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In this work, let us deal with existence and derivation results in shape 

optimization. It should be noted that a shape optimization problem does 

not generally have a solution with only its initial data. To get around the 

non-existence of solution, we impose geometric order restrictions (i.e. 

volume type) and we work with the open class checking the ε-cône 

property to obtain existence. On the other hand, we determine the shape 

derivative using the Lagrange method. And then we establish the 

topological derivative using the minmax method. 
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1. Introduction:- 
In this paper, we are interested with shape optimization problems using the functional   

 J Ω =  a  |∇uΩ − ∇v0|2dx +  b  |uΩ − v1|2dx
Ω

.
Ω

                     (1.1) 

 

 

 

 

 

 
−∆uΩ + uq = finΩ

∂uΩ

∂n
= 0 on ∂Ω.

                                                                  (1.2)  . 

where q >1 is an integer. 

 

The objective of this paper is fixed around three main axes, that is to say the existence of optimal shape solution, the 

shape derivative using vector fields and the topological derivative using the minmax method. These types of 

problems have been studied by many authors who can be cited [2, 3, 9, 10, 7, 8, 9, 11, 12, 15]. 

 

We will give existence results by adding constraints, either on the functional to be minimized or on the set of 

admissible domains. But we can also increase volume constraints. Thus, it will be a question of giving existence 

results assuming that the boundary is uniformly regular. 

Corresponding Author:- Malick Fall 

Address:- Université Gamal Abdel Nasser de Conakry, FST, BP 1147 Conakry, Guinea. 

where a and b two real numbers, 𝑣0(respectively 𝑣1) are the given functions of Hloc
1 
(ℝ𝑁) (respectively L

2
loc(ℝ

𝑁) and 𝑢Ωis 

the solution of the following Neumann problem : 
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Let us denote by Oad the set of admissible open sets. We assume that this set satisfies the following properties: 

Oad ⊂Oε 

(the set of open checking the property of the ε-cône). It is also closed for one of the three types of convergence, 

namely convergence in the sense of Hausdorff, in the sense of characteristic functions or in the sense of compacts. 

 

We considerJ (Ωε)=J(Ωε,uε), where the perturbed domain Ωεof Ωis defined byΩε= Tε(Ω)orΩε=Ω\Eε on the 

derivative to be calculated.  

 

The paper is organized as follows: In the first section we give the introduction. In the second section, we establish 

the existence of optimal form. Section 3 is reserved for the form derivative of the functional using the Lagrange 

method. In this part we first give an example of application of the derivative in the sense of Hadamard. Then we 

apply them to the energy functionals.In the section 4, we give the topological derivative using minmax method. And 

in the section 5, we give the conclusion of the work. 

 

2. Existence of a solution by the ε-cône property 

We consider a functional of the form: 

 

J1 Ω =  F x, uΩ, ∇uΩ dx
Ω

                       (3.1) 

Where 

F :𝐵 × ℝ × ℝ𝑁 → ℝ 

is a continuous function, measurable in (x,r,p) and verifying the hypothesis 

 F(x, r, p) ≤ c 1 + r2 + |p|2 ∀x ∈ B, ∀r ∈ ℝ, ∀p ∈ ℝN  ,                    (3.2) 

with u = uΩ of the following Neumann problem: 

 
−∆u + uq = finΩ
∂u

∂n
= 0        on ∂Ω,

                                                                  (3.4)   

with Ω ⊂B (where B is an open ℝN ) and f ∈L
2
(B). 

We further consider the following functional: 

J2(Ω)  =  F x, vΩ x , 0 dx + α  |∇vΩ x |2dx                                      (3.5)
ΩΩ

 

with α ≥ 0 and vΩ solution of (3.4). 

We then ask: 

J(Ω) = F x, uΩ x , ∇uΩ dx.                                                        ( 3.6)
Ω

 

We notice that J is well defined, because F is by hypothesis, a function measurable in (r,p) p.p. Thus, we show that 

J(Ω) <+∞. Indeed, according to (3.2) we have: 

 

 J Ω  =   F(x, uΩ(x), ∇uΩ(x))dx
Ω

 ≤  c(1 + uΩ
Ω

 x 2 +  ∇uΩ x |2 dx, 

≤ c  (1 + uΩ
Ω

 x 2 +  ∇uΩ x |2 dx. 

 

Furthermore, we can increase 

|J Ω | ≤ c ‖uΩ‖H1 + |Ω| < +∞. 

So|J Ω | < +∞, hence J(Ω) is well defined. We therefore recall that problems (3.4) is well posed in the sense of 

Hadamard. Indeed, we have specified the Neumann boundary conditions. 

 

In all that follows, we set ε >0 and we consider the set Oεdefined by: 

Oε = {Ω open, Ω ⊂D, Ω has the property of ε-cône}. 

 

We therefore consider the following shape optimization problem: 

min{J(Ω) : Ω ∈Oε }, 

where J designates the functional of type J1 or J2. In all that follows, we seek to determine optimal shape existence 

results for shape optimization problems. But before giving optimal form existence results, we need the following 

results: 
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Theorem 2.1 Let Ωn be an open sequence in the class Oε. Then there exists an open Ω ∈Oεand an sub-sequence 

Ω𝑛 𝑘
which converges towards Ω both in the sense of Hausdorff, in the senseof the characteristic functions and in the 

sense of compact. In additionΩ𝑛𝑘
     and 𝜕Ω𝑛𝑘 converges inthe Hausdorff sense respectively to Ω and ∂Ω. 

LEMMA 2.2: Let K be a compact and B a bounded open of R
N
. Let Ωn be a sequence of open 

WithΩ𝑛
    ⊂K ⊂B, verifying the ownership of the ε-cône. 

Then there is an open Ω verifying the ownership of the ε-cône and an extracted sequence Ωnk such as 

𝑢Ω𝑛 𝑘

𝐻
→ 𝑢Ω, 𝜒Ω𝑛 𝑘

𝐿1𝑝 .𝑝
    𝜒Ω 

 

Ω𝑛 𝑘

𝐻
→ Ω,            𝜕Ω𝑛 𝑘

𝐻
→𝜕Ω. 

 

It is a result which will allow us to characterize the existence of solution. 

Proof. See [1]. 

Consider the following Neumann equation: 

 
−∆𝑢Ω + 𝑢Ω

𝑞 = 𝑓𝑖𝑛Ω

𝜕𝑢Ω

𝜕𝑛
= 0        𝑜𝑛𝜕Ω.

                                                                  (3.7)   

So, by doing the variational formulation and integrating, we have according to Green’s formula: 

𝑣 ∈ 𝐻1 Ω ,  𝛻𝑢Ω. 𝛻𝑣𝑑𝑥 +  𝑢Ω
𝑞𝑑𝑥 =  𝑓𝑣𝑑𝑥,

ΩΩΩ

 

with f ∈L
2
(B). 

 

In what follows, we focus on the fundamental result of the game. 

Theorem 2.3Let Oad ⊂Oε be a non-empty set of open sets satisfying a closure property for convergence in the sense 

of Hausdorff, F a function which satisfies (3.2) and J1 (respectively J2) defined in (3.1) (respectively in (3.5)). Then, 

there exists Ω ∈Oad which minimizes J1(respectively J2). 
 

Proof. Let us show that J1 is bounded. 

We have 

 𝐽1 Ω𝑛  =   𝐹  𝑥, 𝑢Ω𝑛
 𝑥 , 𝛻𝑢Ω𝑛

 𝑥  𝑑𝑥
Ω𝑛

 ≤ 𝑐 ‖𝑢Ω𝑛
‖𝐻1 +  Ω𝑛   < +∞, 

which shows that J1(Ωn) is increased. Moreover, 

 𝐽1 Ω𝑛  =   𝐹  𝑥, 𝑢Ω𝑛
 𝑥 , 𝛻𝑢Ω𝑛

 𝑥  𝑑𝑥
Ω𝑛

  

and J1(Ωn) >−∞ because 𝑢Ω𝑛
∈H

1
. So J1(Ωn) is reduced. Thus, J1(Ωn) is bounded. Let us ask 

𝑚 = 𝑖𝑛𝑓
Ω∈𝑂𝜖𝑜𝑟𝑂𝑎𝑑

𝐽1 Ω  .                                                                                  (3.8) 

Then, according to the properties of the lower bound, there exists a minimizing sequence (Ωn) of 

Oad such that 

𝐽1 Ω → 𝑚 = 𝑖𝑛𝑓
Ω∈𝑂𝜖𝑜𝑟𝑂𝑎𝑑

𝐽1 Ω  .                  

Let Ωn ∈Oad. According to Theorem 2.1, there exists an open Ω ∈Oε and an extracted sequence (Ω𝑛 𝑘
) which 

converges to Ω in the Hausdorff sense. Like Ωn ∈Oad ⊂Oε, the sequence (Ωn) verifies the property of the ε-cône. 

According to Lemma2.2, we can extract from the sequence (Ωn) a subsequence (𝑢Ω𝑛 𝑘
) which verifies the following 

convergences:  

Ω𝑛 𝑘

𝐻
→Ω,𝜒Ω𝑛 𝑘

→ χΩ in L
1 
(p.p.), 

 𝑢Ω𝑛 𝑘

𝐻
→ 𝑢Ω, ∂Ω𝑛 𝑘

𝐻
→∂Ω. 

with Ω verifying the ε-cône property. 

It will now be a matter of showing that: 

𝑙𝑖𝑚𝐽1(Ω𝑛 ) = 𝐽(Ω) = 𝑖𝑛𝑓Ω∈𝑂𝜖𝑜𝑟𝑂𝑎𝑑
𝐽1 Ω .             . 

 

Let us make the variational formulation of the problem with Neumann condition at the boundary: 
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−∆𝑢Ω + 𝑢Ω

𝑞 = 𝑓𝑖𝑛Ω

𝜕𝑢Ω

𝜕𝑛
= 0        𝑜𝑛𝜕Ω.

  

 

By multiplying the above equation by a test function 𝜑∈H
1
(Ω) and integrating, we have : 

 𝛻𝑢Ω. 𝛻𝜑𝑑𝑥
Ω

+  
𝜕𝑢Ω

𝜕𝑛𝜕Ω
𝜑𝑑𝜎 +  𝑢Ω

𝑞𝜑𝑑𝑥
Ω

=  𝑓𝜑𝑑𝑥
Ω

. 

 

Since 
𝜕𝑢Ω

𝜕𝑛𝜕Ω
𝜑dσ = 0, 

Then we obtain 

 𝛻𝑢Ω. 𝛻𝜑𝑑𝑥
Ω

+  𝑢Ω
𝑞𝜑𝑑𝑥

Ω
=  𝑓𝜑𝑑𝑥

Ω
. 

Thus, according to the Lax-Milgram theorem, we can show the existence of a unique solution to this problem. 

So, in Ωn, we have the following variational formulation: 

 𝛻𝑢Ω. 𝛻𝜑𝑑𝑥
Ω𝑛

+  𝑢Ω
𝑞𝜑𝑑𝑥

Ω𝑛

=  𝑓𝜑𝑑𝑥.
Ω𝑛

 

Since Oad ⊂Oε, we can define an extension in Ωn by: there exists an operator 

PΩn : H
1
(Ωn)→ H

1
(B), 

with B a bounded open of R
N
, such that         

 

 

PΩn 𝑢Ω𝑛
 = 

𝑢Ω𝑛 𝑖𝑓𝑥 ∈Ω𝑛

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  

So either 

𝑢𝑛 = 
𝑢𝑛𝑖𝑓𝑥 ∈ Ω𝑛

0  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
  

And 

𝜑 = 
𝜑𝑖𝑓𝑥 ∈ Ω𝑛

0  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.
  

So, in Ω𝑛 𝑘
we have the following variational formulation: 

 𝛻𝑢Ω𝑛 𝑘
Ω𝑛𝑘

. 𝛻𝜑𝑑𝑥 +  𝑢Ω𝑛 𝑘

𝑞𝜑𝑑𝑥Ω𝑛 𝑘
=  𝑓𝜑𝑑𝑥.Ω𝑛 𝑘

                                                       (𝑎)  

Taking𝜑=𝑢Ω𝑛 𝑘
, we obtain: 

 |𝛻𝑢Ω𝑛 𝑘
|2𝑑𝑥 +

𝐵
 𝑢Ω𝑛 𝑘

𝑞 . 𝑢Ω𝑛 𝑘
𝑑𝑥 +

𝐵
 𝑓𝑢Ω𝑛 𝑘

𝑑𝑥.
𝐵

 

Thus, we have: 

 𝑢Ω𝑛 𝑘
 

𝐻1(𝐵) 

2

≤ 𝐶‖𝑓‖𝐿2 Ω  𝑢Ω𝑛 𝑘
 

𝐿2 Ω 
. 

From which it follows that 

 𝑢Ω𝑛 𝑘
 

𝐻1(𝐵) 
≤ 𝐶‖𝑓‖𝐿2 Ω . 

 

Therefore, the sequence (𝑢Ω𝑛 𝑘
) is bounded in H

1
(B). 

Since H
1
(B) is a reflexive Hilbert space, there exists u∗∈H

1
(B) such that 

𝑢Ω𝑛 𝑘
→𝑢∗ 

weakly in H
1
(B), 

𝑢Ω𝑛 𝑘
→𝑢∗ 

in L
2
(B) (strongly). 

Let us now show that: 

 

 𝛻𝑢∗ · 𝛻𝜑𝑑𝑥 +
Ω

 (𝑢∗)
Ω

q 𝜑𝑑𝑥=  𝑓𝜑𝑑𝑥,
Ω

∀𝜑𝜖 H
1
(Ω). 

For this, given that𝜑∈D(Ω), there exists a certain rank from which 𝜑∈D(Ωn). Thus, by multiplying equality (a) by 

𝜒Ω𝑛 𝑘
, we have: 
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 𝜒Ω𝑛 𝑘
𝛻𝑢Ω𝑛 𝑘

𝐵

. 𝛻𝜑𝑑𝑥 +  𝜒Ω𝑛 𝑘
𝑢Ω𝑛 𝑘

𝑞𝜑𝑑𝑥
𝐵

=  𝜒Ω𝑛 𝑘
𝑓𝜑𝑑𝑥, ∀𝜑𝜖𝐻1(𝐵)

𝐵
. 

Since  𝜒Ω𝑛 𝑘
→ χΩ in L

1
(B) (p.p.), 

and using the weak convergence in H
1
(B) of  𝑢Ω𝑛 𝑘

, passing to the limit when k → +∞, we obtain 

𝜒Ω𝑛 𝑘

𝜕𝜑

𝜕𝑥𝑖

→ 𝜒Ω

𝜕𝜑

𝜕𝑥𝑖

𝑖𝑛𝐿2 𝐵 , 

𝜕𝑢Ω𝑛 𝑘

𝜕𝑥𝑖

→
𝜕𝑢∗

𝜕𝑥𝑖

𝑖𝑛𝐿2 𝐵  

 

𝜒Ω𝑛 𝑘
𝛻𝑢Ω𝑛 𝑘

→χΩ∇𝑢∗ 
in L

2
(B), 𝜒Ω𝑛 𝑘

𝑢Ω𝑛 𝑘
→ χΩ𝑢∗inL

1
(B). 

Thus, we have: 

 

 𝜒Ω𝑛 𝑘
𝛻𝑢Ω𝑛 𝑘

.
𝐵

 𝛻𝜑𝑑𝑥 → 𝜒Ω𝛻𝑢∗.  𝛻𝜑𝑑𝑥 
𝐵

=  𝛻𝑢∗𝛻𝜑𝑑𝑥.
Ω

 

Finally, we obtain: 

 𝛻𝑢Ω
∗

Ω
 . 𝛻𝜑𝑑𝑥+  𝛻𝑢Ω

∗  
Ω

)
 q𝜑𝑑𝑥= 𝑓𝜑𝑑𝑥.

Ω
 

Let us show that𝑢Ω
∗ = 𝑢Ω. 

Using Green’s formula in the variational formulation (b), we have: 

 −∆𝑢Ω
∗

Ω
𝜑𝑑𝑥 +  𝑢Ω

∗  
Ω

)
 q𝜑𝑑𝑥= 𝑓𝜑𝑑𝑥 ,                  ∀𝜑𝜖𝐻1(Ω)

Ω
. 

Thus, we obtain: 

−∆𝑢Ω
∗ +  𝑢Ω

∗  )𝑞 = 𝑓𝑤𝑖𝑡ℎ
𝜕𝑢Ω

∗

𝜕𝑛
= 0. 

We also need to show that the sequence Ω𝑛 𝑘
→ 𝑢Ωin H

1
(Ω). Taking 𝜑= 𝑢Ω𝑛 𝑘

in (a) 

and 𝜑= 𝑢Ωin (b), we have: 

𝑙𝑖𝑚   |𝛻𝑢Ω𝑛 𝑘
|2 + Ω𝑛 𝑘

 𝑑𝑥 = 𝑙𝑖𝑚  𝜒Ω𝑛 𝑘
𝑓𝑢Ω𝑛 𝑘

𝑑𝑥.
𝐵Ω𝑛 𝑘

 

However, we also have: 

 𝜒Ω𝑛 𝑘
𝑓𝑢Ω𝑛 𝑘

𝑑𝑥
𝐵

→  𝜒Ω𝑛 𝑘
𝑓𝑢Ω

∗ 𝑑𝑥 =
𝐵

 |𝛻𝑢Ω
∗ |2 +

Ω
(𝑢Ω

∗ )
 2𝑑𝑥. 

Since𝜒Ω𝑛 𝑘
𝛻𝑢Ω𝑛 𝑘

converges strongly in L
2
(B) to χΩ∇𝑢Ω, we have: 

 |𝛻𝑢Ω𝑛 𝑘
− 𝛻𝑢Ω|

Ω𝑛 𝑘

2 𝑑𝑥= |𝛻𝑢Ω𝑛 𝑘
|

Ω𝑛 𝑘

2 𝑑𝑥-2 𝛻𝑢Ω𝑛 𝑘
  .  

Ω𝑛 𝑘

𝛻𝑢Ω𝑑𝑥+ |𝛻𝑢Ω|
Ω𝑛 𝑘

2𝑑𝑥. 

By taking the limit, the second term on the right becomes zero, and therefore: 

lim |𝛻𝑢Ω𝑛 𝑘
− 𝛻𝑢Ω|

Ω𝑛 𝑘

2 
= 0 

In the same way, we show that: 

lim |𝑢Ω𝑛 𝑘
− 𝑢Ω|

Ω𝑛 𝑘

𝑑𝑥= 0 and lim 𝑓(𝑢Ω𝑛 𝑘
− 𝑢Ω)

Ω𝑛 𝑘

𝑑𝑥= 0.  

Thus, we obtain: 

𝛻𝑢Ω𝑛 𝑘

𝐿2

→ 𝛻𝑢Ω, 𝑢Ω𝑛 𝑘

𝐿2

→𝑢Ω. 

Since F is a continuous function, we have: 

J(Ω𝑛 𝑘
) = 𝐹(𝑥, 𝑢Ω𝑛 𝑘

,
Ω𝑛 𝑘

𝛻𝑢Ω𝑛 𝑘
)𝑑𝑥 →  𝐹(𝑥,

Ω
𝑢Ω,𝛻𝑢Ω)𝑑𝑥.

 

3. Shape derivative : 

3.1 Preliminaries and example 

The objective of this section to calculate the shape derive of the functional (1.1). Before going further, we first prove 

the following results which as useful for the main result. The idea is to use the celebrated method of Hadamard for 

the shape functional that we considered. This method was introduced by Hadamard in [14] and many other authors 

[2]. In there papers, the notions of shape derivative is given. 
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Let Ω ⊂ℝ𝑁be a bounded open set of class C
2
. For t ≥ 0, let Ωt = 𝜙t(Ω), where for all t, 𝜙t associated for V is 

diffeomorphism of R
2
. These properties holds: 

𝜙 
0 = 𝑉,  𝑑𝑒𝑡 𝛻𝜙𝑡  = 𝑗 𝑡, 𝑥 ,

𝑑∅𝑡

𝑑𝑡
= −𝑉,  𝑑𝑒𝑡(𝛻∅𝑡

−1) = 𝑗 −𝑡, 𝑥 . 

 

Let Ωt = (Id + V )(Ω) be a demain of class C
2
. For t ≥ 0, very small, and V ∈ C

1 
∩ W

1,∞
(ℝ2). Let us consider also, 

the function J in Ωt. We have the following definition: 

Definition 3.1A function J(Ω) of the domain is said to be shape differentiable at Ω if the mapping t → J(Ωt) from R 

into R is Frechet differentiable at t = 0. The corresponding Frechet derivative (or differential) is denoted by DJ(Ω,V) 

and the following expansion holds: 

J(Ωt) = J(Ω) + tDJ(Ω,V ) + o(t). 

In the following, consider also then functional defined in Ωt, by 

 J(Ωt) = a |𝛻𝑢Ω − 𝛻𝑣0|
Ω𝑡

2𝑑𝑥+ b |𝑢Ω − 𝑣1|
Ω𝑡

2𝑑𝑥 (3.1) 

where a and b two real numbers, v0 (respectively v1) are the given functions of Hloc
1 
(ℝ𝑁)  

(respectively L
2

loc(ℝ
𝑁)) and 𝑢Ω𝑡

is the solution of the following Neumann problem : 

 
−∆𝑢Ω𝑡

+ 𝑢Ω𝑡

𝑞
= 𝑓𝑖𝑛Ω𝑡

𝜕𝑢Ω𝑡

𝜕𝑛
= 0        𝑜𝑛𝜕Ω𝑡 .     

 (3.2) 

 

We look, in this section for the shape derivative of the functional J(Ω). The key point in the calculation of the shape 

derivative DJ(Ω,V ) is in general, the definition of an appropriate derivation for the mapping Ω → uΩ. This mapping 

has a Lagrangian derivative u˙Ω and an Eulerian derivative 𝑢′
Ωlinking with the Laplacian derivative by 

𝑢′ Ω, V = 𝑢  Ω − ∇𝑢. V 

For the definition of the Laplacian and eulerian derivative, we refer to [1], [2]. The following result is devoted to the 

shape derivative of the functional. 

 

Theorem 3.1Let Ω be a class domain C
1
(ℝ𝑁) and V a vector field of classC

1
. 

Let 𝐹𝜖𝐶1  0, 𝜖 𝐶0 Ω𝑡
      ∩ 𝐶0  0, ∈ , 𝐶1 Ω𝑡

      . The function defined by 

 𝐽1 ∈ =  𝐹 ∈, 𝑥 𝑑𝑥
Ω𝑡

(3.3) 

is differentiable and its derivative is given by : 

𝐷𝐽1 Ω𝑡 , 𝑉 =  
𝜕

𝜕 ∈
𝐹 ∈, 𝑥 + 𝑑𝑖𝑣𝐹 ∈, 𝑥 𝑉(𝑥))𝑑𝑥                                     (3.4) 

Ω∈

 

𝐷𝐽1 Ω𝑡 , 𝑉 =  
𝜕

𝜕 ∈
𝐹 ∈, 𝑥 +  𝐹 ∈, 𝜎 𝑉. 𝑛𝑑𝜎.

𝜕Ω∈Ω∈

                                       (3.5) 

Proof. See [1]  

Theorem 3.2Let Ω be a domain of class C
2 
over ℝ𝑁and V a vector field of class C

2
. Let G be a function belonging 

to the spaceC
1
((0,ε),C

0
(Ωt)) ∩ C

0
((0,ε),C

1
(Ωt)). 

The function defined by:  

J2(t) = 𝐺 𝑡, 𝜎 𝑑𝜎,                                            (3. 𝑎)
𝜕Ω𝑡

 

is differentiable and its derivative is given by: 

𝐷𝐽2 Ω𝑡 , 𝑉 =  
𝜕

𝜕𝑡
𝐺 𝑡, 𝜎 𝑑𝜎 +   𝐻 𝜎 𝐺 𝑡, 𝜎 +

𝜕𝐺(𝑡, 𝜎)

𝜕𝑛
 𝑑𝜎,

𝜕Ω𝑡𝜕Ω𝑡

(3. 𝑏) 

where H(σ) is the mean curvature on the edge σ and
𝜕𝐺 (𝑡 ,𝜎)

𝜕𝑛
 is the usual normal derivative. 

Proof. For the proof of these two theorems, see [1].  

 

Example 

Let Ω be a domain of class C
1
. 

The perimeter and the volume being differentiable, we have: 
𝑑 Ω𝑡  

𝑑𝑡
|𝑡=0 =

𝑑

𝑑𝑡
|𝑡=0  𝑑𝑥 =  𝑑𝑖𝑣𝑉𝑑𝑥 =  𝑉. 𝑛𝑑𝜎.

𝜕ΩΩΩ𝑡

 



ISSN: 2320-5407                                                                       Int. J. Adv. Res. 13(02), 1347-1359 

1353 

 

The normal derivative is positive if it points outward and negative otherwise. Likewise,  
𝑑

𝑑𝑡
  

Ω𝑡
𝑓𝑑𝑥 ∣𝑡=0=  

Ω
𝑑𝑖𝑣 𝑓𝑉 =  

𝜕Ω
𝑓𝑉. 𝑛𝑑𝜎 

 

and for the perimeter: 
𝑑

𝑑𝑡
𝑃 Ω𝑡 =  𝑑𝜎 =

𝜕Ω𝑡

 (𝑛𝑡
𝜕Ω𝑡

 . 𝑛𝑡)𝑑𝜎 =  𝑁𝑡
𝜕Ω𝑡

 . 𝑛𝑡)𝑑𝜎. 

 

Integration by parts in the other direction gives: 

 

We consider Nt as a trace, and we have: 
𝑑

𝑑𝑡
𝑃 Ω𝑡 =  𝑑𝑖𝑣𝑁𝑡

𝜕Ω𝑡

𝑑𝜎. 

where Nt is an extension of nt to R
N 

(unitary norm 1). So : 
𝑑

𝑑𝑡
  

Ω𝑡
𝑑𝑖𝑣𝑁𝑡 ∣𝑡=0=  

𝜕

𝜕𝑡
 𝑑𝑖𝑣𝑁𝑡 + 𝑑𝑖𝑣 𝑉. 𝑑𝑖𝑣𝑁0 𝑑𝑥.

Ω

 

By application of the divergence: 

 
𝑑

𝑑𝑡
  

Ω𝑡
𝑑𝑖𝑣𝑁𝑡 ∣𝑡=0=  𝑑𝑖𝑣  

𝜕

𝜕𝑡
𝑁𝑡 + 𝑑𝑖𝑣 𝑉 . 𝑑𝑖𝑣𝑁0 𝑑𝑥 =  

𝜕

𝜕𝑡
𝑁𝑡  . 𝑛𝑑𝜎 +   𝑉. 𝑛 𝑑𝑖𝑣𝑁0𝑑𝜎

𝜕Ω𝜕ΩΩ

. 

However, we know that: 
𝜕

𝜕𝑡
𝑁𝑡  . 𝑛 = 0 

Hence: 
𝑑

𝑑𝑡
  

Ω𝑡
𝑑𝑖𝑣𝑁𝑡 ∣𝑡=0= 

𝜕

𝜕𝑡
𝑁𝑡  . 𝑛𝑑𝜎 +   𝑉. 𝑛 𝑑𝑖𝑣𝑁0𝑑𝜎

𝜕Ω𝜕Ω
. 

 

= 
𝜕Ω

𝜕

𝜕𝑡
 

1

2
 𝑁𝑡 

2 𝑑𝜎 +   𝑉. 𝑛 𝑑𝑖𝑣𝑁0𝑑𝜎
𝜕Ω

. 

With 𝑑𝑖𝑣𝑁0 = 𝐻 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒. 
𝑑

𝑑𝑡
  

Ω𝑡
𝑓𝑑𝑥 ∣𝑡=0=  

𝜕Ω
𝑓𝑉. 𝑛𝑑𝜎. 

𝑑

𝑑𝑡
𝑃 Ω𝑡 |𝑡=0   =  𝐻(𝑉. 𝑛)𝑑𝜎.

𝜕Ω

 

𝑢 0 = 𝑢′ 0 = 0. 
𝑡𝑒𝑝𝑜𝑖𝑛𝑡𝑜𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑖𝑠𝑛𝑜𝑡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 

𝑢 𝑥 = 𝑦 ⇒ 𝑢 𝑥 − 𝑦 = 0 𝑜𝑛𝜕Ω. 
𝛻 𝑢 𝑥 − 𝑦 ⊥ 𝜕Ω. 

𝑛 =  
𝑢′(𝑥)
−1

 

 

 
1

 1 + 𝑢′2(𝑥) 

  

𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑖𝑡𝑖𝑠𝑎𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑡𝑒𝑟𝑚 

𝑁0 𝑥, 𝑦 = 𝑛 𝑥 . 

𝑑𝑖𝑣𝑁0 0,0 = 𝜕𝑥
𝑢 ′(𝑥)

 1+𝑢𝑥
2+𝑢𝑦

2
+0=𝑢′′ 𝑥 + 𝑢′ 0 𝜕𝑥() = 𝑢′′ 0 . 

𝑑𝑖𝑣𝑁0 0,0 = 𝑢′′ 0 . 
𝑧 = 𝑢 𝑥, 𝑦 . 

𝑢 𝑥, 𝑦 − 𝑧 = 0 𝑜𝑛𝜕Ω.  
𝛻 𝑢 𝑥 − 𝑧 ⊥  ∂Ω. 

𝑛 =  

𝑢𝑥

𝑢𝑦

−1
  

1

 1+𝑢𝑥
2+𝑢𝑦

2
 =𝑁0(𝑥, 𝑦, 𝑧) 

𝑑𝑖𝑣𝑁0(0,0,0)=𝜕𝑥
𝑢𝑥

 1+𝑢𝑥
2+𝑢𝑦

2
+ 𝜕𝑦

𝑢𝑦

 1+𝑢𝑥
2+𝑢𝑦

2
+ 0 
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𝑑𝑖𝑣𝑁0 0,0,0 = 𝑢𝑥𝑥(0,0)+𝑢𝑦𝑦 (0,0) = 𝑢′′𝑥𝑥(0,0) + 𝑢′′𝑦𝑦 (0,0). 

𝑇𝑖𝑠𝑖𝑠𝑡𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝑎𝑡 0,0 . 
We deduce that the derivative of the perimeter is equal to the mean curvature. 

3.2  Shape derivative via Lagrange 

In this part, we apply the results of the previous paragraph to the following functional :  

 J(Ω) = 𝑎  |𝛻𝑢Ω −  𝛻𝑣0|
Ω

2𝑑𝑥+ b |𝑢ΩΩ
−  𝑣1|2𝑑𝑥(3.6) 

 

where a and b two real numbers, v0 (respectively v1) are the given functions of Hloc
1 ℝN

)  

(respectively L
2

loc(ℝ
N
)) and uΩ is the solution of the following Neumann problem : 

 
−∆𝑢Ω + 𝑢𝑞 = 𝑓𝑖𝑛Ω
𝜕𝑢Ω

𝜕𝑛
= 0       𝑜𝑛𝜕Ω.

 (3.7) 

 

In Ωt the functional J is written : 

 J(Ωt) =𝑎  |𝛻𝑢ΩΩ𝑡
−  𝛻𝑣0|2𝑑𝑥+ b  |𝑢Ω− 𝑣1Ω𝑡

|
2𝑑𝑥. 

Using the derivation formula (3.4) gives us (assuming enough regularity Ω ∈C
1
,f ∈L

2
loc 

DJ(Ω,V ) = 2a  𝛻𝑢Ω −  𝛻𝑣0 . 𝛻𝑢′𝑑𝑥 + 2𝑏   𝛻𝑢Ω −  𝑣1 𝑢
′𝑑𝑥

ΩΩ
 

 

                 +𝑎  |𝛻𝑢Ω −  𝛻𝑣0|
𝜕Ω

|v1|
2𝑛𝑑𝜎 + 𝑏   𝑣1 

2𝑉. 𝑛𝑑𝜎
𝜕Ω

 

for any vector field V withby 𝑢′ the form derivative of ut. 

In everything that follows, we look for the equation verified by 𝑢′ . 

Let us make the variational formulation of the Neuman problem in Ωt. 

Let𝑣 ∈ 𝐻0
1(Ω𝑡), by multiplying the first equation of the previous problem by v and integrating over Ω we obtain : 

∀𝑣 ∈ 𝐻0
1 Ω𝑡 ,     (𝛻𝑢𝑡 . 𝛻𝑣 + 𝑢𝑞𝑣)𝑑𝑥

Ω𝑡

=  𝑓𝑣𝑑𝑥
Ω𝑡

(3.8) 

For t small enough, we can differentiate equality(3.7) with (v = 𝜑) fixed. By applying formula (3.5) we have : 

  𝛻𝑢′ . 𝛻𝜑 + 𝑞𝑢′𝑢𝑞−1𝜑 𝑑𝑥 +  (𝛻𝑢. 𝛻𝜑 +
𝜕ΩΩ

𝑢𝑞𝜑)𝑉. 𝑛𝑑𝜎 =  𝑓𝜑𝑉. 𝑛𝑑𝜎.                           (3.9)
𝜕Ω

 

Now if 𝜑is zero on the boundary (on a neighborhood of the boundary), the integrals of the limit disappear and we 

have : 

  𝛻𝑢′ . 𝛻𝜑 + 𝑞𝑢′𝑢𝑞−1𝜑 𝑑𝑥 = 0                                             (3.10)   
Ω

 

So we have 

  −∆𝑢 + 𝑞𝑢′𝑢𝑞−1 𝜑𝑑𝑥 = 0
Ω

. 

And so we get: 

−∆𝑢 + 𝑞𝑢′𝑢𝑞−1 = 0 𝑖𝑛Ω. 
In the sense of distributions, now to recover the boundary condition, let us remember the equality: 

 

𝑢′ Ω, 𝑉 = 𝑢  Ω, 𝑉 − 𝛻𝑢. 𝑉. 
The function uto(Id + tV ) defines on the fixed domain Ω disappears on the boundary of Ω or all t. We then 

deduce that : 
𝑑

𝑑𝑡
 𝑢𝑡 𝑜 𝐼𝑑 + 𝑡𝑉 |𝑡=0 = 𝑢  Ω, 𝑉 = 0 𝑜𝑛𝜕Ω. 

 

In other words,𝑢𝑡𝑜(𝐼𝑑 + 𝑡𝑉) ∈ 𝐻0
1 Ω  for all t, therefore, according to the equality : 

𝑢′ Ω, 𝑉 = 𝑢  Ω − 𝛻𝑢. 𝑉 

𝑢′ satisfied 

𝑢′ = −𝛻𝑢. 𝑉 = −
𝜕𝑢

𝜕𝑛
𝑉. 𝑛𝑜𝑛𝜕Ω. 

The last equality comes from the fact that the gradient of u is normal to the boundary. We therefore have the 

following result: 

 

Theorem 3.3Let Ω be a domain of class C
1
(ℝN

) and J be the functional defined by 
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𝐽 Ω = 𝑎  |𝛻𝑢Ω − 𝛻𝑣0|2𝑑𝑥 +  |𝑢Ω − 𝑣1|2𝑑𝑥,
ΩΩ

 

where a and b are positive real numbers. 

The functional J is differentiable and we have 

𝐷𝐽 Ω; 𝑉 = 2𝑎   𝛻𝑢 − 𝛻𝑣0 . 𝛻𝑢′𝑑𝑥 + 2   𝑢 − 𝑣1 𝑢
′𝑑𝑥

ΩΩ

 

                  +𝑎  |𝛻𝑢 − 𝛻𝑣0|2𝑉. 𝑛𝑑𝜎 + 𝑏  |𝑣1|2𝑉. 𝑛𝑑𝜎
𝜕Ω𝜕Ω

 

where 𝑢′ , the form derivative satisfies 

 
−∆𝑢 + 𝑞𝑢′𝑢𝑞−1 = 0 𝑖𝑛Ω

𝑢′ = −𝛻𝑢. 𝑉 = −
𝜕𝑢

𝜕𝑛
𝑉. 𝑛𝑜𝑛𝜕Ω.

 (3.11). 

 

Proof. The proof of this theorem follows directly from the previous application.  

4 . Topological derivative via Lagrange metthod 

4.1   Some preliminary results 

In this subsection, we describe how to calculate the topological derivative using the minmax approach, see e.g. 

[5], [6], [10], [7]. To begin with, we will look at the following definitions and notations. 

 

Definition 4.1 A Lagrangian function is a function of the form 

 𝑡, 𝑥, 𝑦 ⟼ 𝐿 𝑡, 𝑥, 𝑦 ∶   0, 𝜏 ×  𝑋 ×  𝑌 →  ℝ, with  𝜏 > 0 

where X is a vector espace, Y a non empty subset of vector space and the function𝑦 ↦ 𝐿(𝑡, 𝑥, 𝑦)is affine. 

Associate with the parameter t the parametrized minimax 

𝑡 ⟼ 𝑔 𝑡 = 𝑖𝑛𝑓
𝑥∈𝑋

𝑠𝑢𝑝
𝑦∈𝑌

𝐿 𝑡, 𝑥, 𝑦 :  0,𝜏 → ℝ  𝑎𝑛𝑑𝑑𝑔 0 = 𝑙𝑖𝑚
𝑡→0+

𝑔 𝑡 − 𝑔 0 

𝑡
 . 

When the limits exist, we will use the following notations 

𝑑𝑡𝐿 0, 𝑥, 𝑦 = 𝑙𝑖𝑚
𝑡→0+

𝐿 𝑡, 𝑥, 𝑦 − 𝐿 0, 𝑥, 𝑦 

𝑡
 

𝜑 ∈ 𝑋, 𝑑𝑥𝐿 𝑡, 𝑥, 𝑦; 𝜑 = 𝑙𝑖𝑚
𝜃→0+

𝐿 𝑡, 𝑥, +𝜃𝜑, 𝑦 − 𝐿 𝑡, 𝑥, 𝑦 

𝜃
 

∅ ∈ 𝑌𝑑𝑦𝐿 𝑡, 𝑥, 𝑦; ∅ = 𝑙𝑖𝑚∅→0+
𝐿 𝑡 ,𝑥 ,+𝜃∅,𝑦 −𝐿 𝑡 ,𝑥 ,𝑦 

𝜃
. 

Since𝐿 𝑡, 𝑥, 𝑦  is affine en y, for all (𝑡, 𝑥)∈ [0,τ] × X, 

 

∀𝑦, 𝜓 ∈  𝑌𝑑𝑦𝐿 𝑡, 𝑥, 𝑦; 𝜓 =  𝐿 𝑡, 𝑥, 𝜓 −  𝐿 𝑡, 𝑥, 0 = 𝑑𝑦𝐿 𝑡, 𝑥, 0; 𝜓 .                                        (4.1) 

 

The state equation at t ≥ 0 

 

 Find 𝑥𝑡∈X such that for all𝜓 ∈  𝑌, 𝑑𝑦𝐿 𝑡, 𝑥𝑡 , 0; 𝜓 = 0.                                                 4.2 . 

The set of states𝑥𝑡at t ≥ 0 is denoted 

𝐸 𝑡 =   𝑥𝑡 ∈ 𝑋, ∀𝜓 ∈ 𝑌,   𝑑𝑦𝐿 𝑡, 𝑥𝑡 , 0; 𝜓 = 0}.                                                                 (4.3) 

 

The adjoint equation at t ≥ 0 is  

Find p
t ∈Y such that for all ϕ ∈X, dxL(t,x

t
,p

t
;ϕ) = 0.                                 (4.4) 

 

The set of solutions p
t 
at t ≥ 0 is denoted 

 

𝑌 𝑡, 𝑥𝑡 =  𝑝𝑡 ∈ 𝑌 ∀𝜑 ∈ 𝑋, 𝑑𝑥𝐿 𝑡, 𝑥𝑡 , 𝑝𝑡 , 𝜑 =  0 .                                  

 

 

Finally the set of minimisers for the minimax is given by 

𝑋 𝑡 =  𝑥𝑡 ∈ 𝑋, 𝑔 𝑡 = 𝑖𝑛𝑓
𝑥∈𝑋

𝑠𝑢𝑝
𝑦∈𝑌

𝐿 𝑡, 𝑥, 𝑦 = 𝑠𝑢𝑝𝐿
𝑦∈𝑌

(𝑡, 𝑥𝑡 , 𝑦 ) .      (4.6)    

 

LEMMA 4.1 (Constrained infimum and minimax) 

We have the following assertions 
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(i) 𝑖𝑛𝑓𝑥∈𝑋 𝑠𝑢𝑝𝑦∈𝑌 𝐿 𝑡, 𝑥, y = 𝑖𝑛𝑓𝑥∈𝐸(𝑡) 𝐿 𝑡, 𝑥, 𝑦 .    

(ii) The minimax g(t) = +∞ if and only if E(t) = ∅. And in this case we have X(t) = X. 

(iii) If E(t) ≠∅, then 

(iv) 𝑋 𝑡 =  𝑥𝑡 ∈ 𝐸 𝑡 : 𝐿 𝑡, 𝑥𝑡 , 0 = 𝑖𝑛𝑓𝑥∈𝐸(𝑡) L(𝑡, 𝑥, 0  ) ∁𝐸(𝑡)    

and g(t) <+∞. 

Proof. See [5], [8], [6].  

To end this subsection, we give definitions and theorems on d-dimensional Minkowski content and d-rectifiability. 

Definition 4.2 Let E be a subset of a metric space X. E ⊂X is d-rectifiable if it is the image of a compact subset K 

of ℝ𝑑by a continuous lipschitzian function f : ℝd 
→ X. 

Let E be a closed compact set of ℝ𝑁and r ≥ 0, the distance function dE and the r-dilatation Er of E are defined as 

follows: 

𝑑𝐸 𝑥 = 𝑖𝑛𝑓 𝑥 − 𝑥0 ,   𝐸𝑟 =  {𝑥 ∈ ℝ𝑁 : 𝑑𝐸 𝑥 ≤ 𝑟}. 

Definition 4.3 Given d, 0 ≤ d ≤ N the upper and lower d-dimensional Minkowski contents of a set E are defined by 

an r-dilatation of this set as follows 

𝑀∗𝑑 𝐸 = 𝑙𝑖𝑚
𝑟→0+

𝑠𝑢𝑝
𝑚𝑁(𝐸𝑟)

𝛼𝑁 − 𝑑𝑟𝑁−𝑑 ; 𝑀∗
𝑑 𝐸 = 𝑙𝑖𝑚

𝑟→0+
𝑖𝑛𝑓

𝑚𝑁(𝐸𝑟)

𝛼𝑁 − 𝑑𝑟𝑁−𝑑  

where mN is the Lebesgue measure in R
N 

and αN−dis the volume of the ball of radius 1 in ℝN−d
. 

Both concepts can be found in [5], [6]. 

We need the following assumption for everything that follows: 

Hypothesis (H0) 
Let X be a vector 

space.(i): For all t ∈ 

[0,τ],𝑥0 ∈ 𝑋 0 , x𝑡 ∈
𝑋(𝑡)0 ∈X(0),and y ∈Y , 

the function 

θ ↦ 𝐿(𝑡, 𝑥, 𝑦L(t,𝑥0+ θ(𝑥𝑡−𝑥0),y) : [0,1] → R is absolutely continuous. This implies that for almost all θ the 

derivative exists and is equal to dxL(t,𝑥0+θ(𝑥𝑡−𝑥0),y;𝑥𝑡−𝑥0) and it is the integral of its derivative. In particular 

𝐿 𝑡, 𝑥𝑠 , 𝑦 = 𝐿 𝑡, 𝑥0, 𝑦 +  𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑦;
1

0

𝑥𝑡 − 𝑥0)𝑑𝜃. 

(ii): For all t ∈ [0,τ], x
0 ∈X(0), x

t ∈X(s) and y ∈Y , υ ∈X and for almost all θ ∈ [0,1], 

𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑦; ∅)exist et the functions θ ↦ 𝐿(𝑡, 𝑥, 𝑦) 

𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 + 𝑥0 , 𝑦; ∅)belong to L
1
[0,1]. 

Definition 4.4 Given 𝑥0∈X(0) and𝑥𝑡∈X(t), the averaged adjoint equation is: 

𝐹𝑖𝑛𝑑𝑦𝑡 ∈ 𝑌 ∀ ∅ ∈ 𝑋,  𝑑𝑠𝐿 𝑡, 𝑥0 + 𝜃 𝑥𝑡 + 𝑥0 , 𝑦; ∅ 𝑑θ = 0
1

0

. 

and the set of solutions is noted Y (t,𝑥0 ,𝑥𝑡). 

Y (0,𝑥0,𝑥0) clearly reduces to the set of standard adjoint states Y (0,𝑥0) at t = 0. 

 

Theorem 4.2Consider the Lagrangian functional 

(𝑡, 𝑥, 𝑦) ↦ 𝐿(𝑡, 𝑥, 𝑦) : [0,τ] × X × Y → ℝ, τ>0 

where X and Y are vector spaces and the function 𝑦 ↦ 𝐿(𝑡, 𝑥, 𝑦)is affine. Assume that (H0) and the following 

hypotheses are satisfied 

𝑯𝟏  for all t ∈ [0,τ], g(t) is finite, X(t) = {𝑥𝑡} and Y (0,x
0
) = {p

0
} are singletons, 

𝑯𝟐  dtL(0,𝑥0,𝑦0)exists, 

𝑯𝟑 The following limit exists 

𝑅(𝑥0,𝑦0) = 𝑙𝑖𝑚𝑡→0+  𝑑𝑠𝐿  𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑝0;
𝑥 𝑡−𝑥0

𝑡
 𝑑𝜃.

1

0
 

Then, 𝑑𝑔 (0) exists and 𝑑𝑔(0) =𝑑𝑡𝐿(0, 𝑥0,𝑦0) +𝑅(𝑥0,𝑝0). 

Proof. See [4, 5].  

COROLLARY 4.3 Consider the Lagrangian functional 
 𝑡, 𝑥, 𝑦 ↦ 𝐿 𝑡, 𝑥, 𝑦 :  0, 𝜏 ×  𝑋 ×  𝑌 → ℝ, 𝜏 > 0, 

where X and Y are vector spaces and the function 𝑦 ↦ 𝐿(𝑡, 𝑥, 𝑦)is affine. Assume that (H0) and the following 

assumptions are satisfied: 

(H1a) for all t ∈ [0,τ], X(s)≠∅, g(t) is finite, and for each x ∈X(0), Y (0,x)≠∅, 
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(H2a) for all x ∈X(0) and p ∈Y (0,𝑥) 𝑑𝑡𝐿(0, 𝑥,𝑝) exists, 

(H3a) there exist 𝑥0∈X(0) and p
0 ∈Y (0,𝑥0) such that the following limit exists 

𝑅(𝑥0,𝑝0) = 𝑙𝑖𝑚𝑡→0+  𝑑𝑠𝐿  𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑝0;
𝑥 𝑡−𝑥0

𝑡
 𝑑𝜃.

1

0
 

Then, dg(0) exists and there exist x
0 ∈X(0) and p

0 ∈Y (0,x
0
) such that  

dg(0) =𝑑𝑡𝐿(0, 𝑥0,𝑝0)+ 𝑅(𝑥0,𝑝0). 

In what follows, we focus on the main result of this part. And for information on the tools used the reader can 

consult [5]. 

 

4.2 Topological derivative 

Let us consider the functionnal defined in Ωt by 

𝐹 Ω𝑡 = 𝑎  |𝛻𝑢Ω − 𝛻𝑣0|2𝑑𝑥 + 𝑏  |𝑢Ω − 𝑣1|2𝑑𝑥.                                      (4.7)    
Ω𝑡Ω𝑡

 

 

where 𝑢Ω𝑡
be the solution to the Neumann Problem 

 

 

−∆𝑢Ω𝑡
+ 𝑢Ω𝑡

𝑞
= 𝑓𝑖𝑛Ω𝑡

𝜕𝑢Ω𝑡

𝜕𝑛
= 0  𝑜𝑛𝜕Ω𝑡

(4.8)   

where q >1 is an integer. 

Let us consider as shape functional F define by 

𝐹 Ω = 𝑎  |𝛻𝑢Ω − 𝛻𝑣0|2𝑑𝑥 + 𝑏  |𝑢Ω − 𝑣1|2𝑑𝑥.                                      (4.9)    
ΩΩ

 

 

And 𝑢Ω ∈ 𝐻0
1 Ω  is solution to the variational problem 

∀𝑣 ∈ 𝐻0
1 Ω ,  (𝛻𝑢Ω. 𝛻𝑣 + 𝑢Ω

𝑞
. 𝑣)𝑑𝑥 =  𝑓𝑣𝑑𝑥.                                                              (4.10)

ΩΩ

 

 We aim to compute the topological derivative of the functional F(Ωt) 

𝑑𝐹 = 𝑙𝑖𝑚
𝑡→0+

𝐹(Ω𝑡)−𝐹(Ω)

𝛼𝑁−𝑑𝑟𝑁−𝑑 . 

Thus, the Lagrangian dependent on t will be written in the form : 

𝐿 𝑡, ∅, 𝛷 = 𝑎  |𝛻𝛷 − 𝛻𝑣0|2𝑑𝑥 + 𝑏  |𝛷 − 𝛻𝑣1|2

ΩΩ𝑡

 

 

                                                                              +  (𝛻∅. 𝛻𝛷 +
Ω

∅𝑞𝛻𝛷) 𝑑𝑥 −  𝑓𝛷𝑑𝑥
Ω

. 

From this, we can now evaluate the derivative of the Lagrangian, dependent on t, with respect to∅ . 

𝑑∅𝐿 𝑡, ∅, 𝛷, ∅′ =  2𝑎   𝛻∅ − 𝛻𝑣0 . 𝛻∅′𝑑𝑥 + 2𝑏   𝛷 − 𝑣1 ∅
′𝑑𝑥 +  (𝛻∅′𝛻𝛷 +

ΩΩΩ

𝑞∅′∅𝑞−1𝛷)𝑑𝑥. 

The initial adjoint state pΩ0 is a solution of  𝑑∅𝐿 0, 𝑢Ω0
, 𝑝Ω0

, ∅′ = 0 forall  ∅′ for t = 0. Thus the variational 

formulation of the adjoint equation of state is given by 

2𝑎  (𝛻𝑢Ω0
− 𝛻𝑣0)𝛻∅′𝑑𝑥 + 2𝑏   𝑢Ω0

− 𝑣1 ∅
′𝑑𝑥 +  (𝛻∅′

Ω

𝛻𝑝Ω0
+  𝑞∅′𝑢Ω0

𝑞−1
𝑝Ω0

)𝑑𝑥 = 0.  
ΩΩ

 

 

And we have 

  2𝑎  𝛻𝑢Ω0
− 𝛻𝑣0 𝛻∅′ + 2𝑏 𝑢Ω0

− 𝑣1 ∅
′ + 𝛻∅′𝛻𝑝Ω0

+  𝑞∅′𝑢Ω0

𝑞−1  𝑝Ω0
 𝑑𝑥 = 0           (4.11)

Ω

 

Next, we derive the Lagrangian with respect to Φ. 

𝑑∅𝐿 𝑡, ∅, 𝛷, ∅′ =  (𝛻∅. 𝛻𝛷′ +
Ω

∅𝑞𝛷′       ) 𝑑𝑥 −  𝑓𝛷′𝑑𝑥
Ω

. 
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The initial state uΩ0 is a solution of  𝑑∅𝐿 0, 𝑢Ω0
, 0, 𝛷Ω0

′  = 0 ∀ 𝛷Ω0

′ ∈ 𝐻0
1 Ω  and in this case, we have: 

 (𝛻𝑢Ω0
. 𝛻𝛷′ + 𝑢Ω0

𝑞
𝛷′   )𝑑x −  𝑓𝛷′𝑑𝑥 = 0.                                                            

ΩΩ

 

. 

  𝛻𝑢Ω0
 . 𝛻𝛷′ + 𝑢Ω0

𝑞
𝛷′ −  𝑓𝛷′ 𝑑𝑥 = 0.                                                                      (4.12)  

Ω

 

And we have 

𝐿 𝑡, ∅, 𝛷 − 𝐿 0, ∅, 𝛷 =  𝑓 𝑥 
Ω𝑡

𝛷 𝑥 𝑑𝑥 −  𝑓 𝑥 
Ω𝑡

𝛷 𝑥  

𝐿 𝑡, ∅, 𝛷 − 𝐿 0, ∅, 𝛷 = − 𝑓 𝑥 
Ω𝑡

𝛷 𝑥 𝑑𝑥 −  𝑓 𝑥 
𝐸𝑡

𝛷 𝑥 +  f 𝑥 
Ω𝑡

𝛷 𝑥 𝑑𝑥 

 

𝐿 𝑡, ∅, 𝛷 − 𝐿 0, ∅, 𝛷 = −  𝑓 𝑥 
𝐸𝑡

𝛷 𝑥 𝑑𝑥 

𝑑𝑠𝐿 𝑡, ∅, 𝛷 = 𝑙𝑖𝑚
𝑠→0

1

 𝐵(𝑥0, 𝑠) 
  𝑓(𝑥)𝛷 𝑥 

𝐵(𝑥0 ,𝑠)

  

𝑑𝑠𝐿 0, ∅, 𝛷 = 𝑓 𝑥0 𝛷 𝑥0 . 
We will now define R(t) by. 

 

𝑅 𝑡 =  𝑑∅𝐿  𝑡, 𝑢Ω𝑡
+ 𝜓(𝑢Ω𝑡

− 𝑢Ω0
, 𝑝Ω0 ,  

𝑢Ω𝑡−𝑢Ω0

𝑡
  

1

0

𝑑𝜓. 

By substituting ∅′ =
𝑢Ω𝑡−𝑢Ω0

𝑡
 and𝜓 =

𝑢Ω𝑡−𝑢Ω0

2
 into the adjoint equation for pΩ0, we obtain: 

 

𝑅 𝑡 = 2𝑎   𝛻  
𝑢Ω𝑡

+ 𝑢Ω0

2
 − 𝛻𝑣0 . ∇

Ω

 
𝑢Ω𝑡−𝑢Ω0

𝑡
 𝑑𝑥 

         +2𝑏   𝛻  
𝑢Ω𝑡

+ 𝑢Ω0

2
 − 𝑣1 .

Ω

 
𝑢Ω𝑡−𝑢Ω0

𝑡
 𝑑𝑥 

         +  𝛻  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
 𝛻𝑝Ω0

+ 𝑞
Ω

 
𝑢Ω𝑡−𝑢Ω0

𝑡
  

𝑢Ω𝑡
+ 𝑢Ω0

2
 

𝑞−1

𝑝Ω0
𝑑𝑥 

𝑅 𝑡 = 2𝑎   𝛻  
𝑢Ω𝑡

2
 − 𝛻  

𝑢Ω𝑡

𝑡
 + 𝛻  

𝑢Ω0

2
 + 𝛻  

𝑢Ω0

2
 − 𝛻𝑣0 

Ω

. 𝛻  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
 𝑑𝑥 

          +2𝑏   
𝑢Ω𝑡

2
+

𝑢Ω0

2
−

𝑢Ω0

2
−

𝑢Ω0

2
− 𝑣1 . 𝛻  

𝑢Ω𝑡
− 𝑢Ω0

𝑡
 𝑑𝑥

Ω

 

          +   𝛻  
𝑢Ω𝑡

2
 − 𝛻  

𝑢Ω0

𝑡
  𝛻𝑝Ω0

+ 𝑞  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
  

𝑢Ω𝑡
+ 𝑢Ω0

2
 

𝑞−1

𝑝Ω0
𝑑𝑥

Ω

 

         +  𝑞  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
  𝑢Ω0

𝑞−1
− 𝑢Ω0

𝑞−1 𝑝Ω0
𝑑𝑥

Ω

 

         = 2𝑎  𝛻  
𝑢Ω𝑡

− 𝑢Ω0

2
 .

Ω

𝛻  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
 𝑑𝑥 + 2𝑏   

𝑢Ω𝑡
− 𝑢Ω0

2
  

𝑢Ω𝑡
− 𝑢Ω0

𝑡
 

Ω

𝑑𝑥 

         +  q  
uΩt

− uΩ0

t
   

uΩt
+ uΩ0

2
 

q−1

− uq−1 pΩ0
dx.

Ω

 

 

 

R t =
a

t
 |∇uΩt

− uΩ0
|2dx +

b

t
 |∇uΩt

− uΩ0
|2𝑑𝑥

ΩΩ

 

         +
q

t
 (uΩt

− uΩ0
)

Ω
  

uΩt +uΩ0

2
 

q−1

− uq−1 pΩ0
𝑑𝑥. 

 

Theorem 4.4Let 0 ≤ d < N, E verify Hypothesis H1 and t = αN−dr
N−d

. The topological derivative exists if the 

functionR t  has a finite limit. Therfore, the topological derivative of the function is given by the expression: 
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 dJ = lim
t→0

sup 
J Ωt − J(Ω)

αN − drN−d  

 

              dJ = R x0, pΩ0
 − f x0 pΩ0

 x0 . 

where pΩ0
,uΩ0

are solutions of systems 

 

  2a ∇uΩ0
− ∇v0 . ∇∅′ + 2b uΩ0

− v1 ∅
′ + ∇∅′∇pΩ0

+  q∅′ uΩ0

q−1
pΩ0

 𝑑𝑥 = 0 .           
Ω

 

 

5.  Conclusion:- 

In this paper we start by establishing an existence result of optimal form. Then we proved the shape drift using the 

Lagrange method. The last part of the document was devoted to the topological derivative of the functional. we plan 

to look at the numerical problem of these already established derivatives. 
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