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The performance of PV systems is highly dependent on climatic
hazards (wind, dust, low sunshine, etc.). Some of these hazards can
even accelerate its degradation process during its life cycle if nothing is
done in terms of maintenance policy. This paper aims to model the
degradation process of PV systems under environmental conditions. To
do this, a system study is first performed to analyze the experimental
data of the PV system in question according to the location of the site
and simulated under the PVsyst software to extract the parameters of
the study. In a second step, taking into account the Markovian
approach, passing rules are established to design our dynamic Bayesian
model. To this model, we have integrated a maintenance policy
decision node and performance indicators in order to reproduce the
degradation process in the real context and under stress. We have
associated the decision node to enable Al integration through
reinforcement learning on this node.The simulation results effectively
reproduce the behavior of the PV system under environmental stress
according to several scenarios (with or without IA). Furthermore,
simulation allows us (a) to observe and validate the experimental
values taken during the tests on the PV, (b) to see their availability
increase with reinforcement learning compared to the case without
learning. At the same time, we note that the increase in this availability
leads to a relative decrease in income. The model allows to evaluate the
performance of the system and propose the bestmaintenance policy
configurations according to the input parameters (transition parameters,
maintenance cost).
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Introduction:-

PV systems are exposed to weather hazards (low sunshine due to clouds, dust, etc.), mechanical and electrical stress
during operation (falling of solid particles on PV, forces of disturbance and vibration due to wind, short circuits due
to mechanical vibrations of the wind, lightning, etc.), etc.

Indeed, the impact of these phenomena on PV modules decreases the performance of the system over time. This
decrease means that a degradation process occurs in the PV system and can lead to its partial or total failure (for
example, low power relative to rated power) if nothing is done to mitigate it.

Then, it is necessary to follow the degradation process, quantify it over time to evaluate the performance of the
system and decide on the optimal choice of maintenance policy to achieve a desired level of performance.

The objective of this paper is to propose a method for evaluating the performance of PV modules under
meteorological and mechanical stress.

Indeed, it is about analyzing the degradation process of PV modules by building a model of the system degradation
process capable of better understanding the performance of the PV system and making decisions based on the
degradation parameters and the associated maintenance. This model of the degradation process transformed into a
so-called Bayesian model, obeys the Bayes principle and is subject to intelligence techniques in particular
reinforcement learning in order to have a decision support system for performance evaluation and choice of PV
system maintenance policy.

However, although there are other modeling tools in the literature, Bayesian networks are preferably a very powerful
tool in decision support systems, in knowledge engineering and modeling with integration of uncertainty in
probabilistic form, etc.

The rest of this paper is described as follows: Section 2 deals with the state of the art on system performance
evaluation and associated modeling, Section3 sets out the methodology of our paper, Section4 gives the results of
the simulation and their discussions, and Section 5 provides the conclusion and perspectives to this paper.

Literature Review:-

Much work has been carried out in various fields with the application of Bayesian networks. This work can be
classified into three points:

The first point concerns the maintenance of industrial systems, including work on the analysis of machine failures
and the choice of maintenance policy to ensure their availability or reliability

([11; [21; 131 [4] ), modeling and simulation of complex systems [5]; [6] , prognosis [7] and decision support for the
maintenance of complex or multi-state systems [8]; [9].

The second point deals with health optimization, in particular (a) medical diagnosis and modeling of influencing
parameters in medical treatments ( [10]; [11]) (b) data uncertainty classification and quantification [12], genetic
predisposition disease analysis [13].

The third relates to Al in particular on climate data [14], prediction or risk assessment models [15], object
recognition [16] and dynamic regulation [17].

Indeed, the Bayesian network is widely used in several areas to evaluate the prediction, diagnosis, reliability and
performance of systems related to industry, health, agriculture, etc.

However, in relation to the energy system in particular, PV on modeling, performance study and failure analysis
under environmental stress remain very little or poorly treated in the literature. Here in this work, we will use
dynamic Bayesian networks to evaluate the degradation process of PV modules over time and propose a decision aid
for maintenance based on the integration of artificial intelligence(learning by reinforcement).

Methodology:-

To develop our model, we will use the meteorological data of the study site (humidity, solar radiation, temperature,
wind speed, dust, etc...) detailed by month, by year in PVsys software and calculate their probability of occurrence.
From these variables related to meteorological data, mechanical and electrical shocks, we will build a Bayesian
model where each of the variables is considered as a node. Indeed, this Bayesian model represents the degradation
process of PV modules subjected to these meteorological, mechanical and electrical constraints. The implementation
of the model is done in the environment of the Bayesialab software.
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The model thus constructed is studied and simulated according to four (4) scenarios in order to follow the evolution
of the degradation process of the modules over time and to decide on the optimal choice of maintenance policy via
artificial intelligence(reinforcement learning method).

Modeling the degradation process of photovoltaic modules:-

All systems whose future state of operation depends only on the present state can be described by a Markov process,
those for which the probabilities of transitions between any states are not affected by time.

The photovoltaic module is a model of multi-state systems, whose electrical production leaves an initial (normal)
operating state to occupy in time more and more degraded production states until its major degradation.

This degradation process is equivalent to a Markovian system which we will model by considering the different
states of transitions occupied over time and the parameters of the transition rates of the system.

Bayesian model of the PV degradation process:-
We will model a dynamic Bayesian network of multi-state system (SME) type from the Markovian SME model by
adopting passage rules.

The rules for moving from the Markovian model to the dynamic Bayesian model are:

1. Transformation of the transition rate parameters into nodes and simultaneously integrating a decision node for
maintenance policy but also performance indicators.

2. Transformation of the states occupied by the system over time.

In the PV degradation process, we identified environmental and electrical variables that may affect the state of the
PV. These variables can be degradation modes (corrosion, fading, delamination, crack and hot spot) that will
determine the state of the PV at a given time. Environmental variables include: humidity, temperature, solar
radiation, dust, mechanical variable refers to mechanical shocks. For the electrical variables, we take overvoltage
and overcurrent.

These variables were transformed into nodes to form a dynamic Bayesian network (RBD).

At a certain time, we will observe that the system degrades from a state (t) to a state (t+1) under the control of the
decision node which will decide the maintenance policy to adopt.

Overcurrent

Figure 1:-Transition graph from the Markov model to the dynamic Bayesian model of the PV modules degradation
The different states of the system and the transition rates between them are such that:

State 1: corresponding to the normal state of the PV modules or there is no degradation;

State 2: corresponds to the state of minimal degradation;

State 3: corresponds to the state of major degradation;

a, : Rate of degradation from normal to minimal degraded state;

Ay Failure rate from normal to minimal degraded state;
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U1 : Repair rate from minimal degraded to normal condition;

a, : Rate of degradation from a minimal degraded state to a maximum degraded state;

A, : Failure rate from a less degraded state to a more degraded state;

U, . Repair rate from a more degraded state to a less degraded state;

B1 : Rate of passage, by the maximum preventive maintenance action from major degradation (state 3) to normal
(state 1);

B, : Rate of passage, by the minimum preventive maintenance action, from the state of major degradation (state 3)
to the minimal degradation (state 2);

In our dynamic Bayesian model of the multi-state system E(t) and E(t+1) respectively denote the state of the system
at time t and t+1. The other nodes represent the probability ratios of the different variables and the transition rates
between system states.

Decision support for PV maintenance:-

In the decision node, we have planned different maintenance policies:
1. No preventive maintenance (No_PM),

2. Minimum Planned Maintenance (Min_PM)

3. Maximum preventive maintenance (Max_PM).

We have defined three modalities for the state of degradation of the PV module:
1. No degradation (Ey),

2. Minimum degradation (E;)

3. Major degradation (E,).

We will study the model under different scenarios with or without learning on the photovoltaic module maintenance
policy decision node using the influence diagram including utility nodes, decision nodes, probabilistic and
deterministic nodes.

We will observe how the photovoltaic module will behave in a state (t+1) time span under the influence of
environmental and electrical parameters.

Finally, a proposal for the choice of maintenance policy is made by simulation according to the different
configurations of transition rates between states occupied by the system over time.

Study of maintenance costs and downgrading of the PV system:-
For the evaluation of the photovoltaic (PV) modules maintenance policy, we integrate performance indicators such

System availability;

The cost of repair curative maintenance on multi-state system (Repair_Cost);
The minimum cost of preventive maintenance (Min_Cost_PM);
The maximum cost of preventive maintenance (Max_Cost_PM);
5. Income.

We can calculate the maintenance cost by

Csystem = Cunavailability + cdegr::\dedsl;ate + cfa\ilure(l)

Coystem - System maintenance cost

Cunavailability * Cost of system unavailability

Cdegraded state : COSt associated with degraded states

Craiture * Cost associated with failed states

Ctailure = Xj2 Xp- P3j_1(2)

ronPEg

Cunavailability = Ziz‘”mproductionpenality X P(E(t) = 1) (3)
To track the evolution of a given system, we consider a preventive maintenance policy decision variable called
o {1 Preventivemaintenance

b 0 NoPreventivemaintenance
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Figure 2:- Influence diagram with decision support.
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Figure 3:- Dynamic Bayesian model of the PV system with integration of maintenance costs.

Simulation of the Bayesian model:-

The simulation study is done over an operating time of 17000. It is considered necessary to simulate over a long
period of time in order to be in intensive use of the system under study|[8].

We will perform a simulation study to examine and determine the correct configurations of maintenance actions on a
production system.
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In our simulation study, we will use the parameters of learning algorithms by reinforcing the following values:
discount factor: 0.99; Learning rate 0.25 and initial exploration rate 0.50 for all cases of learning maintenance
actions. We start with three modalities to be able to analyze the optimal level of preventive maintenance:

1. No preventive maintenance;

2. Minimum preventive maintenance;

3. Maximum preventive maintenance.

The level “zero preventive maintenance” means that no preventive maintenance action is taken, Minimum
preventive maintenance is to return the system to a degraded but better operational state and maximum preventive
maintenance is to return the system to its perfect initial state[8].

The decision node D imposes one of the maintenance levels mentioned above and a learning algorithm allows to
decide the right decision among the modalities at each iteration

The Chapman-Kolmogorov equation for our model is:
PPf=1,0<¢t<T
It is noted that:
Pj" is the probability that the system will be in state j at time t;
f}k“ is the probability of transition to state j.
Pj(t+AD—Pj(t)  dPj(D)
] x ) — ‘;t — Pik+1 (4)

limAt—>t

Then, based on this table 1 and the Chapman-Kolmogorov equations, the probability distributions of the different
nodes in our RBD model are calculated and put into their probability tables (TPC).

Table 1:- Distribution of probabilities of states.
Sdediondunceud @ | Sl ] »
Trype du mozsud Finde de wisusksation

Yekers e ol Cormson | Disoolowrabion| Delemingtion | Crack | Hat Spet £ El B
z . e .55 0o e
L _ Feke ™, %5 Qi 0,03
= e Tne W% Wi 0,05
- Fake ™, %5 Q0 0,0
. e W% Wi 0,05
. Fake ™, %5 0o 0,0
e e W% Wi e
e Fake ™, %5 0o 0,0
. e m, %5 i 0,0
. Fake ™, %5 Lo 0,0
- e m, %5 i 0,0
- Fake W% i 0,05
. e m, %5 i 0,0
e Fake W% Wi 0,05
o e m, %5 i 0,03
Nl ras de Fake 24,955 000 0,030

Results and Discussions:-
We will analyze the evolution of degradation of PV modules through our basic model with the consideration of all
possible levels of preventive maintenance policy.

The environmental and electrical parameters between the different degradation states of the modules to be studied

are considered. The basic model of the system to be studied must indeed reproduce the different states of
degradation over time as that of a Markov graph.
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We do a simulation of the degradation process of these modules which gives us the set of joined probabilities of the
system’s degradation states over a time step of 17000. This choice of high value time steps allows to observe the
degradation of modules over a long operating life.

The figure below (Figure 4) shows the joint probabilities of different degraded states of operation of the modules

after a time step of 17000.

- 1.40% of the photovoltaic modules operate normally, which corresponds to the perfect state of operation of the
E, modules.

- 4.70% of photovoltaic modules operate with minimal degradation.E; .
- 93.90% of the photovoltaic modules show major degradationk,.

=tatusz (1+1)

1 40% EQ
4 0% E1
a3 0% E2

Figure 4:- Joint probabilities of system states.

Furthermore, the progression of the photovoltaic (PV) module degradation process for a designated state E,, which
corresponds to the PV system's standard operating condition, is hereby presented. The degradation process exhibits a
decline over time, contingent upon the adopted maintenance strategy, income, and production costs (see Figure 5).

Probabilté de Status (t+17 = E0 [ 15.399 %)

100
a0 \ Min_Cost_PM = -333.373
\ Meax_Cost_Ph = -1665 863
a0 Repair_Cost = -3,331
\ Income = 2172 047
7o Production = 25,048
\ Total = 193,529
G0

50 \

40 \

30 \

20 \

10 \

a } } } t f f t f f
0 1700 3400 5100 G800 8500 10200 11900 136800 15300 17000

Tetnps
Figure 5:- Evolution of the E degradation process.

Figure 6 illustrates the progression of the degradation process, commencing from state E; (minimal PV module
degradation) and culminating at a production threshold of less than 10%, whereupon it undergoes a subsequent
decline.
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Probahilte de Ststus (t+11=E1 ( 6635 %)
100

a0

an

Min_Cost PM = -333,373
Mz _Cost_PM = -1E6EBE 863
Repair_Cost = -3,331

70

Income = 2172047

=]

Production = 25 045
Tatal = 193,529

a0

40

30

20

10

u] t 1 t t
u] 1700 3400 5100 6500

S500 10200 11900 13600 15300 17000

Temps

Figure 6:- Evolution of the E; degradation process.

Furthermore, Figure 7 demonstrates an escalating degradation process in state E,

degradation) in comparison to state 1.
Prokabilté de Status (t+1) = E2 [ 74,945 %)

100

(the state of maximum

a0

Min_Cost_Pw = -0,059

a0 —

Max_Cost_Pw = -0,294
Repair_Cost = -3,331

. i

Ihcame = 2172047

- /

Production = 25 048
Taotal = 2193412

ol [
o/

o/

o/

o/

] | | | |

0 1700 3400 5100 6&O00

8500 10200 11900 13500 15300 17000

Temmps

Figure 7:- The evolution of the degradation process of E,

We note in this monitoring that at the initial instant State E(t) while considering E, ( No_degr), the system follows a
degradation process up to a time step of 1700, we obtain at instant (t+1), 93,90% of E, ( Maj_degr) ; 4.70% of
E; (Min_degr) and 1.40% of E, against 0% of E; (t) and E, (t) at the initial instant E(t).

Furthermore, at time E(t) the probability of certain variables responsible for degradation such as:corrosion (6.45%);
discoloration (18.74%) and delamination (8.30%) saw their values increased by (7.60); (19.30% and (9.10%) at time

E(t+1) respectively.

On the other hand, the probability of the other variables (crack and hot spot) was reduced.
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Learning the mode

Statusz 1) Status (t+1)

100,00% EQ 1,40% Ed
0,00% E1 4.70% E1
0,00% E2 93 90% E2

Carrogion COrrosion
5 45% True 7 60% True
93,55% False 92,40% False
Dizcolouration Dizcolouration
18,74% True 19,30% True
o1,26% False 80, 70% Falze
Delamination Delarrination
§,30% True 9,10% True
91,70% Falze 90,90% False
Crack Crack
17.91% True 17 50% True
82,09% Falze &2 ,50% Falze
Hat Spot Hat Spot
18,22% True 17,70% Trug
B1.78% False 52—

Figure 8:- Evolution of different degradation modes.

We will carry out simulation tests to study the maintenance policy as a function of performance indicators.To do
this, we choose four cases with or without reinforcement learning, depending on two parameters: system availability
and income. Income is the average gain obtained in an operating state of the modules over a time step of 17,000 in

the operating phase.

Case 1: Simulation without learning based on income

Simulation studies give us around 24% availability with an average hourly income of around 2102 euros over a time
step of 17000 (Figure 10).

A ailability
B,13% Operational
93,87% Defective
Figure 9:- Probability of system availability without learning based on income.
Probabilité
100
a0 Min_Cost_PM = -314,04
\ Max_Cost_PM = -39 406
80 Repair_Cost = -2 938
\ Incame = 2102 476
o Procuction = 23 855
\ Tatal =1710,05
60
a0 \
o\
. AN
10 \ - Availahilty = Operational [ 23 964 %)

0

—  Ihcome = Mae (21031 %)

0

1700 3400 5100 6800 8500 10200 11900 13600 15300 17000

Temps

Figure 10:- Simulation curve: without learning on node D based on income.
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We can see from figure 10 that availability decreases over time, and this decrease has an impact on income, as they
decrease together. We also observe that system availability drops to around 6% at a time step of 17,000. This loss of
availability should prompt us to review the maintenance policy at the income level, which is a function of
availability.

Case 2: Simulation with income-based learning:-
Analysis of the simulation with learning as a function of income, we obtain the following figure:

Ay ailability

F10% Operational
92 90% Defective

Figure 11:- Probability of system availability with learning as a function of income.

Probahilté
100
an \ Min_Cost_Ph = -120 405
\ Masx_Cost PM = -6 176
an Fepair_Cost=-3 437
\ Income = 2234 216
70 Production = 23,775
Total = 2129 972
G0
S0
40
30
20
10 = Availabilty = Operational ([ 25,780 %)
= |ncomme = Max [ 22348 %)
1]

0 1700 3400 5100 GA00 &S00 10200 11900 13600 15300 17000
Figure 12:- Simulation curve: learning on node D with income.

This simulation curve shows us a significant drop in availability of around 7%, compared with 6% in the first case
above, at a time step of 17000. This fall in the availability curve has a negative effect on the income curve, as shown
in the figure, but its value remains only slightly higher than in the first case.

By learning about preventive maintenance, we can see that the modules studied have:
1. an availability of around 26%, compared with 24% in the case without learning (Case 1)
2. anaverage hourly income of 22%, compared with 21% in the same simulation (Case 1).

We therefore observe a 2% increase in availability compared with the simulation without learning. We also note that
maintenance costs have risen compared to the (1st case), to reach a gain of 1% more than the gain in availability.

Case 3: Simulation without learning based on availability:-

Our aim is to determine a preventive maintenance policy that does not require learning, and optimizes system
availability as a function of transition parameters and maintenance costs.
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Probabilité de Availability = Operational [ 25761 %)

100

EIIZI\
Gt \

Min_Cost_PM = -183,515
Mazx_Cost_PM = -426 151
Repair_Cost = -3,557

o)\

ncome = 2220 275

Production = 25,756
Total = 1627 504

o]\
NN

NN

. AN

" S

10

1]

[

0 1700 3400 5100 B300 BSO0 10200 11900 13600 15300 17000

Temps

Figure 13:-Simulation curve without learning based on availability.

We can see from the unlearned results that the modules studied have anincome of around 2220 euros per time step

and an availability of around 26%.

Case 4: Simulationwith learning on the preventive maintenance decision based on availability:-
This simulation with learning gives us an availability of around 31% and an income of 2143 euros.

Probahilté de Availahbility = Operational [ 20745 %)

100

EIEI\

Min_Cost_PM = 199 535

Max_Cost_PM = -473,735

ol
o\

Repair_Cost = -3 422
Income = 2143 262

o]\

Production = 24 857
Total = 14391 266

o]\
NN

. N

10

. o~

0

_‘_‘_‘_'_'_‘“—'-—._

0 1700 3400 5100 6800 8500 10200 11900 13800 15300 17000

Temps

Figure 13:- Simulation curve: learning about preventive maintenance based on availability.
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By learning about preventive maintenance, we can see that:

- The system studied has an availability of around 31%, compared with 26% in the previous case without learning
(3rd case).

- With an hourly income of 2143 euros versus 2220 euros in the same case (3rd case).

So a 5% increase in availability compared with the simulation without learning of the (3rd case).

The results of the different simulation cases are summarized in the table below.

Table 2:- The results of the different simulation cases.

Simulation case Case 1 Case 2 Case 3 Case 4
Income 2102 2234 2220 2143
Availability 24 26 26 31
Conclusion:-

In this paper, we have proposed a methodology for assessing the performance of PV systems under environmental
constraints. A dynamic Bayesian model of the degradation process was built using experimental data and simulated
under several scenarios with or without reinforcement learning, in order to propose maintenance policy
configuration choices. Indicators such as availability, income, cost and production were integrated into the model to
assess system performance and the cost associated with the choice of preventive maintenance policy adopted.

The simulation study of our dynamic multi-state model of the PV system shows the evolution of the PV module
degradation process, as well as the Markov graph, according to the choice of preventive maintenance policy
adopted.

In addition, the simulation with reinforcement learning on preventive maintenance allowed us to observe that
availability increases with income compared to the simulation without learning. A fairly substantial decrease in
income was also observed, this is due to the increase in the availability of the system and may allow decision-
makers not to exceed a certain threshold of availability at the expense of income.

The results obtained prove that Al associated with our dynamic model contributes to decision support for decision
makers in particular maintenance managers in choosing the appropriate maintenance policy for the PV system.

The results obtained demonstrate that the Al associated with our dynamic model contributes to decision support for
decision-makers, in particular maintenance managers, in choosing the appropriate maintenance policy for the PV
system.
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