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Early and accurate diagnosis of neurological diseases through MRI 

imaging is crucial for effective treatment and patient management. This 

study presents a deep learning-based approach utilizing a diverse 

dataset of 12,121 MRI images spanning 12 categories across three 

major neurological diseases including Brain Tumor Disorders, 

Alzheimer’s Disease and Parkinson’s Disease. The dataset was 

structured into 9,894 images for training and 2,227 for validation. Six 

YOLOv10 variants (N, S, M, B, L and X) were employed for multi-

class classification and localization with the YOLOv10-X model 

achieving the highest diagnostic accuracy. To enhance interpretability 

the Segment Anything Model (SAM) 2.1 was applied for post-detection 

segmentation generating precise masks over detected regions further 

refined with plasma colormap visualization. Comparative evaluations 

highlight notable improvements in diagnostic performance 

demonstrating the effectiveness of integrating segmentation and 

explainable AI. This research contributes to the development of an 

advanced interpretable AI-driven framework for neurological disease 

detection. 
Copyright, IJAR, 2025,. All rights reserved. 
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Introduction:- 
The early diagnosis of neurological disorders, including Brain Tumor Disorders, Alzheimer's Disease, and 

Parkinson's Disease, is crucial for timely intervention and improved patient outcomes. Magnetic Resonance Imaging 

(MRI) serves as a fundamental tool for detecting these conditions by providing high-resolution anatomical and 

pathological information. However, the manual interpretation of MRI images is time-consuming and subject to 

variability, underscoring the need for automated diagnostic solutions. Recent advancements in machine learning 

(ML) and deep learning have significantly enhanced medical image analysis, particularly in classification, object 

detection, and segmentation tasks [1, 2]. This study presents an advanced framework that integrates state-of-the-art 

object detection and segmentation models to improve the accuracy and efficiency of neurological disease diagnosis 

using MRI data. 

 

Leveraging Deep Learning for Improved Diagnosis 

Deep learning techniques have revolutionized medical imaging by enabling automated and accurate analysis of 

complex data. Object detection models such as the YOLO series have gained prominence for their speed and 

accuracy, while segmentation models like the Segment Anything Model (SAM) have improved interpretability 

through precise region identification [3, 4]. This study integrates six YOLOv10 models (N, S, M, B, L, and X) for 
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classifying MRI images into 12 classes, representing Brain Tumor Disorders, Alzheimer's Disease, and Parkinson's 

Disease. Further, the SAM 2.1 model enhances segmentation and interpretability, applying masks to detected 

bounding boxes and visualizing the results using plasma colormaps. By combining these advanced techniques, the 

framework aims to improve diagnostic precision and reliability. 

 

Research Motivation and Proposed Approach 

The increasing prevalence of neurological disorders, coupled with the need for accurate and explainable diagnostic 

systems, drives the motivation for this research. Traditional diagnostic methods heavily rely on radiologist expertise, 

which can be subjective and limited by human capacity [5]. In this study, a combined dataset of 12,121 MRI images 

is used, encompassing 12 distinct classes across three disorders. The YOLOv10 models are trained to perform multi-

class classification and localization tasks, followed by segmentation using SAM 2.1. The interpretability of the 

results is enhanced through plasma colormap visualization, which aids in clinical decision-making by providing 

clear and interpretable outputs. The proposed approach addresses the challenges of traditional methods by 

integrating detection, segmentation, and explainable AI in a single framework. 

 

Research Contribution 

This study introduces a series of significant advancements in the field of medical imaging and neurological disease 

diagnosis: 

1. A novel diagnostic framework integrating six YOLOv10 models for multi-class classification and localization of 

Brain Tumor Disorders, Alzheimer's Disease, and Parkinson's Disease across 12 distinct classes. 

2. Utilization of the SAM 2.1 model for precise segmentation of detected bounding boxes, enhancing the 

interpretability of the results 

3. Visualization of segmented regions using plasma colormaps, providing clearer insights for clinical decision-

making. 

4. Comprehensive evaluation of six YOLOv10 models on a diverse neurological MRI dataset, demonstrating the 

superior diagnostic accuracy of the YOLOv10-X model. 

5. A unified methodology bridging object detection, segmentation, and explainable AI to create a robust, automated 

framework for medical applications. 

 

This research represents a novel contribution to medical image analysis by presenting a multi-class classification and 

localization framework specifically tailored for neurological disease diagnosis. Unlike prior studies that focus on 

single conditions, this work encompasses the integrated diagnosis of three major neurological disorders, including 

12 distinct classes. Through the application of six YOLOv10 variants, the YOLOv10-X model emerged as the most 

effective in handling the complexity of multi-class tasks. 

 

Moreover, the inclusion of SAM 2.1 for post-detection segmentation, coupled with plasma colormap visualization, 

establishes a new standard for creating interpretable AI-driven diagnostic tools. To the best of our knowledge, this is 

the first attempt to apply a YOLO model to such a comprehensive dataset covering Brain Tumor Disorders, 

Alzheimer's Disease, and Parkinson's Disease, underscoring the innovation and potential impact of this work on 

clinical diagnostics. 

 

Related Works 

Brain tumor classification and segmentation presents several advanced methodologies and models. Nanda et al. [6] 

introduced a Saliency-K-mean-SSO-RBNN model, achieving high classification accuracies across multiple datasets. 

Saboor et al. [7] developed an AI-based CAD system using attention-gated recurrent units (A-GRU), which 

demonstrated superior accuracy on the BTD dataset. Srinivasan et al. [8] proposed three CNN models for multi-

classification of brain tumors, each showing impressive detection and classification performance. Roy et al. [9] 

utilized a Dual-GAN mechanism in an ensemble-based pipeline, achieving notable accuracy in brain tumor 

classification. Khalighi et al. [10] reviewed the transformative role of AI in neuro-oncology, emphasizing its 

precision in brain tumor management. 

 

Further advancements include Almufareh et al. [11] evaluating YOLOv5 and YOLOv7 models for segmentation and 

classification, with high precision and recall scores. Sarada et al. [12] presented a modified ResNet50V2 model, 

enhancing classification accuracy through various optimizations. Ashafuddula et al. [13] introduced ContourTL-Net 

for early-stage detection, achieving high sensitivity and specificity. Rajeswari et al. [14] developed the DFMN 
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model for severity prediction, demonstrating robust performance metrics. Zakariah et al. [15] proposed the Dual 

Vision Transformer-DSUNET model, achieving high Dice Coefficient values for segmentation tasks. 

 

Musthafa et al. [16]  combined ResNet50 with Grad-CAM for enhanced interpretability and accuracy in brain tumor 

detection. Yu et al. [17] introduced HSA-Net, which significantly improved segmentation and classification 

outcomes. Aboussaleh et al. [18] developed Inception-UDet, an improved U-Net architecture, achieving high Dice 

Similarity Coefficients. Malakouti et al. [19] utilized machine learning and transfer learning techniques, achieving 

high accuracies with LightGBM and GoogLeNet models. Yalamanchili et al. [20] proposed VGG-16 and Efficient 

NetB7 models, demonstrating high classification accuracy. 

 

Priyadarshini et al. [21] proposed a fine-tuned EfficientNetV2S model for multigrade classification, achieving high 

precision and recall. Haque et al. [22] developed NeuroNet19, achieving high accuracy and robust performance 

metrics. Rasool et al. [23] introduced TransResUNet, combining ResNet U-Net with Transformer blocks for glioma 

segmentation, achieving high dice scores. Hossain et al. [24]  proposed the IVX16 ensemble model, achieving high 

accuracy in multiclass classification. Finally, Iriawan et al. [25] combined YOLO and UNet architectures for 

effective detection and segmentation of MRI brain tumor images, achieving a high correct classification ratio. 

 

Alzheimer's disease diagnosis and classification showcases several innovative approaches and models. Ozdemir and 

Dogan [26] developed a CNN model for early Alzheimer's diagnosis, achieving an impressive accuracy of 99.84% 

by integrating compression and excitation blocks, Avg-TopK pooling, and SMOTE to handle data imbalance. 

Biswas and Gini J [27] proposed a multi-class classification system using 3D MRI images, with the RandomForest 

classifier achieving 99% accuracy on the OASIS dataset. Ayus and Gupta [28] introduced hybrid models, CNN-

Conv1D-LSTM and HReENet, for Alzheimer's identification, with HReENet achieving a remarkable 99.97% 

accuracy. Nour et al. [29] proposed a Deep Ensemble Learning (DEL) model using 2D-CNNs for diagnosing 

Alzheimer's via EEG signals, achieving 97.9% accuracy. Ali et al. [30] developed an integrated approach combining 

Improved Fuzzy C-means clustering and a hybrid CNN-LSTM classifier, achieving 98.13% accuracy. 

 

Tripathy et al. [31] proposed an improved spatial attention guided depth separable CNN for Alzheimer's detection, 

achieving 99.75% accuracy on the OASIS dataset. Mahmood et al. [32] introduced the D3LM-LAN and MLM-

MCSVM models for Alzheimer's classification, achieving up to 98.59% accuracy. Mahmud et al. [33] proposed an 

explainable AI-based approach using deep transfer learning and ensemble modeling, achieving up to 96% accuracy. 

Matlani [34] developed a hybrid BiLSTM-ANN model for early Alzheimer's diagnosis, achieving 99.22% accuracy 

on the ADNI dataset. Malu et al. [35] introduced CirMNet, a hybrid feature extraction technique, achieving 97.34% 

accuracy in Alzheimer's classification. 

 

Bringas et al. [36] proposed CLADSI, a continual learning algorithm using accelerometer data, achieving up to 

86.94% accuracy. Zia-ur-Rehman et al. [37] employed DenseNet-201 for Alzheimer's diagnosis using MRI scans, 

achieving 98.24% accuracy. Sorour et al. [38] proposed a CNN-LSTM model for early Alzheimer's detection using 

MRI data, achieving 99.92% accuracy. Yu et al. [39] integrated EEG signals and genetic data for Alzheimer's 

classification, with SVM achieving 92% accuracy. Song and Yoshida [40] applied Grad-CAM to a 3D-VGG16 

network for Alzheimer's diagnosis using fMRI data, achieving 96.4% accuracy. 

 

Alp et al. [41] proposed using Vision Transformer (ViT) for MRI processing in Alzheimer's diagnosis, achieving 

over 99% accuracy. Qian and Wang [42] developed MMANet for Alzheimer's classification and brain age 

prediction, achieving 96.02% accuracy. Finally, Mahim et al. [43] proposed a ViT-GRU model for Alzheimer's 

detection from MRI images, achieving up to 99.69% accuracy. These studies collectively highlight the 

advancements in AI and deep learning techniques for improving the diagnosis and classification of Alzheimer's 

disease. 

 

Parkinson's disease diagnosis and classification presents several advanced methodologies and models. Magesh et al. 

[44] developed a machine learning model using LIME for early detection of Parkinson’s from DaTSCAN images, 

achieving 95.2% accuracy. Bhandari et al. [45] integrated gene expression data with machine learning and 

explainable AI, identifying key gene biomarkers for Parkinson’s diagnosis. Kumar et al. [46] utilized miRNA 

biomarkers and deep learning, achieving 95.65% accuracy in diagnosing Parkinson’s. Priyadharshini et al. [47] 

combined 3D MRI imaging with Gradient Boosting, achieving 96.8% accuracy in Parkinson’s detection. Yildirim et 
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al. [48] proposed a hybrid model (PDD-AOA-CNN) using sound data, achieving 98.19% accuracy in detecting 

Parkinson’s. 

 

Saleh et al. [49] developed a hybrid CNN-KNN ensemble classifier for predicting Parkinson’s from hand sketching 

images, achieving 96.67% accuracy. Teo et al. [50] introduced a multilayer BiLSTM network with explainable AI to 

distinguish Parkinson’s from essential tremor, achieving 90% accuracy. Islam et al. [51] integrated clinical 

assessments and neuroimaging data, achieving 98.44% accuracy with clinical data for Parkinson’s detection. Veetil 

et al. [52] investigated data leakage in MRI-based Parkinson’s classification using 2D CNNs, identifying VGG19 as 

the most robust model. Mahendran and Visalakshi [53] used ResNet50 for Parkinson’s classification from spiral 

sketches, achieving 96.67% accuracy. 

 

Palakayala and Kuppusamy [54] introduced AttentionLUNet for Parkinson’s detection using MRI, achieving 

99.58% accuracy. Yang et al. [55] applied deep learning to video of finger tapping for Parkinson’s detection, 

achieving a test accuracy of 0.69. Wang et al. [56] proposed a deep learning method for cross-modality striatum 

segmentation using DaT SPECT and MR images, achieving strong performance metrics. Dentamaro et al. [57] 

investigated multimodal deep learning for early Parkinson’s detection using the PPMI database, achieving 96.6% 

accuracy. Al-Tam et al. [58] proposed a stacking ensemble approach for Parkinson’s diagnosis, achieving up to 

96.18% accuracy. Desai et al. [59] developed a deep learning model using 3D MRI scans for Parkinson’s 

classification, achieving 90.13% accuracy with data augmentation. These studies collectively highlight the 

advancements in AI and deep learning techniques for improving the diagnosis and classification of Parkinson’s 

disease. 

 

Materials and Methods:- 
In this work, the workflow illustrated in Fig.1 is followed. The process for diagnosing neurological diseases using 

MRI images involves several structured steps. Initially, the MRI dataset, which includes 12 classes, is pre-processed 

by resizing, normalizing, and denoising the images. To enhance the dataset's robustness, data augmentations such as 

blurring, grayscale conversion, and contrast enhancement using CLAHE are applied [61]. 

 

Next, six versions of YOLOv10 models (N, S, M, B, L, X) are initialized with pre-trained weights and trained on the 

augmented dataset [60]. Following training, the models are rigorously evaluated using metrics like accuracy, 

precision, recall, mAP50, etc [61]. Post-training, the SAM 2.1-tiny model is utilized for segmentation, generating 

precise masks for the detected bounding boxes [62]. 

 

To interpret the results, colormap visualizations, such as plasma colormaps, are applied, providing insights into the 

model’s decision-making process [61]. The final outputs include segmented and visualized predictions, which are 

validated to ensure accuracy and reliability [62]. This systematic approach integrates detection, segmentation, and 

interpretation for a comprehensive analysis of neurological diseases [61]. 

 
Fig.1:- Workflow of Proposed Methodology. 
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Neurological Disease MRI Image Dataset 

The proposed Neurological Disease MRI Image Dataset, shown in Fig. 2, is a curated combination of three publicly 

available datasets sourced from Roboflow: the Brain Tumor Disorder Dataset [63], Alzheimer’s Disease Detection 

Dataset [64], and Parkinson Disease Dataset [65]. This comprehensive dataset has been refined and pre-processed to 

meet the specific requirements of neurological disease classification, ensuring consistency and utility for the study. 

 

The dataset comprises 12,121 MRI images categorized into 12 classes: 4 classes for Brain Tumor (Glioma, 

Meningioma, No Tumor, Pituitary), 5 for Alzheimer’s Disease (Mild Demented, Moderate Demented, Non 

Demented, Severe Demented, Very Mild Demented), and 3 for Parkinson’s Disease (PD Control, PD, Prodromal). 

The dataset attributes are detailed in Table 2. The data is split into 9,894 images (81.6%) for training and 2,227 

images (18.4%) for validation, ensuring balanced model training and robust performance evaluation. This curated 

dataset provides a robust foundation for achieving high classification accuracy in the diagnosis of neurological 

diseases. 

 
Fig. 2:- Neurological Disease MRI Image Dataset. 

 

Index Class Index Class 

0 Glioma 6 Non Demented 

1 Meningioma 7 Severe Demented 

2 No Tumor 8 Very Mild Demented 

3 Pituitary 9 PD Control 

4 Mild Demented 10 PD 

5 Moderate Demented 11 Prodromal 

Table 1:- Details of Proposed Dataset Attributes. 

 

Data Pre-Processing 

To ensure the quality and uniformity of the MRI images while optimizing computational efficiency, the following 

pre-processing steps were applied: 

1. Resizing: The original image dimensions (640 × 640 pixels) were resized to 320 × 320 pixels. This resizing was 

performed to reduce computational intensity while maintaining compatibility with YOLOv10 models [61]. 

2. Normalization: All pixel values were normalized to the range [0, 1], ensuring standardized data input and 

facilitating improved convergence during model training [60]. 

3. Denoising: Noise within the MRI images was reduced using Gaussian blur and median filtering techniques. 

These methods significantly enhanced image clarity, thereby improving the feature extraction capability of the 

YOLOv10 models [66]. 
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Data Augmentations 

As shown in Table 2, the following augmentation techniques were applied to enhance the robustness and 

generalizability of the models: 

 

Augmentation Techniques Significance 

Blur Effects Gaussian blur and median blur simulate variations in 

image quality. 

Grayscale Conversion Converts images to grayscale to emphasize structural 

features and reduce computational complexity. 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

Enhances image contrast while preventing over-

enhancement. 

Random Flipping and Rotation Introduces variability in the dataset and reduces the 

risk of overfitting. 

Table 2:- Data Augmentation Techniques and Their Significance [66-69]. 

 

YOLOv10 Models 

As shown in Table 3, Six versions of YOLOv10 (N, S, M, B, L, and X) [84] were initialized with pre-trained 

weights for transfer learning to leverage feature representations learned from large datasets. 

Model Total No. Parameters FLOPs (G) 

YOLOv10-N 2.71 M (2,711,720) 8.4 

YOLOv10-S 8.08 M (8,075,640) 24.8 

YOLOv10-M 16.50 M (16,498,024) 64.0 

YOLOv10-B 20.47 M (20,469,528) 98.8 

YOLOv10-L 25.78 M (25,783,832) 127.3 

YOLOv10-X 31.68 M (31,677,992) 171.1 

Table 3:- An overview of YOLOv10 Models used in Proposed Work. 

 

Results and Discussion:- 
All YOLOv10 models were implemented on Google Colab using the Ultralytics version 8.3.51 framework, Python 

3.10.12, and PyTorch 2.5.1+cu121. The experimental setup was equipped with a Tesla T4 GPU featuring 15,102 

MB of memory and CUDA:0 acceleration. Model optimization was performed using the AdamW optimizer, with a 

learning rate of 0.000625 and a momentum value of 0.9 [70]. Each model underwent training for 50 epochs, with all 

input images resized to 320×320 for both training and validation. 

 

The evaluation of YOLOv10 models was conducted using multiple performance metrics. Precision was utilized to 

assess the accuracy of positive predictions, while recall measured the model’s capability to detect all relevant 

instances [71]. The F1-score, computed as the harmonic mean of precision and recall, provided a balanced 

performance assessment [72]. Additionally, detection accuracy was measured using mean Average Precision (mAP) 

at an Intersection over Union (IoU) threshold of 50% (mAP50) as well as across a range of IoU values from 50% to 

95% (mAP50–95), offering comprehensive insights into model performance at varying overlap thresholds [73]. 

 

For computational efficiency analysis, the average latency per image was determined using the 2,227 images in the 

validation set. This metric quantified the average time required for the model to detect objects or classify instances 

within a single image, providing an important measure of inference speed and real-time applicability [74]. 

 

YOLOv10-N Model 

The YOLOv10-N model, with the smallest architecture of 2.71 million parameters, achieved a precision of 86.89% 

and recall of 87.07%, resulting in an F1-Score of 86.98%. It attained a mAP50 of 89.94% and a mAP50–95 of 

72.98%, with the lowest average latency of 25.1 milliseconds, making it computationally efficient for lightweight 

applications. 
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Table 4:- Performance Analysis for YOLOv10-N model. 

Fig. 3:- Confusion Matrix (Normalized) for YOLOv10-N model. 

  

 
 

 

 

 

 

 

 

 

 

 

Model Image 

Size 

Epochs Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

mAP 

50 

(Val) 

(%) 

mAP 

50-

95 

(Val) 

(%) 

Avg. 

Latency 

(Val) 

(ms) 

YOLOv10-N 320 50 2.71 M 

(2,711,720) 

8.4 86.89 87.07 86.98 89.94 72.98 25.10 
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Fig. 4:- F1 vs. Confidence Curve for YOLOv10-N model. 

 
 

Fig. 5:- Precision vs. Recall Curve for YOLOv10-N model. 
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Fig. 6:- Graphical Representation of Performance Analysis for YOLOv10-N model. 

 
 

YOLOv10-S Model 

The YOLOv10-S model, containing 8.08 million parameters, demonstrated improved recall at 90.4% and slightly 

lower precision at 86.32%. Its F1-Score was 88.31%, with mAP50 reaching 91.81% and mAP50–95 at 75.89%. The 

average latency per image was similar to YOLOv10-N at 25.08 milliseconds, offering a balanced trade-off between 

accuracy and efficiency. 

 

Table 5:- Performance Analysis for YOLOv10-S model.  

 

 

 

 

 

 

 

 

 

 

 

 

Model Image 

Size 

Epochs Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

mAP 

50 

(Val) 

(%) 

mAP 

50-

95 

(Val) 

(%) 

Avg. 

Latency 

(Val) 

(ms) 

YOLOv10-S 320 50 8.08 M 

(8,075,640) 

24.8 86.32 90.40 88.31 91.81 75.89 25.08 
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Fig. 7:- Confusion Matrix (Normalized) for YOLOv10-S model. 

 
 

Fig. 8:- F1 vs. Confidence Curve for YOLOv10-S model. 
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Fig. 9:- Precision vs. Recall Curve for YOLOv10-S model. 

 
 

Fig. 10:- Graphical Representation of Performance Analysis for YOLOv10-S model. 

 
 

YOLOv10-M Model: 

The YOLOv10-M model, comprising 16.50 million parameters, achieved a high precision of 90.08% but slightly 

reduced recall at 86.66%. Its F1-Score stood at 88.34%, with a mAP50 of 91.63% and mAP50–95 at 75.45%. The 

model exhibited an average latency of 27.67 milliseconds, indicating its suitability for applications requiring 

moderate computational power. 
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Table 6:- Performance Analysis for YOLOv10-M model.  

 

Fig. 11:- Confusion Matrix (Normalized) for YOLOv10-M model. 

 
 

 

 

 

 

 

Model Image 

Size 

Epochs Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

mAP 

50 

(Val) 

(%) 

mAP 

50-

95 

(Val) 

(%) 

Avg. 

Latency 

(Val) 

(ms) 

YOLOv10-M 320 50 16.50 M 

(16,498,024) 

64.0 90.08 86.66 88.34 91.63 75.45 27.67 
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Fig. 12:- F1 vs. Confidence Curve for YOLOv10-M model. 

 
 

Fig. 13:- Precision vs. Recall Curve for YOLOv10-M model. 
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Fig. 14:- Graphical Representation of Performance Analysis for YOLOv10-M model. 

 
 

YOLOv10-B Model: 

The YOLOv10-B model, with 20.47 million parameters, balanced its performance with a precision of 87.52% and a 

recall of 89.18%. It achieved an F1-Score of 88.34%, a mAP50 of 91.71%, and a mAP50–95 of 76.09%. The latency 

was measured at 27.59 milliseconds, making it an efficient option for slightly larger workloads. 

 

Table 7:- Performance Analysis for YOLOv10-B model. 

 

 

 

 

 

 

 

 

 

 

 

 

Model Image 

Size 

Epochs Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

mAP 

50 

(Val) 

(%) 

mAP 

50-

95 

(Val) 

(%) 

Avg. 

Latency 

(Val) 

(ms) 

YOLOv10-

B 

320 50 20.47 M 

(20,469,528) 

98.8 87.52 89.18 88.34 91.71 76.09 27.59 
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Fig. 15:- Confusion Matrix (Normalized) for YOLOv10-B model. 

 
 

Fig. 16:- F1 vs. Confidence Curve for YOLOv10-B model. 
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Fig. 17:- Precision vs. Recall Curve for YOLOv10-B model. 

 
 

Fig. 18:- Graphical Representation of Performance Analysis for YOLOv10-B model. 

 
 

YOLOv10-L Model: 

The YOLOv10-L model, featuring 25.78 million parameters, exhibited precision of 87.01% and the highest recall 

among models at 90.84%. It delivered an F1-Score of 88.88%, a mAP50 of 92.05%, and a mAP50–95 of 76.34%. 

The average latency of 32.20 milliseconds reflected its computational complexity. 
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Table 8. Performance Analysis for YOLOv10-L model.  

 

 

Fig. 19:- Confusion Matrix (Normalized) for YOLOv10-L model. 

 
 

 

 

 

 

 

 

Fig. 20:-F1 vs. Confidence Curve for YOLOv10-L model. 

Model Image 

Size 

Epochs Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

mAP 

50 

(Val) 

(%) 

mAP 

50-

95 

(Val) 

(%) 

Avg. 

Latency 

(Val) 

(ms) 

YOLOv10-

L 

320 50 25.78 M 

(25,783,832) 

127.3 87.01 90.84 88.88 92.05 76.34 32.20 
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Fig. 21:- Precision vs. Recall Curve for YOLOv10-L model. 
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Fig. 22:- Graphical Representation of Performance Analysis for YOLOv10-L model. 

 
 

YOLOv10-X Model: 

The YOLOv10-X model, the largest with 31.68 million parameters, achieved the highest precision (89.94%), recall 

(89.02%), and F1-Score (89.48%). It also recorded the best mAP50 (92.95%) and mAP50–95 (77.31%). However, 

its average latency was the highest at 34.49 milliseconds, making it ideal for accuracy-critical tasks with sufficient 

computational resources. 

 

Table 9:- Performance Analysis for YOLOv10-X model. 
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YOLOv10-

X 

320 50 31.68 M 

(31,677,992) 

171.1 89.94 89.02 89.48 92.95 77.31 34.49 
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Fig. 23:- Confusion Matrix (Normalized) for YOLOv10-X model. 

 
 

Fig. 24:- F1 vs. Confidence Curve for YOLOv10-X model. 
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Fig. 25:- Precision vs. Recall Curve for YOLOv10-X model. 

 
 

Fig. 26:- Graphical Representation of Performance Analysis for YOLOv10-X model. 

 
 

Comparative Performance Analysis of YOLOv10 Models for Neurological Disease Diagnosis 

The YOLOv10 models demonstrate varying performance levels in diagnosing neurological diseases from MRI 

images, depending on their complexity. YOLOv10-X achieves the highest diagnostic accuracy, with precision 

(89.94%), recall (89.02%), and F1-score (89.48%), making it the most effective for detecting and localizing 

abnormalities such as gliomas, meningiomas, and pituitary tumors. The lighter models, YOLOv10-N and 

YOLOv10-S, still provide reliable results with an mAP@50 of 89.94% and 91.81%, respectively, while maintaining 
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significantly lower computational demands. These models are particularly suitable for real-time diagnostic 

workflows in resource-constrained clinical settings, offering a balance of performance and efficiency [79-81]. 

 

Table 10:- An overview of evaluation results and Performance Analysis for all YOLOv10 Models used in Proposed 

Work. 

Fig. 27:- Graphical Representation of Comparison of Precision, Recall, and F1-Score for all YOLOv10 models. 

 
 

Performance Efficiency Trade-Off Analysis of YOLOv10 Models in Medical Diagnostics 

In the context of medical image analysis for neurological diseases, the performance-efficiency trade-off of 

YOLOv10 models is critical. Lighter models, such as YOLOv10-N and YOLOv10-S, exhibit low latency (25.10 ms 

and 25.08 ms, respectively), enabling faster diagnostic decisions while maintaining moderate accuracy, making them 

ideal for rapid screening in emergency or mobile healthcare units. On the other hand, YOLOv10-X, with its higher 

computational complexity and latency (34.49 ms), provides the most accurate segmentation and localization of 

Model Image 
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Recall 
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F1-

Score 

(%) 
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50 

(Val) 
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mAP 

50-

95 

(Val) 

(%) 

Avg. 

Latency 

(Val) (ms) 

YOLOv10-

N 

320 50 2.71 M 

(2,711,720) 

8.4 86.89 87.07 86.98 89.94 72.98 25.10 

YOLOv10-

S 

320 50 8.08 M 

(8,075,640) 

24.8 86.32 90.40 88.31 91.81 75.89 25.08 

YOLOv10-

M 

320 50 16.50 M 

(16,498,024) 

64.0 90.08 86.66 88.34 91.63 75.45 27.67 

YOLOv10-

B 

320 50 20.47 M 

(20,469,528) 

98.8 87.52 89.18 88.34 91.71 76.09 27.59 

YOLOv10-

L 

320 50 25.78 M 

(25,783,832) 

127.3 87.01 90.84 88.88 92.05 76.34 32.20 

YOLOv10-

X 

320 50 31.68 M 

(31,677,992) 

171.1 89.94 89.02 89.48 92.95 77.31 34.49 
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disease-specific regions in MRI images, suitable for detailed diagnostic analysis and treatment planning in 

specialized healthcare centers. This trade-off underscores the importance of selecting the appropriate model based 

on the diagnostic requirements and available computational resources [1,82,83]. 

 

Fig. 28:- Graphical Representation of FLOPs (G) vs. mAP50 for all YOLOv10 models. 

 
Fig. 29:- Graphical Representation of Parameter (in Millions) vs. Latency (in ms) for all YOLOv10 models. 
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Segmentation and Interpretation 

1. Input Image: Raw MRI images from various classes are used as the primary input for analysis. These images 

undergo preprocessing to prepare them for detection and segmentation tasks [75]. 

2. Bounding Box Detection: The YOLOv10-X model detects regions of interest by generating bounding boxes 

around potential abnormalities or class-specific features. Its high performance ensures precise localization, 

making it suitable for complex medical imaging tasks [76]. 

3. Detection Details: Each bounding box includes a class label and a confidence score, which aids in the accurate 

prediction and localization of the detected region. These details are crucial for validating the reliability of the 

model's predictions [76]. 

4. SAM 2.1 Output: The "Segment Anything Model (SAM) 2.1-tiny" refines the detection process by creating 

segmentation masks for the bounding boxes. These masks enhance the precision of the detected regions by 

outlining the exact areas of abnormalities or class-specific features [77]. 

5. Colormap Visualization (Plasma): The segmented regions are visualized using a Plasma Colormap. This step 

highlights activated areas, providing an interpretable representation of the model’s predictions for better 

understanding in medical diagnostics [78]. 

 

Fig. 30:- Segmentation and Interpretation for Brain Tumor Classes. 
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Fig. 31:- Segmentation and Interpretation for Alzheimer’s Disease Classes. 

 
 

Fig. 32:- Segmentation and Interpretation for Parkinson’s Disease Classes. 
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Conclusion and Future Scope:- 
This research highlights the potential of deep learning models, specifically YOLOv10 variants, in the automated 

detection and classification of neurological diseases from MRI images. By leveraging the strengths of YOLOv10-X 

for high accuracy and lighter models such as YOLOv10-N and YOLOv10-S for efficiency, the study establishes a 

trade-off between performance and computational requirements. The integration of advanced segmentation 

techniques, such as the SAM 2.1 model, further enhances the interpretability of the detected regions, which is 

critical for medical diagnostics. The use of colormap visualizations like Plasma further aids in the clinical 

understanding of disease-specific regions, making these methods practical for real-world medical applications. 

 

Future research will focus on expanding this work by integrating multimodal medical imaging data, including CT 

and PET scans, to develop a more comprehensive diagnostic framework. Furthermore, incorporating explainable AI 

techniques such as SHAP and LIME can enhance model transparency, fostering greater trust among healthcare 

professionals. Another key direction involves optimizing these models for real-time deployment on edge devices, 

enabling deep learning-based diagnostics in resource-constrained clinical settings. These advancements aim to 

improve the scalability, robustness, and accessibility of AI-driven medical diagnostics, ultimately supporting 

healthcare practitioners in delivering precise and timely patient care. 
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