
ISSN: 2320-5407                                                                         Int. J. Adv. Res. 12(05), 1118-1137 

1118 

 

Journal Homepage: - www.journalijar.com 

    

 

 

 

Article DOI: 10.21474/IJAR01/18827 

DOI URL: http://dx.doi.org/10.21474/IJAR01/18827 

 

RESEARCH ARTICLE 
 

EVALUATING SPEECH ANALYSIS TECHNIQUES FOR PARKINSON'S DISEASE DETECTION: A 

COMPARISON OF MACHINE LEARNING AND DEEP LEARNING ALGORITHMS 

 

Anand Ratnakar 

M.Tech Robotics and Artificial Intelligence, Dept. of Manufacturing Engineering and Industrial Management COEP 

Technological University Pune, India. 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

Received: 31 March 2024 
Final Accepted: 30 April 2024 

Published: May 2024 

 

Key words:- 
Parkinson's Disease (PD) Diagnosis, 

Speech Analysis, Artificial Neural 

Networks (ANN), Support Vector 

Machine (SVM), Naive Bayes (NB), K 

Nearest Neighbors (KNN), Logistic 

Regression (LR), Decision Tree (DT), 

Random Forest (RF), Machine Learning 

(ML), Deep Learning (DL) 

 

 

 

 

 

Parkinson's disease (PD) presents a diagnostic challenge due to its often 

subtle and gradual onset. Speech analysis offers a promising avenue for 

early detection, enabling intervention before the disease significantly 

progresses. This study investigates the efficacy of supervised machine 

learning algorithms in identifying PD using speech features. We 

compared the performance of Logistic Regression (LR), Decision Tree 

(DT), Random Forest (RF), Support Vector Machine (SVM), Naive 

Bayes (NB), K-Nearest Neighbors (KNN), and Artificial Neural 

Networks (ANN) for PD classification. Our findings demonstrate the 

superiority of ANNs, achieving a test accuracy of 97.44%, which 

surpasses existing benchmarks and highlights their potential for PD 

diagnosis. This approach leverages readily available speech data, 

potentially reducing reliance on expensive and time-consuming clinical 

procedures. This research contributes to the development of non-

invasive, speech-based diagnostic tools for PD, paving the way for 

earlier intervention and improved patient management. 

 
Copy Right, IJAR, 2024,. All rights reserved. 
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Introduction:- 
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by a decline in dopamine levels 

in the brain. This deficiency manifests in tremors, rigidity, and difficulties with balance and coordination. As the 

second-most common neurodegenerative disease after Alzheimer's disease, PD affects millions globally, with its 

prevalence expected to rise due to an aging population. 

 

Early diagnosis of PD is crucial for optimizing patient outcomes and management. However, traditional diagnostic 

methods rely heavily on a patient's medical history and neurological examinations, which can lack sensitivity, 

especially in the early stages. Additionally, definitive diagnostic tests for PD are not currently available. 

This necessitates the exploration of new and potentially more objective methods for PD detection. Machine learning 

(ML) and deep learning (DL) offer promising avenues to address this challenge. ML algorithms can learn complex 

relationships between features extracted from data (e.g., voice, gait) and disease status. Deep learning, a subfield of 

ML, utilizes artificial neural networks with multiple layers to automatically discover these relationships from raw 

data without the need for extensive feature engineering. 

 

This research investigates the potential of both ML and DL techniques to analyze voice and potentially other 

relevant data modalities for improved PD diagnosis. We compare the performance of various ML algorithms with a 
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deep learning model called Artificial Neural Networks (ANN) to identify the most effective approach for accurate 

PD classification. By leveraging the strengths of both ML and DL, we aim to develop a more objective and 

potentially earlier detection method for PD compared to traditional approaches. 

 

Leveraging Machine Learning for Improved Diagnosis 

Parkinson's disease (PD) diagnosis is most effective in its early stages, offering patients better treatment outcomes 

and improved quality of life. Traditionally, diagnosis relies on neurological history and motor assessments, which 

can lack sensitivity. Machine learning (ML), a subfield of Artificial Intelligence (AI), offers promising avenues for 

improved detection. By combining traditional methods with ML-based analysis, clinicians may achieve a more 

comprehensive understanding of the disease in patients. 

 

One readily observable aspect of PD is gait (walking pattern). As walking is a fundamental part of daily life, gait 

analysis has emerged as a potential non-intrusive tool for PD detection, with the advantage of being deployable in 

home settings. Researchers have explored various gait analysis approaches, with some focusing on combining ML 

techniques for autonomous and offline operation. 

 

Speech patterns can also be indicative of PD, particularly in early stages. Speech problems associated with PD 

include dysphonia (weak vocal quality), diplophonia (repetitive echoes), and hypophonia (impaired vocal muscle 

coordination). These subtle changes in speech can be detected and analyzed using computational methods to aid in 

PD diagnosis. 

 

Research Motivation and Proposed Approach 

This research investigates the potential of multivariate data analysis (MVDA) combined with ML techniques for 

early and accurate PD detection. Current research in this area often focuses on single-source data (text, speech, 

video, or images). This study highlights the limitations of such an approach and proposes MVDA for more 

comprehensive multimodal data processing. By analyzing a wider range of data points, including gait, speech, and 

potentially other relevant information, MVDA has the potential to improve disease detection accuracy. 

 

This work specifically investigates the effectiveness of MVDA powered by ML in processing multimodal data for 

PD diagnosis. Existing research utilizes various ML algorithms like Support Vector Machines (SVM), Naive Bayes, 

K-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN) for PD detection based on vocal features. This 

study builds upon these advancements by leveraging large datasets and diverse ML approaches for improved disease 

identification. The proposed MVDA framework encourages the inclusion of a wide range of data points, such as 

multivariate acoustic characteristics, from a large patient population. This objective approach, aided by ML 

techniques, aims to achieve a more accurate and reliable diagnosis of PD compared to traditional subjective 

methods. 

 

Research Contribution 

This research explores various machine learning algorithms employed in speech analysis for PD diagnosis. The 

strengths and limitations of these algorithms for PD detection are evaluated, while also considering potential 

shortcomings in existing comparative studies. Artificial Neural Networks (ANN) have demonstrated promising 

accuracy in speech analysis for PD diagnosis compared to other classifiers. 

 

The key contributions of this paper are as follows: 

1. Comparative Analysis of Machine Learning Algorithms: This research aims to identify which ML 

algorithms, including SVM, KNN, Random Forest, Naive Bayes, and ANN, offer the most accurate 

classifications for PD diagnosis. 

2. Statistical Evaluation for Improved Diagnosis: This study proposes the development of statistical evaluations 

for PD diagnosis. These evaluations aim to identify the optimal training and testing parameters, ultimately 

contributing to future research efforts. 

3. Comprehensive Machine Learning Model Exploration: The proposed system utilizes seven different 

machine learning and deep learning models, including Logistic Regression (LR), Decision Tree (DT), Random 

Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbors (KNN), and Artificial 

Neural Networks (ANN). This comprehensive approach allows for identifying the model that performs best for 

PD diagnosis based on training and testing results. 
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4. Feature Selection Methodology: This study employs a comprehensive methodology to explore the 

effectiveness and efficiency of various feature selection approaches to improve PD prediction accuracy. 

5. Benchmarking Model Performance: By training all seven machine learning and deep learning models on the 

same dataset, this research facilitates a direct comparison of their performance in PD diagnosis. 

 

Related Works:- 
In order to distinguish PD cases from healthy controls, a variety of modern machine learning algorithms, including 

support vector machines, artificial neural networks,  logistic regression, naïve Bayes, etc., have been successfully 

used. In this study, numerous  databases, including Web of Science, Elsevier, MDPI, Scopus, Science Direct, IEEE 

Xplore,  Springer, and Google Scholar, were utilized to survey relevant papers on Parkinson’s  disease. The Table 

Below shows the details about the previous work. 

Reference Feature 

Machine 

Learning 

Algorithms 

Used 

Objective Tools Used 
Source of 

Data 

No. of 

Subjects 
Outcomes 

Sakar et al., 

2019 
Speech 

Naïve Bayes, 

SVM (RBF and 

Linear), KNN, 

Random 

Forest,MLP 

Classification 

of PD from 

HC 

JupyterLab 

With Python 

Programming 

Language 

Collected 

from 

participants 

252 (188 

PD + 64 

HC) 

Highest accuracy 

obtained from SVM 

(RBF)-86% 

Yasar A. et 

al., 2019 
Speech 

Artificial 

Neural Network 

Classification 

of PD from 

HC 

MATLAB 

Collected 

from 

participants  

120 (40 

HC + 80 

PD+) 

Accuracy of ANN-

94.93% 

Avuçlu, E., 

Elen, A, 

2020 

Speech 

KNN, Random 

Forest, Naïve 

Bayes, SVM 

Classification 

of PD from 

HC 

JupyterLab 

With Python 

Programming 

Language 

UCI 

machine 

learning 

repository 

31 (23 

PD+8 HC) 

Accuracy from 

Naïve Bayes-

70.26% 

Marar et al., 

2018 
Speech 

Naïve 

Bayes,ANN, 

KNN, Random 

Forest, SVM, 

Logistic 

Regression 

Classification 

of PD from 

HC 

R 

programming 

Collected 

from 

participants  

31 (23 

PD+8 HC) 

Highest accuracy 

obtained from 

ANN-94.87% 

Sheibani R et 

al., 2019 
Speech 

Ensemble 

Based Method  

Classification 

of PD from 

HC 

JupyterLab 

With Python 

Programming 

Language 

UCI 

machine 

learning 

repository 

31 (23 

PD+8 HC) 

Accuracy obtained 

from ensemble 

learning-90.6% 

John M. 

Tracy et al., 

2020 

Speech 

Logistic 

Regression (L2-

regularized), 

Random Forest, 

Gradient 

Boosted Trees 

Classification 

of PD from 

HC 

Python 
mPower 

database 

2289 (246 

PD + 2023 

HC) 

Highest accuracy 

obtained from 

gradient boosted 

trees: Recall-79.7%, 

Precision-90.1%, 

F1-score-83.6% 

Cibulka et 

al., 2019 

Handwriting 

Patterns 
Random Forest 

Classification 

of PD from 

HC 

Not 

Mentioned 

Collected 

from 

participants 

270 (150 

PD + 120 

HC) 

Classification error 

for rs11240569, 

rs708727, rs823156 

is 49.6%, 44.8%, 

49.3% respectively 
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Hsu S-Y et 

al., 2019 

Handwriting 

Patterns 

SVM with RBF 

Kernel, Logistic 

Regression 

Classification 

of PD from 

HC 

Weka PACS  

202,94 

Severe PD 

+102 mild 

PD + 6 HC 

Highest accuracy 

obtained from 

SVM-RBF 83.2% 

having sensitivity 

82.8%, specificity 

100% 

Drotár, P et 

al., 2016 

Handwriting 

Patterns 

K-NN, 

Ensemble 

Classifier 

(AdaBoost), 

Support Vector 

Machine 

Classification 

of PD from 

HC 

Python 

[scikit-learn 

library] 

PaHaw 

database 

37 PD and 

38 HC 
Accuracy-81.3% 

Fabian 

Maass et al., 

2020 

Handwriting 

Patterns 
SVM 

Classification 

of PD from 

HC 

Weka 

UCI 

machine 

learning 

repository 

157,82 PD 

+   68 HC 

+ 7 Normal 

Pressure 

Hydroceph

alus 

(NPH)) 

Sensitivity-80%, 

and specificity-83% 

J. Mucha et 

al., 2018 

Handwriting 

Patterns 
Random Forest 

Classification 

of PD from 

HC 

Python 
PaHaw 

database 

69, 33 PD 

+ 36 HC  

accuracy-90% with 

sensitivity 89%, and 

specificity 91% 

 

Wenzel et 

al., 2019 

Handwriting 

Patterns 
CNN 

Classification 

of PD from 

HC 

MATLAB 
PPMI 

database 

645, 438 

PD + 207 

HC 

accuracy-97.20% 

Segovia, F. 

et al., 2019 

Handwriting 

Patterns 

SVM with 10 

Cross 

Validation 

Classification 

of PD from 

HC 

Python 

Virgen De 

La Victoria 

Hospital, 

Malaga, 

Spain 

189, 95 PD 

+ 94 HC 
accuracy-94.25% 

Ye, Q. et al., 

2018 
Gait 

Least Square 

(LS)-SVM, 

Particle Swarm 

Optimization 

(PSO) 

Classification 

of PD, ALS, 

HD from HC 

Not 

mentioned 

Neurology 

Outpatient 

Clinic at 

Massachuset

ts General 

Hospital, 

Boston, MA, 

USA 

64, 15 PD 

+ 16 HC 

+13  

[Amyotrop

hic lateral 

sclerosis 

Disease 

(ALS)] + 

20 

[Huntingto

n’s 

Disease 

(HD)] 

 

Accuracy to 

diagnose PD from 

HC- 90.32%, 

Accuracy to 

diagnose HD from 

HC-94.44%, 

Accuracy to 

diagnose ALS from 

HC- 93.10% 
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Klomsae, A 

et al., 2018 
Gait Fuzzy KNN 

Classification 

of PD, ALS, 

HD from HC 

Not 

mentioned 

Neurology 

Outpatient 

Clinic at 

Massachuset

ts General 

Hospital, 

Boston, MA, 

USA 

64, 15 PD 

+ 20 HD 

+13 ALS + 

16 HC 

Accuracy to 

diagnose PD from 

HC- 96.43%, 

Accuracy to 

diagnose HD from 

HC-97.22%, 

Accuracy to 

diagnose ALS from 

HC-96.88%  

J. P. Félix et 

al., 2019] 
Gait 

SVM, KNN, 

Decision Tree, 

Naïve Bayes, 

LDA 

Classification 

of PD from 

HC 

MATLAB 

R2017a 

Neurology 

Outpatient 

Clinic at 

Massachuset

ts General 

Hospital, 

Boston, MA, 

USA 

31, 15 PD+ 

16 HC 

Highest Accuracy 

obtained from 

SVM,KNN and 

Decision Tree - 

96.80% 

Andrei et al., 

2019 
Gait SVM 

Classification 

of PD from 

HC 

Not 

mentioned 

Laboratory 

for Gait and 

Neurodynam

ics 

166, 93 

PD+ 73 

HC 

Accuracy- 100% 

Priya SJ et 

al., 2021 
Gait ANN 

Classification 

of PD from 

HC 

MATLAB 

R2018b 

Laboratory 

for Gait and 

Neurodynam

ics 

166 ,93 

PD+ 73 

HC 

Accuracy- 96.28% 

Oğul, et al., 

2020 
Gait ANN 

Classification 

of PD from 

HC 

MATLAB 

Laboratory 

for Gait and 

Neurodynam

ics 

166 ,93 

PD+ 73 

HC 

Classification 

accuracy - 98.3% 

Li B et al., 

2020 
Gait Deep CNN 

Classification 

of PD from 

HC 

Not 

mentioned 

Collected 

from 

participants  

20, 10 PD 

+ 10 HC 
Accuracy- 91.9% 

Table 1:- Comparative Studies of Machine Learning Approaches to diagnose Parkinson’s Disease.  

 

Proposed System:- 
This research investigates the potential of machine learning (ML) and deep learning (DL) algorithms for classifying 

Parkinson's disease (PD) and healthy controls (HC) using voice analysis. 

 

System Architecture: 

The proposed work involves methods with several key components that work together to achieve PD classification: 

 

Data Acquisition: 

1. We retrieved voice recordings from the publicly available Max Little dataset. 

2. This dataset contains recordings from individuals diagnosed with PD and healthy controls, along with 22 pre-

extracted features related to various aspects of the speaker's voice. 

 

Data Preprocessing: 

Depending on initial data exploration, preprocessing steps might have been applied to the data, including: 

1. Handling missing values using techniques like mean/median imputation or more sophisticated methods. 

2. Scaling features (normalization or standardization) to ensure all features contribute equally during model 

training (applicable for specific algorithms). 

3. Encoding categorical variables (if present) through appropriate techniques. 
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Model Training: 

We implemented and trained various ML and DL models on the preprocessed data. This involved: 

1. Selecting a diverse range of algorithms, such as Logistic Regression, Decision Tree, Random Forest, Support 

Vector Machine, Naive Bayes, K-Nearest Neighbors, and potentially an Artificial Neural Network architecture. 

2. Splitting the data into training and testing sets. The training set is used to train the models, allowing them to 

learn the underlying patterns that differentiate PD from HC recordings in the voice data. 

3. Training each chosen model on the training set. 

4. Employing hyperparameter tuning (optional) to optimize the models' performance by adjusting their internal 

settings. 

 
Figure 1:- Flowchart of the proposed work. 

 

Model Evaluation: 

1. The performance of each trained model was rigorously evaluated on unseen data using the testing set. 

2. Established classification metrics like accuracy, precision, recall, and F1-score were used to assess the models' 

ability to correctly classify PD recordings. 

 

Model Selection: 

By comparing the evaluation metrics across all models, we identified the model that demonstrated the most robust 

and accurate performance in classifying PD recordings from HC recordings within the Max Little dataset.  

 

Methodology:- 
Dataset 

The dataset was created by Max Little of the University of Oxford, in collaboration with the National Centre for 

Voice and Speech, Denver, Colorado, who recorded the speech signals. The original study published the feature 

extraction methods for general voice disorders. 

 

Dataset Information: 

This dataset is composed of a range of biomedical voice measurements from 31 people, 23 with Parkinson's disease 

(PD). Each column in the table is a particular voice measure, and each row corresponds to one of 195 voice 

recordings from these individuals ("name" column). The main aim of the data is to discriminate healthy people from 

those with PD, according to the "status" column which is set to 0 for healthy and 1 for PD. 
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Dataset Characteristic Multivariate 

No. of Instances 197 

Attributes Characteristic Real 

No. of Attributes 23 

Missing Values N/A 

Made by Max Little of the University of Oxford 

Associated Tasks Classification 

Types of Classification Binary {0 for healthy and 1 for PD patient} 

Table 2:- Detail of Parkinson’s Dataset. 

 

Dataset Attributes: 

Attribute Name Description 

name Unique identifier for each subject recording (e.g., "subject1_recording02") 

MDVP:Fo(Hz) Average vocal fundamental frequency (perceived pitch) in Hertz (Hz) 

MDVP:Fhi(Hz) Maximum vocal fundamental frequency (Hz) 

MDVP:Flo(Hz) Minimum vocal fundamental frequency (Hz) 

MDVP:Jitter(%) Variation in fundamental frequency over time (%) 

MDVP:Jitter(Abs) Absolute variation in fundamental frequency 

MDVP:RAP Ratio of Average Period to Average Amplitude variation 

MDVP:PPQ Normalized logarithmic measure of variation in fundamental frequency 

Jitter:DDP Local detrended fluctuation in fundamental frequency 

MDVP:Shimmer Variation in amplitude of the voice signal over time 

MDVP:Shimmer(dB) Amplitude variation in decibels (dB) 

Shimmer:APQ3 Amplitude variation based on the 3rd quartile 

Shimmer:APQ5 Amplitude variation based on the 5th quartile 

MDVP:APQ Amplitude variation measure 

Shimmer:DDA Local detrended fluctuation in amplitude variation 

NHR Ratio of noise to tonal components in the voice 

HNR Harmonic-to-Noise Ratio 

status Health status (1: Parkinson's, 0: Healthy) 

RPDE Nonlinear complexity measure 1 

D2 Nonlinear complexity measure 2 

DFA Signal complexity measure (fractal scaling exponent) 

spread1 Nonlinear measure of fundamental frequency variation 1 

spread2 Nonlinear measure of fundamental frequency variation 2 

PPE Normalized log-area variation measure of fundamental frequency variation 

Table 3:- Detail of Parkinson’s Dataset Attributes. 
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Figure 2:- Distribution plot displays a distribution and range of a set of numeric values plotted against a dimension. 

 

Machine Learning And Deep Learning Classification Algorithms 

This section explores the application of various machine learning algorithms for the diagnosis of Parkinson's 

Disease (PD) based on voice analysis data. We investigate the following algorithms and their potential suitability for 

this task: 

 

Logistic Regression (LR): 

1. Strengths: LR is a well-established linear classification algorithm. It excels at interpreting the coefficients of 

the model, providing insights into the features that most significantly contribute to PD classification. 

Additionally, LR offers efficient training and is relatively less prone to overfitting compared to more complex 

models. 

2. Limitations: LR assumes a linear relationship between features and the target variable (presence/absence of 

PD). If the underlying relationships are non-linear, LR might not achieve optimal performance. 

 

Decision Tree (DT): 

1. Strengths: DT is a flexible and interpretable algorithm that can handle both continuous and categorical features 

without extensive data preprocessing. It builds a tree-like structure where each node represents a decision based 

on a specific feature. This structure allows for easy visualization and understanding of the decision-making 

process. 

2. Limitations: DTs can be susceptible to overfitting, particularly with deep trees and high dimensionality. 

Additionally, they may be sensitive to small variations in the training data. 

 

Random Forest (RF): 

1. Strengths: RF addresses the overfitting limitations of DTs by constructing an ensemble of multiple decision 

trees trained on random subsets of features and data points. This approach reduces variance and enhances the 

model's generalizability to unseen data. RF also offers robustness to outliers and missing values. 

2. Limitations: While interpretability is lower compared to individual DTs, techniques like feature importance 

analysis can still provide insights into the most influential features. RF can be computationally expensive to 

train compared to simpler models like LR. 
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Naive Bayes (NB): 

1. Strengths: NB is a probabilistic classifier based on Bayes' theorem. It assumes conditional independence 

between features, which can be a simplifying assumption but may be suitable for certain types of voice data. NB 

is efficient for training and can handle high dimensionality. 

2. Limitations: The conditional independence assumption may not always hold true for real-world data, 

potentially impacting classification accuracy. Additionally, NB may struggle with imbalanced datasets where 

one class (e.g., PD) has significantly fewer samples compared to the other (healthy controls). 

 

K-Nearest Neighbors (KNN): 

1. Strengths: KNN is a simple and intuitive non-parametric classification algorithm. It classifies a new data point 

based on the majority vote of its K nearest neighbors in the training data. KNN requires minimal training and 

can handle various feature types. 

2. Limitations: KNN's performance is highly dependent on the choice of the K parameter (number of neighbors) 

and the distance metric used. Additionally, KNN can be computationally expensive for large datasets due to the 

need to compare new data points with all data points in the training set. 

 

Support Vector Machine (SVM): 

1. Strengths: SVMs are powerful algorithms that excel in high-dimensional feature spaces and can handle non-

linear relationships through the use of kernel functions. They are also robust to outliers and efficient in terms of 

memory usage during training. 

2. Limitations: SVMs can be challenging to tune due to the presence of hyperparameters (kernel type, 

regularization parameter). Additionally, they may not provide clear interpretability of the model's decision-

making process. 

 

Artificial Neural Networks (ANN): 

1. Strengths: ANNs are powerful learning models inspired by the structure and function of the human brain. They 

consist of interconnected nodes (artificial neurons) arranged in layers. ANNs can learn complex non-linear 

relationships between features and the target variable, potentially achieving high accuracy on classification 

tasks. 

2. Limitations: ANNs are often considered "black boxes" due to their complex internal structure. This can make 

interpretability challenging. Additionally, training ANNs can be computationally expensive and requires careful 

hyperparameter tuning to avoid overfitting. 

 

Machine Learning Classification for Parkinson's Disease 

This section explores the use of machine learning (ML) classifiers for PD classification. We begin by identifying the 

target variable, which in this case is the health status of the patient (presence or absence of PD). We then analyze the 

distribution of health statuses within the dataset and visualize this data graphically. A common approach involves 

splitting the data into two sets: a training set (typically 80%) used to train the ML model, and a testing set (20%) 

used to evaluate the model's performance on unseen data. 

 

Figure 3 depicts the distribution of health statuses in our dataset. A value of "0" represents healthy individuals, with 

a count of 48. A value of "1" represents patients diagnosed with PD, with a count of 147. This translates to a 

prevalence of PD in the dataset of 75.38% (147 out of 195) and a healthy control group of 24.62% (48 out of 195). 
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Figure 3:- Health Status of PD Patient. 

 

Evaluation of Machine Learning Models for Parkinson's Disease Diagnosis  

This section explores the evaluation of machine learning models employed for Parkinson's disease (PD) diagnosis.  

 

Confusion Matrix 

A confusion matrix is a visualization tool that summarizes a classification model's performance on a set of test data. 

It allows us to understand how well the model distinguishes between different classes (healthy vs. PD in this case). 

The matrix displays the number of correctly and incorrectly classified instances based on the model's predictions. 

 
Figure 4:- Confusion Matrix for Model Evaluation. 

 

Key Metrics Derived from the Confusion Matrix: 

1. True Positives (TP): These represent instances where the model correctly identifies a patient with PD (positive 

class). 

2. True Negatives (TN): These represent instances where the model correctly identifies a healthy individual 

(negative class). 



ISSN: 2320-5407                                                                          Int. J. Adv. Res. 12(05), 1118-1137 

1128 

 

3. False Positives (FP): These represent instances where the model incorrectly classifies a healthy individual as 

having PD (incorrect positive prediction). 

4. False Negatives (FN): These represent instances where the model incorrectly classifies a patient with PD as 

healthy (incorrect negative prediction). 

 

By analyzing these values within the confusion matrix, we have calculated various performance metrics to assess the 

effectiveness of the machine learning models for PD diagnosis.  

 

Performance metrics for PD diagnosis: 

1. Accuracy: Overall proportion of correctly classified cases  

Accuracy = (TP + TN) / (Total samples) 

2. Precision: Proportion of true positives among all predicted positive cases  

Precision = (TP / (TP + FP)) 

3. Recall: Proportion of true positives among all actual positive cases  

Recall = (TP / (TP + FN)) 

4. F1-Score: Harmonic mean of precision and recall, providing a balanced view of model performance  

F1-score = 2 * (Precision * Recall) / (Precision + Recall) 

 

By evaluating these metrics for different machine learning models, we have identified the model that achieves the 

most accurate and reliable classification for PD diagnosis based on the chosen features. 

 

Kappa Statistic for Evaluating Inter-Rater Reliability in PD Diagnosis 

While the confusion matrix provides valuable insights into a machine learning model's performance for PD 

diagnosis, it doesn't necessarily address the question of agreement between the model's predictions and a potential 

"gold standard" diagnosis by a human expert. Here, the Kappa statistic (κ) emerges as a valuable tool for assessing 

inter-rater reliability. 

 

Understanding Kappa: 

Kappa is a statistical measure that goes beyond simple agreement between two raters (model and human expert in 

this case). It considers the agreement that occurs by chance and focuses on the agreement beyond this random 

chance. Unlike the percentage agreement, which can be misleading, Kappa provides a more robust measure of 

agreement, ranging from -1 to 1. 

 

Interpreting Kappa Values: 

1. κ < 0: Indicates disagreement worse than chance. 

2. 0 ≤ κ ≤ 0.20: Represents slight agreement. 

3. 0.21 ≤ κ ≤ 0.40: Indicates fair agreement. 

4. 0.41 ≤ κ ≤ 0.60: Represents moderate agreement. 

5. 0.61 ≤ κ ≤ 0.80: Suggests substantial agreement. 

6. 0.81 ≤ κ ≤ 1.00: Indicates almost perfect agreement. 

 

Formula for Kappa Score: 

The Kappa statistic is calculated using the following formula: 

κ = (P(A) - P(E)) / (1 - P(E)) 

Where: 

1. P(A): Represents the observed agreement between the model and the human expert. This is calculated as the 

sum of the diagonal elements of the confusion matrix divided by the total number of samples. 

2. P(E): Represents the expected agreement by chance. This is calculated by summing the product of row and 

column totals in the confusion matrix (excluding diagonal elements) and then dividing by the total number of 

samples squared. 

 

Experiments and Results:-  

The proposed work, The Machine Learning algorithms including Logistic Regression (LR), Decision Tree (DT), 

Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbors (KNN) are 

implemented in Python 3.11.4: Jupyter Notebook And Deep Learning Algorithm Artificial Neural Networks (ANN) 
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is implemented in Python 3.10.12: Google Colab. Here we detail the experimental setup and the results of the Total 

Seven  machine learning and Deep Learning classification methods. 

 

Logistic Regression (LR): 

Title Results 

Training Accuracy 87.18% 

Testing Accuracy 84.62% 

Precision 80.65% 

Recall 78.13% 

F1-Score 79.37% 

Kappa Score 0.3546 

Table 4:- Performance Analysis for Logistic Regression (LR) Classifier.  

 

 
Figure 5:- Confusion Matrix and Heatmap for Logistic Regression (LR) Classifier. 

 

Decision Tree (DT): 

Title Results 

Training Accuracy 100% 

Testing Accuracy 100% 

Precision 77.42% 

Recall 75.00% 

F1-Score 76.16% 

Kappa Score 1.00 

Table 5:- Performance Analysis for Decision Tree (DT) Classifier. 
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Figure 6:- Confusion Matrix and Heatmap for Decision Tree (DT) Classifier. 

 

Random Forest (RF): 

Title Results 

Training Accuracy 100% 

Testing Accuracy 89.74% 

Precision 81.25% 

Recall 81.25% 

F1-Score 81.25% 

Kappa Score 0.6855 

Table 6:- Performance Analysis for Random Forest (RF) Classifier. 

 
Figure 7:- Confusion Matrix and Heatmap for Random Forest (RF) Classifier. 
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Naive Bayes (NB): 

Title Results 

Training Accuracy 71.79% 

Testing Accuracy 69.23% 

Precision 84.21% 

Recall 50.00% 

F1-Score 62.75% 

Kappa Score 0.0414 

Table 7:- Performance Analysis for Naive Bayes (NB) Classifier. 

 
Figure 8:- Confusion Matrix and Heatmap for Naive Bayes (NB) Classifier. 

 

 

K-Nearest Neighbors (KNN): 

Title Results 

Training Accuracy 89.74% 

Testing Accuracy 82.05% 

Precision 87.88% 

Recall 90.63% 

F1-Score 89.23% 

Kappa Score 0.3546 

Table 8:- Performance Analysis for K-Nearest Neighbors (KNN) Classifier. 
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Figure 9:- Confusion Matrix and Heatmap for K-Nearest Neighbors (KNN) Classifier. 

 

Support Vector Machine (SVM): 

Title Results 

Training Accuracy 86.54% 

Testing Accuracy 87.18% 

Precision 88.57% 

Recall 96.88% 

F1-Score 92.54% 

Kappa Score 0.4772 

Table 9:- Performance Analysis for Support Vector Machine (SVM) Classifier. 

 
Figure 10:- Confusion Matrix and Heatmap for Support Vector Machine (SVM) Classifier. 
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Artificial Neural Networks (ANN): 

Title Results 

Training Accuracy 100% 

Testing Accuracy 97.44% 

Precision 96.67% 

Recall 100% 

F1-Score 98.31% 

Kappa Score 0.9305 

Table 10:- Performance Analysis for Artificial Neural Networks (ANN) Classifier. 

 

 
Figure 11:- Confusion Matrix and Heatmap for Artificial Neural Networks (ANN) Classifier. 

 

Comparative Study of Machine Learning Algorithms Used in Proposed Work 

Classifier 
Training 

Accuracy 

Testing 

Accuracy 
Precision Recall F1-Score Kappa Score 

Logistic 

Regression 

(LR) 

87.18% 84.62% 80.65% 78.13% 79.37% 0.3546 

Decision Tree 

(DT) 
100% 100% 77.42% 75.00% 76.19% 1.00 

Random Forest 

(RF) 
100% 89.74% 81.25% 81.25% 81.25% 

 

0.6855 

Naive Bayes 

(NB) 
71.79% 69.23% 84.21% 50.00% 62.75% 0.0414 

K-Nearest 

Neighbors 

(KNN) 

89.74% 82.05% 87.88% 90.63% 89.23% 0.3546 

Support Vector 

Machine 

(SVM) 

86.54% 87.18% 88.57% 96.88% 92.54% 0.4772 
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Artificial 

Neural 

Networks 

(ANN) 

100% 97.44% 96.67 100% 98.31% 0.9305 

Table 11:- An overview of evaluation results and Performance Analysis for all Classifiers used in Proposed Work. 

 

 
Figure 12:- Graphical Representation of Comparison of Training And Testing Accuracy for all Classifiers. 

 

 
Figure 13:- Graphical Representation of Comparison of Kappa Score for all Classifiers. 
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Conclusion:- 
This research investigated the potential of automated machine learning (ML) and deep learning (DL) techniques to 

classify Parkinson's disease (PD) from healthy controls (HC) based on non-invasive speech biomarkers. Our study 

focused on comparing the performance of various classifiers in handling the challenges of noisy and high-

dimensional speech data, common in real-world applications. The findings demonstrate that achieving clinical-level 

accuracy for PD detection is feasible with careful feature selection and appropriate model selection. 

 

Among the evaluated algorithms, Logistic Regression (LR) achieved an accuracy of 84.62%, Decision Tree (DT) 

achieved 100% accuracy, Random Forest (RF) achieved 89.74% accuracy, Naive Bayes (NB) achieved 69.23% 

accuracy, K-Nearest Neighbors (KNN) achieved 82.05% accuracy, Support Vector Machine (SVM) achieved 

87.18% accuracy, and Artificial Neural Networks (ANNs) achieved the highest accuracy of 97.44%. It's important 

to note that while the Decision Tree classifier achieved the highest reported accuracy, it is susceptible to overfitting, 

which can lead to poor performance on unseen data. 

 

This research highlights the significant advantage of Artificial Neural Networks (ANNs) for PD classification using 

speech analysis. The deep learning model achieved an impressive accuracy of 97.44%, significantly outperforming 

other methods. ANNs' inherent ability to learn complex, non-linear relationships within the data offers a clear 

advantage for this specific task. 
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