptomyces_albus_J1074 '1_F CF 2_F .3_F '1_F CF	GA -CC 1 A	TA CCA	AGG	CTT G	AC AT	TA TAC C	CGG 1	GCA AAC AAC A.C A.C A.C G. A.C G. A.C G. A.C G. G. T.C T.C T.C T.C T.C T.C T.C T.C T.C T.	TC- A C.T G C.T G CT- G C . .T G GTT A AG 	LGA GA 	I GGT C A.G C A.G C A.G C A.G C A.G C A.G C A.G C CGC 	GCCC .T. .T. .T. .CG. .T. .CG. .A. .A. .A. .A.	CCC -	-TT GT	G GTC	GGT 	ATA G G G G G C C C C C	CAG G 	STG G1	IG 	938 bp
Streptomyces_albus_J1074 .1_F AG .2_F .3_F .5_F .7_F .7_F .5treptomyces_flavogriseus_8 .5treptomyces_albus_J1074 '1_F CF 2_F .3_F '1_F CF '2_F '2_F Streptomyces_flavogriseus_8	GA -CC 1 A A A A A A A A 	TA CCA TA	AGG CAG CAG 	CTT G:	AC AT	TA TAC C	CGG] (GCA AAC A.C A.C A.G G. A.C G. G. T. T. T. T. T. T. T. T. T. T. T. T. G. G. G. G. G. G. G. G. G. G. G. C A.C A.C A.C A.C A.C A.C A.C A.C A.C	TC- A C.T G C.T G CT- G C . .T G GTT A AG AG CCG C 	AGA GA 	I GGT C A.G C A.G C A.G C A.G C A.G C A.G C A.G C C.G C C.G C C.G C C.G C 	GCCC .T. .T. .T. .CG. .T. CG. .CG.	CCCC C C C C C C C GAG C	-TT GT -TT GT 	G GTC 	: GGT 	ATA G G G G G C C C C C	CAG C 	ETG G1	IG 	938 bp
Streptomyces_albus_J1074 .1_F AG .2_F .3_F .5_F .5_F .7_F .5treptomyces_flavogriseus_8 <tr td=""> </tr>	GA -CC 1 A	TA CCA TA	AGG CAG GGG T T T	-TIG A' 	AC AT	TA TAC C	CGG] (GCA AAC AAC A.C A.C A.G G. A.C A.G G. T. T. T. T. T. T. T. T. T. C C C C C C	IC- A C.T G C.T G C.T G .C - G .C - G G GTT A 	LGA GA:	I GGT C A.G C A.G C A.G C A.G C A.G C A.G C A.G C A.G C A.G C	GCC .T. .T. .T. .CG. .T.	CCC C	-TT GT 	G GT0 	GGT	ATA G G G G G G G CCT C C C C C C C C	CAG 6 	BTG G1	IG 	938 bp

1 F	CAT	CAT	GCC	CCT	-AT	GTC	T	-GG	CTG	CAC	-CG	TGC	TAC	A-T	GGC	CGG	TAA	A	AAC	TGC	ATG	ccc	CAG	CCG	ACG	AAT
2_F					т		.TG			.CA	с						c	.TG	.G.		CAT	т	G	AG.	TG.	C
3_F					т		CTG			.CA	с		с					.TG	G	CT.	CAT	Α	GC.	AG.	TG.	.GC
4_F					ATC		.TG	G				• • •				G	c	.AT	G		.AT	G	.GA	GG.	TG.	.GC
5_F				.T-			.AG	G			Α	• • •				т	c	.TG	G	G	A	.G.	.GA	GG.	TG.	c
6_F	.т.	.G-	т	T		Α	.CT	т	G	.G.		с.т		.A.	.A.		• • •	TAG	.GT	CT-						
7_F				.т.			•					• • •						•	.G-							
Streptomyces_flavogriseus_8	• • •				т	• • •	.TG				Α	• • •		.A.	• • •	• • •	• • -									
Streptomyces_albus_J1074																										
1_F	C	-TC	AA-		AGC	CGT	CCA	GTC	-GG	ATG	GGG	TCT	GCA	CTC	CAC	CAT	GAA	CCG	AAT							
2_F	GAT	с	••-	AGC	с	.c.	• • •	т	C.A	• • •	• • •	GT.	.GC	ACT	••-											
3_F	GAT	с	G	AGG	C.G	AC.			G			GTC	c	AC.	.c.	ACC	C.T	GAA	.TC	GGA	ATC	CTT	ATT	ATC	CCA	GAA
4_F	GAT	C	-		-AG			T	C.A	T						.TG	A.G	т		TCG	CTA	ATA	TTC	GCG	AAA	TAC
		···																								
5_F	.GA	A			G	A	т		C.A			G	.AT	TCG	Α	G		GGC	GGA	ATC	ccc	TAA	TAA	AAC	TCC	GCA
5_F 6_F	.GA	A			G	A	т 	····	C.A	····	····	G	.AT	TCG	A 	G	····	GGC	GGA	ATC	ссс 	TAA 	TAA 	AAC	TCC	GCA
5_F 6_F 7_F	.GA	A	 		G	A 	т 	 	C.A 	 	 	G 	.AT 	TCG 	A 	G 	···· 	GGC	GGA 	ATC 	ccc 	TAA 	TAA 	AAC 	тсс 	GCA
5_F 6_F 7_F Streptomyces_flavogriseus_8	.GA 	A 	 	 	G 	A 	T 	 	C.A 	 	 	G 	.AT 	TCG 	A 	G 	 	GGC 	GGA 	ATC 	CCC 	TAA 	TAA 	AAC 	TCC 	GCA

References:

Banat,I. M.,Franzetti, A.,Gandolfi,I., Bestetti,G.,Martinotti., M. G.,Fracchia.,L., Smyth., T. J.,MarchantR. 2010. Microbial biosurfactants production, applications and future potential- ApplMicrobiolBiotechnol., 87:427–444.

Bodour, A.A., Drees, K.P., Maier, R.M. 2003. Distribution of Biosurfactant-Producing Bacteria in Undisturbed and Contaminated Arid Southwestern Soils. Appl. Environ. Microbiol. 69(6) 3280-3287.

Chater,K. F., Biro', S.,Lee, K. J., Palmer,T&Schrempf, H. 2010.The complexextracellular biologyofStreptomyces. FEMS Microbiol Rev.,34:171–198.

Čipinytė, V., Grigiškis, S., Šapokaitė, D., Baškys, E.2011. Production ofbiosurfactanceby *Arthrobacters*p. N3, ahydrocarbon degrading bacteriumenvironment. Technology. Resources, Proceedings of the 8th International Scientific and Practical Conference. Volume 1.

Garrity, G.M., Bell, J.A. and Lilburn, T.C.2004. Taxonomic outline of the ProkaryotesBergey's Manual of Systematic Bacteriology .2nd ed. Springer New york, Inc. U.S.A, pp1-401.

Hamzah, A., Sabturani, N.&Radiman, S. 2013. Screening and Optimization of Biosurfactant Production by the Hydrocarbon-degrading Bacteria, Sains Malaysiana 42(5): 615–623

Karanth, N.G.K., Deo, P. G. and Veenanadig, N. K.2005. Microbial production of biosurfactants and their importance.

Karthik, L., Kumar, G., Rao, K.V.B.2010. Comparison of methods and screening of biosurfactant producing marine actinobacteria isolated from Nicobar marine sediment. The IIOAB Journal.1(2): 34-38.

Lakshmipathy, T.D., Prasad S.A and Kannabiran, K. 2010. Production of Biosurfactant and Heavy Metal Resistance Activity of *Streptomycessp*.VITDDK3-a Novel Halo Tolerant Actinomycetes Isolated from Saltpan Soil . Advances in Biological Research 4 (2): 108-115.

Lane D. J.(1991) 16S/23S rRNA sequencing. in Nucleic acid techniques in bacterial systematics. Stackebrandt E., GoodfellowM.John Wiley & Sons, Chichester, United Kingdom, pp 115–175.

Madigan ,T.M., Martinko,M. J., Stahl ,A.D., Clark,P.D.(2013) Brock biology of microorganisms. Thirteenth Edition publishing as Benjamin Cummings, San Francisco.

Maniyar, J. P., Doshi, D. V., Bhuyan, S. S., Mujumdar, S. S. 2011. Bioemulsifier production by *Streptomyces* sp.S22 isolated from garden soil. Indian journal of experimental biology. 49(4):293-7.

National Committee for Clinical Laboratory .(2011). Performance Standards for Antimicrobial Susceptibility Testing–Twenty–First InformationSupplement.NCCLs.M100-21.vol.31.no.1. National Committee for Clinical Laboratory Clinical and LaboratoryStanderdesInstitute.USA.

Rong,Xand Huang Y.2010. Taxonomic evaluation of the *Streptomyces griseus* clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. International Journal of Systematic and Evolutionary Microbiology ., 60: 696–703.

Tamura, K., Nei M., and Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighborjoining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035.

Thampayak, I., Cheeptham, N., Pathom-Aree, W., Leelapornpisid., P and Lumyong, S.2008. Isolation and Identification of Biosurfactant Producing Actinomycetes From Soil. Research Journal of Microbiology, 3: 499-507. Willey, J.M., Sherwood, L. M., Woolverton, C.J. 2009. Prescott's Principles of Microbiology. McGraw-Hill Companies, Inc., New York

1300bp