
ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

880

Journal Homepage: - www.journalijar.com

Article DOI: 10.21474/IJAR01/20446

DOI URL: http://dx.doi.org/10.21474/IJAR01/20446

RESEARCH ARTICLE

ADVANCE DSP - GEORTZEL ALGORITHM IMPLEMENTATION

Lohith Ramesh

School of Electrical, Electronics and Mechanical Engineering, University of Bristol Bristol, United Kingdom.

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 15 December 2024
Final Accepted: 17 January 2025

Published: February 2025

Key words:-
Goertzel Algorithm, Digital Signal

Processing (DSP), Frequency Analysis,

Discrete Fourier Transform (DFT),

Infinite Impulse Response (IIR) Filter,

Real-Time Signal Processing, DTMF

Decoding, Frequency Detection, Single

Frequency Bin, Tone Detection,

Embedded Systems, Signal Processing

Algorithms, Targeted Frequency

Analysis

The Goertzel algorithm is one of the turns in digital signal processing

that efficiently detects specific frequency components of a signal. In

contrast to methods such as the Fast Fourier Transform, which

examines all the frequencies, the Goertzel algorithm is applied to the

selection of single frequencies or a few of them for analysis; hence, in

situations where resources are limited, this method becomes very

useful. This abstract considers the operational principles of the

algorithm, which basically contains two major phases: processing and

evaluation. During the processing phase, the algorithm works as a kind

of digital filter, ringing on the target frequency; at the same time, the

evaluation phase calculates the magnitude of this frequency component.

Because of computational efficiency and simplicity, the Goertzel

algorithm is applied perfectly in real-time systems, especially in

systems with limited processing power. An especially notable

application of the Goertzel algorithm in Dual-Tone Multi-Frequency

decoding is that it will precisely detect the pairs of frequencies a

telephone keypad generates and enables applications such as automated

call routing. This abstract evidence the relevance and applicability of

the Goertzel algorithm in DSP, with specific applications where the

detection of certain, pre-defined targeted frequencies has to be made

with very minimal computational overhead.

Copyright, IJAR, 2025,. All rights reserved.

……………………………………………………………………………………………………...

Introduction:-
The Goertzel algorithm is, therefore, a very core technique in the realm of digital signal processing, essentially

related to the analysis and detection of some frequency components of a signal. Indeed, DSP is the backbone of

modern technology in that it enables the manipulation and interpretation of digital signals in very diversified

applications, be they in telecommunications, audio processing, or medical imaging. One of the cardinal problems in

DSP is how, efficiently, to detect certain frequencies within a signal, especially when real-time performance is

required and computational resources are limited. In the late 1950s, Gerald Goertzel suggested an algorithm that

provided a computationally efficient solution for the isolation and examination of specific frequencies in a digital

signal.

Much of the DSP application is centred on frequency analysis because the important information may be encoded in

the frequency content of the signals. In telecommunication applications, for example, various channels or streams of

data can be modulated on various frequencies, while in audio processing, frequency analysis of a signal may become

very vital in noise reduction or equalization. Traditional frequency analysis tools, such as the Fast Fourier

Corresponding Author:- Lohith Ramesh

Address:- School of Electrical, Electronics and Mechanical Engineering, University of

Bristol Bristol, United Kingdom.

http://www.journalijar.com/

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

881

Transform, are incredibly powerful means of gaining an overview of the frequency spectrum of a signal. However,

they are sometimes rather computationally expensive when only a very few frequencies need to be known. That is

where the Goertzel algorithm excels. The Goertzel algorithm is of immense use where computational efficiency is a

big factor, since it is optimized for individual frequency or small sets of frequencies detection. In contrast to the

FFT, the computation of the whole spectrum is done with some redundancy.

The Goertzel algorithm comprises two major phases: the processing phase and the evaluation phase. In the

processing phase, it applies a difference equation to the input signal, much like a digital filter. This filter, however,

is designed with coefficients that make it resonate at a target frequency, effectively amplifying the frequency

component of interest while attenuating others. The difference equation used in this phase is such that it

accumulates energy at the target frequency over time; the final value reflects the magnitude of the frequency

component in question within the signal.

The evaluation phase of the Goertzel algorithm is the second stage, in which the algorithm uses the final states of

the filter to compute the magnitude of the target frequency component. This involves final states of the filter

derived for magnitude and effectively quantifying the strength of the target frequency within the signal to allow for

precise detection and analysis.

One of the major advantages of the Goertzel algorithm is its efficiency. The algorithm performs a constant number

of operations for each frequency to be estimated; hence, in cases where only a small set of frequencies is under

analysis, it is much more efficient than the FFT. This makes the Goertzel Algorithm very useful in real-time

applications and on systems with limited processing power or low memory, such as embedded systems. This

algorithm is simple, and its simplicity makes it possible to be implemented on very basic hardware platforms; this

ranges from microcontrollers to even digital signal processors.

An extremely practical application of the Goertzel algorithm is in Dual-Tone Multi-Frequency decoding. In fact,

when any key on a dual-tone phone keypad is pressed, it essentially generates two different frequencies: one from

the low-frequency bank and one from the high-frequency bank. Since the Goertzel algorithm is excellent at

detecting such frequencies, it can easily detect which key has been pressed. This capability is very critical in

telecommunication systems, including in applications such as automated call routing and IVR systems. The

robustness and accuracy of the algorithm also make it quite effective in noisy environments, further greatly

enhancing its utility in real-world applications.

Put simply, the Goertzel algorithm is an important tool in the area of digital signal processing, providing a very

focused and efficient approach to analysing frequencies. It is an irreplaceable technique for applications as far apart

as telecommunications and audio processing, due to the capability of this algorithm to isolate and analyse specific

frequencies with minimum computational overhead in doing so. Understanding and implementing the Goertzel

algorithm not only enhances the capacity of performing a selective frequency detection but also deepens the broader

understanding of DSP concepts and their practical application in the different technological domains.

Equations

Difference Equation

The Goertzel algorithm is based on a difference equation at the core, which virtually equals to a digital resonator,

for frequency detection. The basic difference equation is:

s[n]=x[n]+2cos(ω)⋅s[n−1]−s[n−2]

In this equation, s[n] represents the current output of the filter at sample n, while x[n] is the input sample at the same

point. The terms s[n−1] and s[n−2] are the outputs of the filter from the previous two samples. The term ω denotes

the normalized angular frequency of the target frequency, defined as 𝜔=2𝜋𝑓/fs , where 𝑓 is the frequency of interest

and fs is the sampling rate. By iterating this difference equation across all input samples, the algorithm effectively

isolates the energy associated with the target frequency, enabling precise detection within the signal.

Final State Calculation

Once all samples have been processed through the difference equation, the Goertzel algorithm calculates the final

states to determine the frequency component‟s real and imaginary parts. The real part is computed using:

𝑆𝑟 = s[N−1] − cos(ω) * s[N−2]

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

882

Here, s[N−1] and s[N−2] are the final outputs of the filter, representing the most recent samples. The term cos(ω)

adjusts for the phase of the target frequency. The imaginary part is given by:

𝑆𝑖 = sin(ω) ⋅ s[N−2]

where sin(ω) accounts for the phase shift in the orthogonal direction. These components, 𝑆r and 𝑆𝑖, are then used to

compute the magnitude of the target frequency:

∣X(f)∣=√𝑠2

 + 𝑆2

This magnitude provides a measure of the strength of the frequency f within the signal, allowing for accurate

frequency detection.

Alternate Difference Equation

An alternate formulation of the Goertzel algorithm utilizes a variant of the difference equation:

𝑄𝑛 =x[n]+2cos (2πk/N) * Q (n−1) − Q (n−2)

In this version, 𝑄𝑛 is the output of the filter at sample 𝑛 and 2𝜋𝑘/N represents the normalized angular frequency for

discrete frequency bins. Here, 𝑘 is the bin index corresponding to the frequency of interest, and 𝑁 is the total

number of samples in the analysis window. This formulation provides an alternative method for computing the

frequency response, often used in discrete Fourier transform applications and signal analysis.

Magnitude Calculation with Alternate Form

Using the alternate difference equation, the squared magnitude of the frequency component k can be computed as:

|yk(N)| = Q2(n) + Q2(n-1) – 2cos(2πk/N) Qn * Qn-1

In this equation, 𝑄n and 𝑄n-1 are the filter outputs at the final points in the analysis window. The term 2cos(2𝜋𝑘/N)

reflects the cosine coefficient associated with the frequency bin index 𝑘. This expression combines the squared

outputs and cross-terms to determine the magnitude squared of the frequency component, offering an efficient way

to compute frequency content.

Simplified Final State Calculation

A simplified form of the squared magnitude calculation is given

Tasks

This will entail the study and implementation in C of the Goertzel algorithm for single frequency detection. This

forms the basis of this project: understanding the basic working of the algorithm and translating it into a C program.

The Goertzel algorithm will be efficient for the identification of specific frequencies in a signal. In applications like

DTMF tone detection, this might turn out to be very useful. It will show how this algorithm filters out and processes

a desired frequency, which becomes a stepping-stone toward more advanced frequency detection tasks.

The second task is an expansion in that it requires completing a project able to detect all the 15 DTMF digits. This

involves the following steps: Copy the provided data bin file into the CCS project environment. You will need to

work through the first three TODO sections of the code files provided to apply the Goertzel algorithm to decode the

tone data from the file. Finally, you should fill in the last TODO section of util file so that this program outputs an

audio file that contains the decoded tone and is similar to the reference data_audio.wav. The third assignment is to

optimize the performance of the Goertzel algorithm. Concretely, it means that you have to modify the C code to use

intrinsics and compiler optimizations and then measure computational cycles with and without these improvements.

It is expected that this optimization would improve the efficiency of the algorithm so that, even with the additional

complexity in it to detect multiple frequencies, it would perform well.

Task 1

The Goertzel algorithm, which is frequently used in applications like DTMF decoding in telecommunication

systems, is an effective computational technique for identifying frequency components in a digital signal.

This task describes the application of this technique to identify, from provided data, a single pre-defined frequency.

The below figure represents the snippet of code written for accomplishing the task.

by:

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

883

|Yk(N)|2 = Q2(n) + Q2(n-1) – Coeff * Qn * Qn-1

where Coeff is the coefficient calculated as 2cos(2πk/N). This formula simplifies the magnitude calculation by

incorporating the cosine term directly into the equation. The term Coeff adjusts for the phase shift of the target

frequency, and the resulting magnitude squared reflects the strength of the frequency component in the signal.

Summary

These combined equations enable the Goertzel algorithm to be very effective in detecting frequencies within a

digital signal. The difference equation serves to isolate a frequency of interest, while the final state calculations and

magnitude equations follow through on the measurements and quantification of that frequency's presence. This set

of alternate formulations with simplified calculations is useful for flexibility and efficiency in many signal

processing situations.

Fig. 1:- Code Snippet for detecting one frequency The implementation of the code is explained as follows :

w calculates the angular frequency in radians per sample, which is used to detect the target frequency freq. coef_1 is

calculated using the cosine of w, which is part of the Goertzel algorithm's recursive formula. prod1 and prod2 are

intermediate variables used in the recursive formula. delay, delay_1, and delay_2 are part of a recursive filter setup

to compute the necessary terms over time. This sequence of assignments updates the delays which simulate the

filter's memory.

The block inside the if statement executes once all the samples (NO_OF_SAMPLES) have been processed. It

calculates the final Goertzel value, which represents the magnitude of the target frequency component within the

signal. prod1, prod2, and prod3 compute the terms required to calculate the magnitude of the detected frequency

using the Goertzel-specific algorithm. Goertzel value is computed using the square root of the sum and differences

of these products, which yields the magnitude of the frequency component at freq. The delays and sample counter

N are reset for the next batch of processing.

In this task, a sample with single tone at 697 Hz is generated and then detected.

Fig 2 shows the magnitude of the frequency 697 Hz.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

884

Fig. 2:- Goertzel value for 697 Hz.

In order to make sure that the code works properly it was run to detect other requencies. Fig 3 shows the magnitude

for the frequency 941 Hz.

Fig. 3:- Goertzel values for 941 Hz.

It can be observed that the magnitude for 697 Hz is more than 941 Hz, which confirms the reliability of the code.

Task 2

This task explains the implementation of the Goertzel algorithm to detect Dual-tone multi-frequency (DTMF)

signals. The algorithm decodes the provided 8-digit tone from a binary data file and generates an equivalent audio

file.

This part consists of reading the data from the given binary file, as shown in the below code snippet of Fig 4.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

885

Fig. 4:- Code Snippet for reading binary data.

The file data.bin is opened in read-binary mode. If the file doesn't exist or can't be opened, an error message is

printed, and the program exits with an error code. The program reads NO_OF_SAMPLES of 2-byte elements from

the file into the data array. Hence the data read is of the format „signed int16‟. Memory is allocated dynamically for

buffer. The size allocated here is sufficient to hold a large number of samples i.e., 160,000 short integers.

This part implements the feedback and feedforward loop of the Goertzel algorithm to detect all the eight

frequencies and based on the Goertzel value, the key pressed is found out.

TODO 1 implements the feedback loop of the Goertzel algorithm, shown in the Fig 5.

Fig. 5:- Code for TODO 1.

s_prev and s_prev2 are arrays that store state values for each of the 8 frequencies being monitored. For each of the

8 frequencies, the code calculates the normalized frequency omega, its cosine, and the Goertzel coefficient. Using

the Goertzel algorithm formula, the code updates the state variables based on the current input and the previous

states. This loop effectively filters the input signal and prepares the state variables for detecting the presence of

specific frequencies associated with DTMF tones.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

886

TODO 2 completes the feedforward loop of the Goertzel algorithm, shown in the Fig 6.

Fig. 6:- Code for TODO 2.

The algorithm runs the feedforward loop after processing a specific number of samples (206 in this case). For each

of the 8 frequencies, the state variables are processed to get the final magnitude. The magnitudes are stored in the

gtz_out array.

TODO 3 provides implementation of the Goertzel algorithm for detecting DTMF (Dual-tone multi-frequency) tones

on the Goertzel values output, shown in the Fig 7.

Fig. 7:- Code for TODO 3.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

887

Fig. 8:- Code for generating audio file.

The code loops through the first four frequencies to find the row frequency with the highest magnitude and then

through the next four frequencies to find the highest column frequency. The detected row and column indices help

to look up the corresponding digit and store it in the result array. For each sample the detection loops goes and the

corresponding result array gets populated.

This part implements the code to generate DTMF tones based on the keys detected, and finally generating an audio

file.

The implementation part is shown in the Fig 8.

The algorithm starts with determining the number of keys and allocating memory for the total samples required for

the DTMF sequence. Here there were in total 8 keys. For each key the duration of the tone specified was 0.5

seconds. Hence with a sampling rate of

8 KHz, each key requires 4000 samples. The function generateDTMFTone loops through the keys detected to

generate the DTMF tone and store it in the appropriate position in the samples array. Post generation, the samples

are written to the audio file.

Fig 9 shows the detected keys present in the given binary data file. And the corresponding audio file is generated

too.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

888

Fig. 9:- Result for task 2.

Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary

units (in parentheses). An exception would be the use of English units as identifiers in trade, such as “3.5-inch disk

drive”.

Task 3

This task quantifies the performance of the Goertzel algorithm by counting the number of clock cycles required to

loop through the algorithm. The cycles for feedback and feedforward loops are tallied separately.

Fig 5 and Fig 6 shows the code for calculating the time elapsed through feedback and feedforward loops

respectively.

Fig 9 shows the number of cycles took for feedback and feedforward loops before optimization which are 3996 and

1603 respectively.

The cycle count of the Goertzel algorithm can be reduced using compiler switches and intrinsics.

Compiler switches are commands or settings that are used during the compilation process to modify the behaviour

and processing of the compiler. They are often referred to as compiler options or compiler flags. The optimization

level, the kinds of warnings that are generated, the debug information that is included in the output, and many other

elements of the compilation process may all be impacted by these settings.

Intrinsics are a kind of function that many compilers offer that let programmers access processor-specific

instructions straight out of the box without requiring them to create assembly code. By allowing software to leverage

the sophisticated features of contemporary processors straight from code, intrinsics fill the gap between high- level

languages and low-level assembly.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

889

Fig. 10:- Values before optimizing.

Fig. 11:- Values optimizing to.

The optimizations used here are Optimization Level (--opt level, - O) and Optimize for code size (--

opt_for_space,-ms). „-O’ controls the general optimization level applied by the compiler when generating code.

Here level 3 is employed. This level improves the performance of the resulting executable code at the cost of longer

compile time. It enables more aggressive optimizations which includes loop unrolling, inlining of functions, and

vectorization. „- ms’ directs the compiler to reduce the size of the generated code, which is particularly useful for

memory-constrained environments. Here level 3 is used. At this level, the compiler aggressively changes the way

code is generated to minimize the footprint, which includes omitting inline expansions, using smaller libraries and

techniques that reduce size at the cost of execution speed.

Fig 10 shows the number of cycles obtained after optimization which are 3600 and 1148 respectively.

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

890

Fig. 12:- Number of cycles after optimization.

The optimization of the Goertzel algorithm through compiler flags and intrinsics decently enhanced its execution

efficiency. These results highlight the importance of targeted optimizations in the development of high-performance

DSP applications.

Conclusion:-
This report shall therefore extensively cover all aspects of the implementation and optimization of the Goertzel

algorithm in C for frequency detection tasks. The first task involves studying, then implementing, the Goertzel

algorithm to detect a single frequency that has been successful in showing foundational steps needed for isolating

and analyzing certain frequency components in a digital signal. This implementation was checked with the use of

code snippets and frequency magnitude visualizations, which proved the accuracy and reliability of the algorithm.

In turn, this created the basis for more complex tasks of multiple frequency detection.

In second task was the extension of the Goertzel algorithm to detect all 15 DTMF digits used in telecommunication

systems. It read and decoded an 8-digit tone from a binary data file, generated a corresponding audio file that would

compare with a reference audio, showed in detail the code snippets of the feedback and feedforward loops of the

algorithm, and managed to correctly decode the tones. Finally, optimization of the Goertzel Algorithm is explained

toward the end of the report, where performance was improved by activating compiler switches and intrinsics. It

measured the cycle count before and after optimization. The report presented an effective decrease in processing

time and pointed out the necessity of such optimizations in digital signal processing applications. All tasks

performed accurately, hence ensuring that the Goertzel algorithm is effective for both single and multi-frequency

detection cases.

References:-
1. N. Dahnoun, Digital Signal Processing Implementation: Using the TMS320C6000 DSP Platform, Prentice Hall,

2000.

2. N. Dahnoun, "Multicore DSP: From Algorithms to Real-time Implementation on the TMS320C66x SoC," 2018.

3. https://www.ti.com/lit/an/spra066/spra066.pdf

4. C. Marven, “General-Purpose Tone Decoding and DTMF Detection,” in Theory, Algorithms, and

Implementations, Digital Signal Processing Applications with the TMS320 Family, Vol. 2, literature number

SPRA016, Texas Instruments (1990).

https://www.ti.com/lit/an/spra066/spra066.pdf

ISSN: 2320-5407 Int. J. Adv. Res. 13(02), 880-891

891

5. Goertzel, G. (1958). An Algorithm for the Evaluation of Finite Trigonometric Series. The American

Mathematical Monthly, 65(1), 34-35. doi:10.2307/2310071.

6. Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-Time Signal Processing (2nd ed.). Prentice

Hall.

7. Frerking, M. E. (1994). Digital Signal Processing in Communication Systems. Springer.

8. Proakis, J. G., & Manolakis, D. G. (2007). Digital Signal Processing: Principles, Algorithms, and Applications

(4th ed.). Prentice Hall.

9. Schafer, R. W., & Rabiner, L. R. (1975). A Digital Signal Processing Approach to Interpolation. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 23(3), 222-234.

10. Jiang, Y., Zhang, Z., & Zhang, Z. (2009). Efficient DTMF Decoding Algorithm Based on Improved Goertzel

Algorithm. In 2009 International Conference on Multimedia Information Networking and Security (pp. 464-

468). IEEE. doi:10.1109/MINES.2009.236.

11. Kuo, S. M., & Lee, B. H. (2001). Real-Time Digital Signal Processing: Implementations and Applications (2nd

ed.). John Wiley & Sons.

12. Gomes, G. R., Silva, A. L., & Petraglia, A. (2004). Goertzel Algorithm in the Architecture of DTMF Decoders.

In Proceedings of the IEEE

13. Medawar, P. B. (1981). The Limits of Optimization in Digital Signal Processing. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 29(5), 1147-1156.

14. Martin, K. (1989). Digital Filters for DTMF Decoding. IEEE Transactions on Communications, 27(3), 399-411.

15. Lathi, B. P., & Ding, Z. (2009). Modern Digital and Analog Communication Systems (4th ed.). Oxford

University Press.

16. Chen, C. T. (1984). Digital Signal Processing: Spectral Computation and Filter Design. Oxford University

Press.

17. Farina, A., & Ayalon, A. (2003). Efficient DTMF Decoding with Optimized Goertzel Filters. In 2003 IEEE

14th Workshop on Signal Processing Advances in Wireless Communications (pp. 469-473). IEEE.

doi:10.1109/SPAWC.2003.1314548.

18. Therrien, C. W. (1992). Discrete Random Signals and Statistical Signal Processing. Prentice Hall.

19. Lyons, R. G. (2010). Understanding Digital Signal Processing (3rd ed.). Pearson Education.

	Title
	Author
	Introduction
	Conclusion
	References

