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This study offers a detailed comparison of both traditional and ad-

vanced deep learning models in the context of time series forecasting, 

with a specific focus on ARIMA, Random Forest, Recurrent Neural 

Networks (RNNs), Long Short-Term Memory networks (LSTMs), and 

Gated Recurrent Units (GRUs). In line with open science principles, it 

utilizes publicly accessible datasets to guarantee the reproducibility of 

its findings and broaden their relevance. The research meticulously ap-

proaches preprocessing and thoroughly investigates model architectures 

and hyperparameters to establish solid benchmarks for performance 

evaluation. It uniquely employs the Root Mean Square Error (RMSE) 

as the primary metric to assess forecasting accuracy across different 

datasets. This singular focus on RMSE enables a precise understanding 

of model performance, highlighting the exact conditions under which 

each model excels or falls short, considering dataset characteristics 

such as size and complexity. Additionally, the study explores the 

interpretability of these models to provide insights into the decision-

making processes underlying deep learning predictions. The results of 

this analysis yield essential recommendations for selecting optimal 

modeling techniques for time series forecasting, significantly 

advancing theoretical knowledge and practical applications in the field. 

By narrowing the gap between advanced machine learning techniques 

and their effective deployment in forecasting tasks, this study guides 

practitioners and researchers toward informed model selection based on 

RMSE performance. 
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Introduction:- 
The burgeoning field of time series forecasting has witnessed significant advance-ments with the integration of both 

traditional statistical models and cutting-edge deep learning approaches. Deep learning models have shown 

remarkable capabilities in capturing intricate temporal dependencies [1], handling nonlinearity [2], and provid-ing 

highly accurate predictions. However, their utility and effectiveness in the context of time series forecasting 

compared to traditional machine learning methods remain a subject of investigation. This juxtaposition of 

methodologies offers a unique opportunity to explore the strengths and limitations inherent to each class of models 

when applied to the predictive analysis of temporal data. Central to the efficacy of these models is their ability to 

discern patterns and dependencies within time series data, which often encapsulates complex behaviors and trends 

relevant across a myriad of applications, from financial market predictions to energy consumption forecasting.  
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This paper conducts a thorough evaluation of traditional statistical models, specifically ARIMA [3] and Random 

Forest [4], against advanced deep learning models, including Recurrent Neural Networks (RNNs) [5], Long Short-

Term Memory networks (LSTMs) [6], and Gated Recurrent Units (GRUs) [7] . This selection spans a broad 

spectrum of modeling techniques, from time-tested statistical methods to neural networks adept at managing long-

term dependencies and nonlinear data structures. 

 

Committed to the principles of open science, the study utilizes publicly accessible datasets to ensure the 

reproducibility of results and relevance across diverse domains. This transparent approach not only promotes 

accountability but also facilitates a broader engagement with the research community, allowing for the validation 

and extension of the findings. 

 

Through this investigation, the paper aims to provide a cohesive understanding of the relative strengths and 

weaknesses of each modeling approach within the context of time series forecasting, offering valuable insights into 

model selection and applica-tion in real-world scenarios. 

 

Methodology:- 
This study aims to evaluate the performance of traditional machine learning algo-rithms like ARIMA and Random 

Forest alongside advanced deep learning models such as RNNs, LSTMs, and GRUs in time series forecasting. 

Through a literature review, the research traces the development of forecasting techniques from classical methods to 

modern deep learning, highlighting the increasing importance of the latter. Utilizing publicly available datasets 

ensures the reproducibility and relevance of the findings. The study includes preprocessing these datasets for 

consistent analysis across models, followed by an in-depth examination of each model's architecture and 

hyperparameters to optimize their forecasting accuracy. Performance is evaluated using the Root Mean Square Error 

(RMSE), providing a direct measure of accuracy while also considering the datasets' characteristics. Additionally, an 

analysis of model interpretability seeks to enhance the understanding of advanced models' decision-making 

processes. The study concludes with targeted recommendations for model selection in time series forecasting, 

bridging the gap between theoretical advancements and practical application, and offering a framework for informed 

model selection. 

 

Literature Review:- 
The progression of time series data modeling showcases a remarkable evolution from foundational statistical 

methods to the advanced capabilities of deep learning. Early techniques such as moving averages and exponential 

smoothing [8] set the stage by offering insights into trends and seasonality within historical data. This period of 

exploration laid the groundwork for the groundbreaking development of the ARIMA model [3] in the 1970s by 

George Box and Gwilym Jenkins, providing a robust framework for managing autoregressive integrated moving 

average processes and revolutionizing time series analysis.Almost simultaneously, the late 1960s introduced state 

space models and the Kalman filter [9], presenting powerful tools for navigating the challenges of noisy data. The 

following decade, the 1980s, saw further advancements with Robert Engle's introduction of Autoregressive 

Conditional Heteroskedasticity (ARCH) [10] and Tim Bollerslev's extension with Generalized ARCH (GARCH) 

models [11], targeting the dynamic nature of volatility in financial series. 

 

As the 1990s unfolded, neural networks began to leave their mark on time series forecasting, culminating in the 

advent of Recurrent Neural Networks (RNNs), which were specifically designed for sequential data analysis. 

Despite facing initial hurdles like the vanishing gradient problem, the introduction of Long Short-Term Memory 

Networks (LSTMs) by Sepp Hochreiter and Jürgen Schmidhuber [6] in 1997 marked a significant breakthrough, 

effectively learning long-term dependencies. This narra-tive continued to evolve with the proposal of Gated 

Recurrent Units (GRUs) by Kyunghyun Cho et al. [7] in 2014, simplifying the LSTM architecture while retaining its 

depth in capturing long-term data sequences.Deep learning models, particularly RNNs, LSTMs, and GRUs, have 

demonstrated unparalleled proficiency in dissecting sequential data, uncovering patterns, and learning dependencies 

that elude traditional models [1]. Their ability to autonomously identify and leverage relevant features from raw time 

series data [12] reduces the reliance on manual feature engineering, offering a more efficient approach to data 

analysis. These models excel in handling high-dimensional datasets [13], showcasing their capacity to manage and 

interpret complex data without sacrificing performance. 
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Moreover, deep learning techniques are adept at modeling the non-linear relation-ships inherent in time series data 

[2], a capability crucial for applications requiring nuanced forecasting, such as agricultural production. Their 

flexibility allows for fine-tuning to accommodate specific data characteristics like seasonality and volatility [14], 

ensuring their applicability across a variety of datasets and challenges. The inte-gration of diverse data types within 

a unified analytical framework [15] further un-derscores the versatility of deep learning in time series analysis, 

enabling a compre-hensive understanding of complex phenomena.Deep learning's superior predictive accuracy 

stems from intricate architectures capable of discerning complex patterns, leading to enhanced forecasting outcomes 

[2]. The scalability of these models [16] aligns with the demands of large-scale datasets, leveraging modern 

computing re-sources for efficient training and analysis. Certain deep learning models also offer real-time data 

processing [17], a critical feature for scenarios demanding immediate insights, such as financial trading or network 

security. 

 

In addition to their operational advantages, deep learning models demonstrate ro-bustness against common data 

issues like noise and missing values [18], reinforcing their reliability and superiority in maintaining data integrity 

throughout the analysis. This journey from the foundational statistical methods to the cutting-edge techniques of 

deep learning models encapsulates the dynamic expansion and refinement of time series data analysis, highlighting a 

continuous trajectory towards more sophisticated and effective forecasting tools.  

 

Data  

The "daily-total-female-births.csv" dataset, available on the jbrown-lee/Datasets GitHub repository [19], provides 

daily female birth counts in California during 1959, offering a basis for evaluating deep learning models like RNNs, 

LSTMs, and GRUs against traditional methods such as ARIMA, Exponential Smoothing, and Random Forest. Its 

simplicity facilitates clear comparisons of predictive performance, compu-tational efficiency, and ease of use across 

these models. Serving as a critical tool in predictive analytics, this dataset enables comprehensive time series 

forecasting analysis, catering to researchers, educators, and practitioners in the field. 

 

Stationarity 

Stationarity tests [20] play a varied role across different modeling approaches like ARIMA, Random Forest, and 

deep learning models. For ARIMA models, which are based on statistical assumptions about time series data, 

ensuring stationarity is essen-tial. These models require the data's statistical properties, such as mean and variance, 

to remain constant over time, and tests like the Augmented Dickey-Fuller (ADF) [21] test are often used to check for 

stationarity before model fitting. In contrast, machine learning models like Random Forest do not require data to be 

stationary, as they do not make the same statistical assumptions and instead focus on capturing patterns through 

feature engineering. Similarly, deep learning models designed for sequence data, such as RNNs, LSTMs, and GRUs, 

can handle non-stationary data by learning complex patterns, including trends and seasonality, directly from the 

data. While making data stationary is not a prerequisite for these latter models, doing so can sometimes enhance 

their performance by simplifying the underlying structures in the data they need to learn. 

 

The Augmented Dickey-Fuller (ADF) test is applied to the dataset here. ADF [20] is a statistical test used to 

determine whether a time series is stationary. Specifically, it tests for the presence of a unit root, a condition that 

indicates non-stationarity. The Augmented Dickey-Fuller (ADF) test results show a test statistic of -4.8083 and a 

very small p-value of approximately 0.000052, with critical values at -3.4487 (1% level), -2.8696 (5% level), and -

2.5711 (10% level). Given that the test statistic is more negative than all the critical values and considering the low 

p-value, there is strong evidence to reject the null hypothesis of non-stationarity. This indicates that the time series is 

stationary, meaning its statistical properties do not change over time. This stationarity is a desirable property for 

many time series analysis techniques, sug-gesting that the series can be modeled without the need for differencing to 

stabilize its mean and variance. 

 

Models 

Before exploring into the practical experiment conducted to compare the forecasting abilities of ARIMA, Random 

Forest, RNN, LSTM, and GRU models, it is crucial to provide a brief overview of each model to set the context for 

the experimental analy-sis. 

 

ARIMA (Autoregressive Integrated Moving Average) is a traditional statistical model used in time series 

forecasting. It combines autoregressive features with mov-ing averages and integrates differencing of observations 

to account for trends and non-stationarity in data. ARIMA models are widely recognized for their effectiveness in 
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capturing linear relationships and seasonality in historical data, making them a staple in the arsenal of time series 

forecasting. 

 

Random Forest is an ensemble learning method that operates by constructing mul-tiple decision trees during training 

and outputting the mode of the classes (classifica-tion) or mean prediction (regression) of the individual trees. 

Random forests correct for decision trees' habit of overfitting to their training set, providing a more robust prediction 

by averaging multiple trees. Despite not being inherently designed for time series data, Random Forest can be 

adeptly used for forecasting by incorporating time-based features. 

 

Recurrent Neural Networks (RNNs) are a class of neural networks that are specifi-cally designed to recognize 

patterns in sequences of data such as time series, speech, text, or financial data. RNNs are capable of retaining 

information from previous inputs in their internal state, using it to influence the output of later inputs. This makes 

them particularly suitable for applications where the context and order of data points are crucial. Long Short-Term 

Memory (LSTM) networks are an advanced type of RNN specifically designed to avoid the long-term dependency 

problem, allowing them to remember information for longer periods of time. By incorporating mechanisms called 

gates, LSTMs can selectively remember or forget information, making them highly effective for complex time series 

forecasting tasks where long-term dependencies are prevalent.Gated Recurrent Units (GRUs) are a variation of 

LSTMs designed to simplify the model architecture without compromising the ability to capture dependencies in 

sequential data. GRUs combine the input and forget gates into a single update gate, reducing the complexity of the 

model and the computational burden, while still effectively modeling time series data. 

 

These models represent a spectrum from traditional statistical methods to cutting-edge deep learning approaches in 

time series forecasting. Each has its strengths and ideal use cases, which the following practical experiment aims to 

explore and com-pare, providing insights into their relative performance and applicability to different forecasting 

tasks. 

 

Experiment and Results:- 
This section presents 5 experiments and their results for the models under study. 

 

ARIMA  

To determine the optimal ARIMA model for our time series analysis, a stepwise search aimed at minimizing the 

Akaike Information Criterion (AIC) was performed, for results see figure 1. The AIC helps in identifying a model 

that strikes the right balance between fitting the data well and keeping the model complexity low to avoid 

overfitting. This search led to the selection of the ARIMA(1,1,1) model as the best candidate, characterized by its 

simplicity and effectiveness in capturing the series' dynamics with just one autoregressive term, one differencing 

step, and one moving average term. 

 

The ARIMA(1,1,1) model's implementation revealed important details about its performance, including coefficients 

and their significance, through the model sum-mary as shown in figure 2. This summary provided a comprehensive 

view of how well the model fits the data and ensured that the residuals met the necessary assump-tions, underlining 

the model's adequacy for forecasting with precision and reliability. This methodical approach to model selection 

underscores the analytical process in achieving accurate time series forecasting. 

 

Random Forest 

In exploring the applicability of machine learning models to time series forecasting, an experiment utilizing the 

Random Forest algorithm was conducted. The focus was on assessing the model's forecasting accuracy using 

synthetic time series data. This data was generated to include both a linear trend component and random noise, 

simulating real-world time series characteristics. 
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Fig. 1:- Stepwise Search to Minimise AIC and Find Best ARIMA model. 

 

 
Fig. 2:- Model Summary (ARIMA Model). 

 

The dataset comprised 365 data points, representing a sequence with a trend and variability. Feature engineering 

played a pivotal role in adapting this time series data for the Random Forest model. Specifically, lagged features 

were created to capture the series' temporal dependencies, a crucial step since machine learning models do not 

inherently consider the order of observations. 

 

The data was then split into training and testing sets, adhering to a strategy that re-spects the sequential nature of 

time series data. This setup ensured that the model was trained on past data to predict future values. The Random 

Forest model was configured with 100 estimators, leveraging its ensemble learning capability to reduce overfitting 
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and improve prediction accuracy.Upon training the Random Forest model on the engineered features, predictions 

were made on the test set. The model's perfor-mance was evaluated using the Mean Squared Error (MSE) metric, 

which quantifies the average squared difference between the observed actual outcomes and the predictions. This 

metric was chosen for its ability to penalize large errors more heavily, offering a clearer picture of the model's 

predictive accuracy. 

 

This experiment's findings provide insight into the effectiveness of Random Forest regressors in handling time series 

data, particularly when proper feature engineering is employed to incorporate temporal information. Through this 

methodical approach, the study advances the understanding of machine learning applications in forecasting, 

underlining the potential of ensemble methods like Random Forest in achieving accurate time series predictions. 

 

Deep Learning Models: RNN, LSTM, GRU 

This paper explores the efficacy of deep learning techniques in time series forecasting, utilizing the "daily-total-

female-births.csv" dataset which comprises 365 daily observations of female births over a year. The investigation 

encompasses three key models tailored for sequential data analysis: Recurrent Neural Networks (RNNs), Long 

Short-Term Memory (LSTM) networks, and Gated Recurrent Units (GRUs), each offering distinct advantages in 

processing time series data. 

 

The analysis begins with an exploration of RNNs, noted for their ability to use his-torical data to forecast future 

events. The dataset was transformed into sequences suitable for the RNN model, setting a foundation for evaluating 

deep learning's potential in forecasting. This step established a benchmark for deep learning performance in time 

series analysis.Following the RNN exploration, attention shifts to LSTM networks, which are engineered to address 

RNNs' limitations in capturing long-term dependencies. Optimizing the LSTM model involved adjusting its 

architecture and hyperparameters to leverage its superior memory capabilities, aiming to enhance forecasting 

accuracy beyond what was achieved with the RNN model. The LSTM's performance was meticulously evaluated, 

providing insights into its effectiveness in modeling complex temporal patterns within the dataset. 

 

The final phase of the study examines GRUs, which streamline the LSTM design without compromising the ability 

to model temporal dependencies. The simplicity of GRUs presents an opportunity for computational efficiency, 

making them an attrac-tive option for time series forecasting. Like its predecessors, the GRU model under-went 

preprocessing, training, and optimization, with its forecasting accuracy critically assessed. By systematically 

evaluating the performance of RNNs, LSTMs, and GRUs on the same dataset, this paper offers a comprehensive 

view of the potential and limitations of each deep learning technique in the context of time series forecasting. 

 

Interpretation and Conclusion:- 
Table 1 presents RMSE values for various forecasting models, with Figures 2 to 6 depicting their respective 

prediction graphs. The GRU model demonstrates superior accuracy, achieving the lowest RMSE of 6.37, signifying 

its effectiveness in capturing the dataset's underlying temporal patterns. 

 

Table 1:- RMSE for. 

Sr.No Model RMSE 

1 ARIMA(1,1,1) 7.50 

2 Random Forest 7.20 

3 RNN 6.46 

4 LSTM 6.55 

5 GRU 6.37 
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Fig. 3:- Arima(1,1,1) Prediction. 

 

Close behind, RNN and LSTM models exhibit comparable accuracy with RMSE values of 6.46 and 6.55, 

respectively, suggesting that the increased complexity of LSTM does not yield significant performance benefits over 

RNN for this dataset. 

 

Traditional models, Random Forest and ARIMA, recorded higher RMSEs of 7.20 and 7.50, indicating less precision 

in their predictions. Random Forest's marginally better performance over ARIMA suggests that even without being 

specifically de-signed for time series data, machine learning approaches can outperform classical statistical models 

through effective feature engineering. 

 

 
Fig. 4:- Random Forest Prediction. 

 

The collective outperformance of deep learning models (RNN, LSTM, GRU) over traditional ones (Random Forest, 

ARIMA) underscores their superior capability in modeling complex dependencies within the data, a critical aspect 
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of time series fore-casting. GRU's top performance highlights its optimal balance between model com-plexity and 

learning capacity, rendering it the most fitting choice for this dataset. 

 

Despite its foundational role in time series analysis, the ARIMA model's higher RMSE points to its limitations in 

fully capturing the dataset's dynamics compared to the machine learning and deep learning approaches. The slight 

edge of Random For-est 

 
Fig. 3:- RNN Prediction. 

 

 
Fig. 6:- LSTM Prediction. 

 

over ARIMA reinforces the potential of ensemble learning strategies in extracting relevant patterns from time series 

data. This comparative analysis emphasizes the importance of selecting models based on specific dataset 

characteristics, acknowledging that no one model universally excels. The close RMSE scores across the evaluated 

models advocate for a thorough examination of different architectures, particularly the nuances between deep 

learning models, which may lead to notable improvements in forecasting accuracy.  

 

In conclusion, the GRU model demonstrates superior precision on this dataset, highlighting key factors like model 

complexity, computational efficiency, and predic-tive accuracy. These findings are crucial for choosing appropriate 
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forecasting models, advocating for a balance between deep learning's advanced capabilities and the straightforward 

nature of traditional approaches. 

 

 
Fig. 7:- GRU Prediction. 
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