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In the field of molecular biology, where every interaction between 

macromolecules is of crucial importance, analyzing the structural 

features of biological macromolecules remains a major challenge. 

Traditional feature extraction techniques from protein sequences often 

prove to be inefficient. The reliability of the extracted information is 

sometimes questionable due to the complexity and volume of the data 

involved. The volume and complexity of this biological data compel 

researchers in the field to turn to computational feature extraction 

techniques. Over the years, several computational methods have been 

proposed to accurately extract relevant and representative information 

from macromolecule sequences within these large datasets. However, 

these extraction techniques are sometimes impractical, and the 

relevance of the extracted information may be limited. In this study, we 

propose a large-scale feature extraction method based on the correlation 

analysis of two physicochemical properties of amino acids: 

hydrophobicity and hydrophilicity, as well as the correlation between 

amino acids. The results of this research, evaluated using databases 

commonly utilized in previous studies, show an accuracy improvement 

of over 2.58% compared to existing methods. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction:- 
In the drug development process, the study of interactions between biological macromolecules is crucial. This step is 

of paramount importance in the fields of biology, bioinformatics, and medical research. Biological macromolecules, 

such as proteins, nucleic acids, lipids, and polysaccharides, are the fundamental components of living organisms. 

Their interactions, whether at the cellular or macromolecular level, are responsible for regulating various biological 

processes, transmitting genetic information, and modulating immune responses, among other key functions [1]. 

Several high-throughput chemometric techniques, such as protein microarrays [2], Nuclear Magnetic Resonance 

(NMR) [3],[4], Biacore (Surface Plasmon Resonance) SPR [5], [6], and Isothermal Titration Calorimetry (ITC) [7], 
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have been developed to detect these interactions. While these techniques have revealed numerous unknown 

interactions, they are often time-consuming and expensive. These constraints, combined with the volume and 

complexity of experimental data, have driven the development of computational models to predict large-scale 

macromolecular interactions. 

 

Since the 1970s and 1980s, when computational techniques were introduced for detecting interactions between 

biological macromolecules, various approaches have been proposed to predict macromolecule-macromolecule 

interactions (MMI) using datasets available in biological databases. Several techniques, such as gene fusion 

[8],[9],[10], Archer FusionPlex panels, QIAseqRNAscan, and Oncomine Focus [11], 3D structural information [12], 

and gene ontology and annotation [13] ,[14], have contributed to this goal. 

 

However, these approaches are not universal due to their high computational complexity. Their precision and 

reliability heavily depend on the information previously collected from the datasets used during implementation. 

The practical implementation of these approaches, as well as the practical information on gene annotation and 

ontology, is often incomplete for several reasons. First, although the Gene Ontology database is widely used, it is 

not exhaustive, and many annotations are incorrect or missing. This limits a comprehensive understanding of gene 

functions and gene products in different biological contexts [15]. Furthermore, the 3D structure of many proteins 

remains unknown. A significant portion of proteins has yet to be resolved using techniques such as X-ray 

crystallography or cryo-electron microscopy, despite considerable efforts to determine these structures [16]. Finally, 

macromolecule-macromolecule interactions (MMI) in many species are often rare and poorly documented. This is 

partly due to the limitations of current experimental techniques, which are costly and time-consuming, thereby 

restricting the amount of available data on MMIs [17]. 

 

Unlike amino acid data, which are widely available in biological databases, most of the proposed approaches in the 

past use data extracted from sequences to study and predict macromolecule interactions. 

 

Several sequence-based approaches for macromolecule analysis have been proposed. For example, the Biological 

Jaccard Index [16] measures the similarity between macromolecule sequences. This method identifies k-mers 

(subsequences of length k) in each macromolecule and calculates the Jaccard similarity between these sets. 

However, this method is sensitive to variations (it performs less well for low sequence similarity) and does not 

account for structural information, which may limit its accuracy for certain complex interactions. Another approach 

is the ISLAND method, which uses various feature representations of macromolecular sequences, including amino 

acid composition (AAC), the average features of the BLOSUM-62 substitution matrix, Position Specific Scoring 

Matrix (PSSM) features, and descriptors derived from the biophysical properties of amino acids to model 

evolutionary relationships and physicochemical properties of macromolecules [18]. However, the diversity of 

features used in this method increases computational complexity, and its accuracy depends heavily on the quality of 

the data. 

 

Another approach, the Stacked Autoencoder method, transforms macromolecular sequences into numerical features 

using methods such as autocovariance and conjoint triad, then trains an autoencoder to learn compact and 

informative representations of the sequences [19]. In addition to sharing the same data dependency limitation as the 

ISLAND method, this approach may suffer from overfitting. 

 

N-gram-based approaches are also used for the analysis and prediction of interactions. These approaches focus on 

analyzing macromolecule sequences as fixed-length (n-gram) or variable-length segments [20]. The approach 

proposed by Kopoin et al. for predicting protein-protein interactions uses bigrams, where n = 2. It examines 

consecutive pairs of amino acids in the sequences. The physicochemical properties of hydrophobicity and 

hydrophilicity of amino acids are used to create these bigrams. This method is also combined with the Position 

Specific Scoring Matrix (PSSM), which provides information on the probability of amino acid substitutions 

according to their position. This allows for the generation of an enriched matrix that captures both the relationships 

between amino acids and contextual information. These features are then used to train an artificial neural network, 

which improves the accuracy of protein-protein interaction prediction. Although n-gram-based models effectively 

capture local patterns, they often experience contextual information loss. These approaches are also sensitive to the 

choice of n, as their performance varies depending on the size of the selected n-grams. 
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In this study, we propose an approach that combines the amino acid correlation calculation method proposed by 

Chou [21] with the bigram method proposed by Kopoin et al. in 2020 [20] to extract features from macromolecular 

sequences. In our research on macromolecule-macromolecule interactions, we employ the Random Forest algorithm 

[22], [23] to effectively learn the representations of macromolecule pairs. To evaluate the effectiveness of our 

model, we applied it to a large dataset of macromolecule-macromolecule interactions from the work of Vazquez et 

al. [24]. 

 

Materials and Methods:- 
GeneralOverview 

This study relies on a dataset of macromolecular interactions from the Human Protein Reference Database (HPRD), 

as described in the study by [25]. This reference database, widely used by many researchers for predicting 

interactions between macromolecules, is publicly accessible. 

 

The developed approach focuses on extracting features from macromolecular sequences, enabling the extraction of 

the physicochemical properties of amino acids. Random forests, known for their robustness and efficiency in 

classification and pattern recognition, were used to predict macromolecular interactions [26]. The effectiveness of 

this classification method guided our choice of model, allowing us to achieve promising results [26], demonstrating 

a significant improvement in the predictive accuracy of macromolecular interactions. A detailed illustration of the 

process is presented in Figure 1. 

 

Dataset 

In this study, we focus on implementing a model based on macromolecular sequences to predict macromolecule-

macromolecule interactions (MMI). The dataset of macromolecular interactions was derived from the Human 

Protein Reference Database (HPRD) [27]. To ensure data quality, duplicates were removed from the carefully 

selected positive data. For the construction of negative pairs, which represent non-interacting macromolecule pairs, 

the authors [15] paired macromolecules located in distinct subcellular localizations, using the observable 

macromolecular localization information available in version 57.3 of the Swiss-Prot database (uniprot.org). In their 

approach, they excluded shorter sequences (fewer than 50 amino acids) as well as those with multiple localizations, 

ensuring a high level of representativeness. 

 

Our dataset includes a total of 36,630 positive interactions involving 9,630 different human macromolecules. To 

balance the dataset, we also selected 36,480 negative interaction pairs derived from 1,773 macromolecules [28], 

[29]. We also use datasets from Swiss-Prot [30], the Protein Data Bank (PDB) [31], BioGrid, and STRING [32] to 

compare the effectiveness of our method with other recent approaches in the field of MMI. 

 

Random forest   

Random Forest is a supervised learning algorithm that works by creating a collection of decision trees, where each 

tree is built from a random sample of the training data. This technique, known as bagging (Bootstrap Aggregating), 

allows for the creation of subsets of data from the original dataset 𝐗, where each subset 𝐒𝐢 is a randomly drawn 

sample with replacement of size N. 

𝐒𝐢 = 𝐒𝐚𝐦𝐩𝐥𝐞 𝐗,𝐍                            [𝟏] 
Each tree is then trained on a distinct sample, which enhances the robustness and accuracy of the model . In 

classification, each tree produces a prediction, and the final result is determined by a majority vote from the trees, as 

represented by: 

𝓗 = 𝐦𝐨𝐝𝐞(𝐡𝟏,𝐡𝟐,𝐡𝟑,…… , 𝐡𝐓)         [𝟐] 
where 𝐡𝐭 is the prediction of the t-th tree, and T is the total number of trees. In regression problems, the final 

prediction is the average of the tree predictions: 

𝓗 =
𝟏

𝐓
 𝐡𝐭

𝐓

𝐭=𝟏
                          [𝟑] 

One of the key concepts in Random Forest is the use of measures such as Gini impurity or entropy to determine the 

most appropriate splits in the trees. 

Gini Impurity: In binary classification, Gini impurity 𝐆 measures the probability that an observation will be 

misclassified if it were randomly assigned according to the class distribution in the node. It is calculated using the 

formula: 
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𝐆 = 𝟏 −  𝐏𝐢
𝟐

𝐂

𝐢=𝟏
                    [𝟒] 

where 𝐏𝐢 is the proportion of instances belonging to class ii, and 𝐂is the number of possible different classes that the 

target variable can take. 

Entropy (Alternative to Gini Impurity): Entropy is another measure of node homogeneity, often used with 

information gain. It is defined as: 

Å(𝐒) = − 𝐏𝐢𝐥𝐨𝐠𝟐 𝐏𝐢                 [𝟓]
𝐂

𝐢=𝟏
 

These measures allow each tree to choose the features that provide the best splits by minimizing impurity or 

maximizing information. 

 

Resistanceto Overfitting and Feature Selection 

Random Forest is also resistant to overfitting, particularly when the number of trees is sufficiently large. It combines 

multiple weak models to create a more powerful one. Additionally, Random Forest efficiently handles datasets with 

a large number of features. Each tree in the forest uses a subset of these features, randomly selected at each node, 

which increases diversity between the trees. The importance of features can be measured by the average reduction in 

impurity (Gini or Entropy) for each feature 𝐗𝐣across all trees, according to the following formula: 

𝐈(𝐗𝐣) =
𝟏

𝐓
 ∆𝐆𝐭 (𝐗𝐣)                [𝟔]

𝐓

𝐢=𝟏
 

where ∆𝐆𝐭 (𝐗𝐣)is the impurity reduction for tree tt when the feature 𝐗𝐣is used. 

 

Key Hyperparameters of Random Forest: 

Random Forest has several hyperparameters that directly influence its performance. These parameters include: 

 The number of trees (n_estimators): This is the total number of trees in the forest. A higher number of trees 

tends to improve overall accuracy, although it also increases computation time. The relationship between the 

number of trees and model accuracy can be approximated by: 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲𝐑𝐅 ≈ 𝐟 𝐧𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐨𝐫𝐬                     [𝟕] 
 Maximum depth (max_depth): This controls the depth of each tree. A greater depth allows for capturing 

complex relationships in the data but may lead to overfitting. 

 Number of features selected at each split (max_features): This parameter determines how many features are 

available for each tree when making decisions. A restricted selection promotes diversity among the trees, thus 

reducing the risk of overfitting. 

 

Proposed Feature Extraction Approach 

This section explains our feature extraction approach, named OTE-24. This approach is inspired by the Bi-gram 

method proposed by Kopoin et al. [20] and the method for calculating amino acid correlation features by Chou in 

the APAAC method [21]. The computational models proposed in the literature require learning relevant and 

representative features of sequence pairs from the training dataset in order to perform prediction tasks on the test 

dataset. 

 

Kopoin et al.'s approach extracts protein features using physicochemical properties in the form of bigrams. It 

involves calculating the physicochemical distance values for each amino acid sequence in the dataset, forming an 

𝐿 × 20matrix represented by C, where L is the length of the amino acid sequence, and creating a bigram feature 

vector from the data matrix for training. It uses the ANN classifier to predict protein interactions. Chou's 

Amphiphilic Pseudo Amino Acid Composition (APAAC) method is an improvement over the Pseudo Amino Acid 

Composition (PseAAC) method, designed to capture both hydrophobic and hydrophilic features of amino acids in 

protein sequences [33]. This method accounts for both the order of amino acids and the physicochemical properties 

of proteins, which is crucial for applications such as protein function prediction or their interaction with other 

macromolecules. APAAC is calculated using two key properties of amino acids: hydrophobicity and hydrophilicity. 

These values are integrated into a correlation function, which measures the similarity between two amino acids, and 

are then used to generate additional descriptors related to the amino acid sequence order [34]. 

 

Description of Our Approach 

Our approach uses the bigram method and the pseudo-amino acid composition with autocorrelation (APAAC) 

method to generate feature vectors from macromolecular sequences, thereby facilitating the prediction of 
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interactions between biological macromolecules. First, bigrams are calculated to extract local interactions between 

consecutive residues based on their physicochemical properties, such as hydrophobicity and hydrophilicity, resulting 

in a 400-value vector. Then, the APAAC amino acid correlation calculation method is applied to integrate global 

correlations on a larger scale, adding 2×2×λadditional values to capture long-distance interactions. λ represents the 

interaction length, defining the range of interactions between amino acid residues. This process results in a final 

vector of 800 + 2×2×λ values for each sequence, providing a rich and detailed representation of the structural and 

functional features of macromolecules. 

 

Our general formula is as follows: 

𝐴𝑡 =

 
 
 

 
  𝐶𝑘 ,𝑖 . 𝐶𝑘+1;𝑗

𝐿−1

𝑖=1
 , 𝑤𝑖𝑡ℎ 1 ≤ 𝑖 ≤ 20 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 20

𝑁(𝑡)

1 +  𝜑 𝑓𝑡
𝐿
𝑡=1

  ,    𝑤𝑖𝑡ℎ 1 ≤ 𝑡 ≤ 𝐿

  [8]   

 

Where 𝐴𝛼  is the numerical value or feature of the amino acid A at position α in the macromolecular sequence, 

𝑁 𝑡 is the number of occurrences of amino acid t in the sequence. L is the length of the macromolecule sequence. 

𝜑is the weight parameter that adjusts the influence of the physicochemical properties of the amino acids relative to 

their base frequency, thus balancing the contribution of residue interactions and the simple composition of the 

macromolecular sequence. 𝑓𝑙 is the correlation function based on the physicochemical properties of the amino acids, 

calculated as follows: 

𝑓𝑙 =
1

𝑁 − 𝑙
 𝐻1 𝑗 .𝐻1 𝑗 + 𝑙 + 𝐻2 𝑗 .𝐻2 𝑗 + 𝑙                 [9]

𝑁−𝑙

𝑗=1
 

𝑁is the length of the macromolecule sequence, i.e., the total number of amino acid residues. 𝐻1and 𝐻2are the values 

of hydrophobicity and hydrophilicity properties, respectively. They are used to represent the similarity or difference 

between amino acids at two positions 𝑗 and 𝑗 + 𝑙. l is the offset between two indices in the macromolecule sequence. 

If 𝑙 = 1, we study interactions between adjacent amino acid residues, and for 𝑙 > 1, we consider interactions 

between residues separated by a specific number of positions in the sequence, allowing us to capture long-range 

interactions. 

Here, 𝐶𝑖 ,𝑗 =
1

𝑖
𝐷 𝑅𝑖 , 𝑅𝑗 𝑤𝑖𝑡ℎ𝑖 = 1 …… 20  𝑎𝑛𝑑𝑗 = 1 …… 20       [10]  .  

The 𝐶𝑖 ,𝑗 represent the physicochemical distance values between amino acids in the sequence. Specifically, 𝐶𝑘 ,𝑖  is the 

physicochemical distance value at position k for amino acid i. 𝐶𝑘+1,𝑗 is the physicochemical distance value at 

position k+1 for amino acid j. These values are used to calculate the transition frequency between amino acids i and 

j in the sequence. L is the length of the macromolecule sequence. 
1

𝑖
 is the weighting function for rank i. 

𝐷 𝑅𝑖 , 𝑅𝑗 =
1

2
  ℎ1 𝑅𝑗 − ℎ1 𝑅𝑖  

2
+  ℎ2 𝑅𝑗  − ℎ2 𝑅𝑖  

2
           [11] 

𝑅𝑖and 𝑅𝑗are the amino acid residues of rank i and j, respectively. Then, ℎ1 𝑅𝑗 and ℎ1 𝑅𝑖 are the respective 

numerical values of the hydrophobicity of residues 𝑅𝑖and 𝑅𝑗 , and ℎ2 𝑅𝑗  and ℎ2 𝑅𝑖 are the values of hydrophilicity 

for 𝑅𝑖and 𝑅𝑗 . These values are calculated using the following formulas: 

 
 
 

 
 ℎ1 𝑅𝑖 =

𝐻1
0 𝑅𝑖 −  𝐻1

0 ℝ𝑘 /2020
𝑘=1

  [𝐻1
0 𝑅𝑖 −  𝐻1

0 ℝ𝑘 /2020
𝑘=1 ]2/2020

𝑡=1

 h2 Ri =
H2

0 Ri −  H2
0 ℝk /2020

k=1

  [H2
0 Ri −  H2

0 ℝk /2020
k=1 ]2/2020

t=1

  [12] 

The ℝ𝐤values range from 1 to 20 and represent the 20 natural amino acids according to the alphabetical order of 

their one-letter codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y. 
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The architecture (flowchart) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:-Algorithmic diagram of the OTE-24 approach. 

 

In our study, we undertook a methodical approach to extract meaningful features from amino acid sequences. First, 

for each sequence, we calculated the physicochemical distance values, which allowed us to construct an L×20 

matrix, where L is the length of the sequence. Next, we determined the pseudo-amino acid components specific to 

each amino acid, which are essential for capturing important information about the sequence. 
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At the same time, we generated a bigram feature vector from the data of the matrix C. These bigram vectors capture 

the local relationships between amino acids, taking into account successive pairs, enriching the sequence 

representation. These two vectors (the APAAC component vector and the bigram vector) were then concatenated to 

form a global vector that captures both the physicochemical characteristics and sequential relationships. 

 

Finally, this global vector was fed into a classifier based on the Random Forest algorithm for the learning and 

prediction phases. 

 

The evaluation metrics of the model. 

We use widely recognized measurement criteria in the literature [35], [36] to evaluate the performance of our 

proposed approach and compare it with other existing models. These criteria include accuracy (Acc), precision 

(Pre), sensitivity (Sen), negative predictive value (NPV), F1 score (F1), and Matthews correlation coefficient 

(MCC). Accuracy (Acc) assesses the overall proportion of correct predictions made by the model, including both 

correctly predicted positives and negatives. Precision (Pre) measures the proportion of positive predictions made by 

the model that are actually correct, indicating its ability to limit false positives. Sensitivity (Sen), also called recall, 

evaluates the proportion of true positives detected by the model among all the actual true positives, which is crucial 

for identifying all real interactions. Negative predictive value (NPV) quantifies the proportion of true negatives 

among all negative predictions, ensuring that the model minimizes false negatives. The F1 score (F1) is a harmonic 

mean of precision and sensitivity, offering a balance between the ability to detect true positives and avoid false 

positives. The Matthews correlation coefficient (MCC) evaluates the correlation between the model's predictions 

and the actual observations, taking into account all cells of the confusion matrix to provide a global assessment of 

the model’s performance. These metrics allow us to assess the model's ability to effectively discriminate between 

interactions and non-interactions between biological macromolecules, which is crucial for the reliability and 

practical usefulness of the model in biomedical research [27]. The AUROC and AUPRC measures are essential for 

evaluating models predicting interactions between biological macromolecules. AUROC assesses the model's ability 

to distinguish true interactions from non-interactions by integrating the ROC curve, which represents sensitivity 

versus 1 - specificity across all classification thresholds. A high AUROC score near 1 indicates strong 

discrimination capability. In contrast, AUPRC focuses on precision and recall across different classification 

thresholds, with a high value indicating good precision and high recall, both of which are essential for applications 

requiring accurate detection of biological interactions. These metrics provide a comprehensive evaluation of the 

model’s performance by integrating both its discriminative ability and its precision across the full range of decision 

thresholds for interactive and non-interactive macromolecules. The formulas for calculatingthesemeasures are: 

 Accuracy (Acc) 

 𝐀𝐀𝐂 =
TP +TN

TP +TN +FN +FP
         [13] 

 

 Precision (Pre) 

𝐏𝐫𝐞 =
TP

TP + FP
                [14] 

 Sensitivity(Sen) (Recall) 

𝐒𝐞𝐧 =
TP

TP + FN
                 [15] 

 NegativePredictive Value (NPV) 

𝐍𝐏𝐕 =
TN

TN + FN
                 [16] 

 Score F1 (F1) 

𝐅𝟏 = 2.
Pre .∗ Sen

Pre +   Sen
         [17] 

 Specificity(Spe) 

Spe =
TN

𝐓𝐍 + 𝐅𝐏
      [18] 

 Matthews Correlation Coefficient (MCC) 

𝐌𝐂𝐂 =
TP ∗ TN − FP ∗ FN

  𝐓𝐏 + 𝐅𝐏 ∗  𝐓𝐏 + 𝐅𝐍 ∗  𝐓𝐍 + 𝐅𝐏 ∗ (𝐓𝐍 + 𝐅𝐍)
      [19] 

 Area Under the ROC Curve  (AUC-ROC) 
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𝐀𝐔𝐂𝐑𝐎𝐂 =  Sen FRP−1 t  d(1 − Spe FRP−1 t  
1

0

      [20] 

 

Where FRP−1 t is the inverse function of the false positive rate for a decision threshold t. 

 Area under the precision-recall curve (AUPRC) 

𝐀𝐔𝐏𝐑𝐂 =  Pre  t  d(Recall)
1

0

      [21] 

True Positives (TP): Represent the interactions between macromolecules that we correctly predicted. For example, 

when we predict that an interaction occurs between two proteins, and this prediction is confirmed by experimental 

data, it constitutes a true positive. 

 

True Negatives (TN): Correspond to pairs of macromolecules for which we correctly predicted that no interaction 

occurs. For example, if we predict that a specific enzyme does not interact with a particular substrate, and this is 

confirmed by the data, it is counted as a true negative. 

 

False Positives (FP): Are situations where we incorrectly predicted that an interaction occurred between two 

macromolecules, while in reality, it does not occur. For example, if our model suggests that protein A interacts with 

protein B, but this interaction is not observed experimentally, it constitutes a false positive. 

 

False Negatives (FN): Occur when our model fails to detect an interaction that actually exists between two 

macromolecules. For example, if two macromolecules do interact but our model does not predict this interaction, it 

is counted as a false negative. 

 

By analyzing these categories (TP, TN, FP, FN), we evaluate the overall performance of our prediction models. 

This evaluation is crucial for refining our approaches and improving the accuracy of our results in predicting 

interactions between biological macromolecules. 

 

Results:- 
In this section, we present the results obtained and compare them with those reported by other researchers using 

different methods. For this project, we developed a method based on sequence analysis to predict interactions 

between biological macromolecules. Unlike some previous studies, we used Python version 3.11.6 with JupyterLab 

in the Anaconda environment version 2.5.4, which allowed us to benefit from improved dependency management 

and a powerful interactive development environment. 

 

Predictive performance of the proposed approach 

In the predictive part, we used the same principle of splitting our datasets to train the chosen model with our 

extracted data. These features, in the form of numerical vectors, are used as input for our OTE-24 model. We 

performed 5-fold cross-validation on our reference dataset, which allowed us to train 3 different models. The results 

obtained are presented in Figure 2. Model 2 showed the best performance with a precision of 99.29%, an accuracy 

of 99.52%, a recall of 99.75%, an F1-score of 99.52%, and an area under the ROC curve (ROC AUC) of 99.99%. 

On average, the performances are 98.83% for precision (PRE), 99.4721% for accuracy (ACC), 98.83% for recall 

(SEN), 98.67% for the F1-score, and 83.67% for the ROC AUC. The high values of these different metrics, all 

above 98% except for the ROC AUC, indicate excellent predictive performance. 
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Figure 2:- Performance comparison of the three models trained on the HPRD database. 

 

Comparison of our approach with other techniques 

We compared our method with several other commonly used feature extraction techniques from the literature, 

applied to the same human dataset. These techniques include the bigram method [20], DWKNN (Ensemble) [37], 

BOW-GBDT [38], and DTI-BERT [39]. The comparison is based on various evaluation metrics. Figure 3 highlights 

these different comparison metrics between our approach and the approaches from the literature. 

 
Figure 3:- Comparison of the OTE-24 model with models from the literature. 
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We compared our method with several other commonly used feature extraction techniques found in the literature, 

applied to the same human dataset. These techniques include the bi-gram method [20], DWKNN (Ensemble) [35], 

BOW-GBDT [36], and DTI-BERT [37]. The comparison is based on various performance metrics. Figure 3 

highlights the differences in these metrics between our approach and those from the literature. 

 

This comparison revealed an accuracy (ACC) of 96.62%, 91.90%, 88.50%, and 85.10% for the bi-gram, DTI-BERT, 

BOW-GBDT, and DWKNN (Ensemble) methods, respectively, compared to 99.52% for our approach (OTE-24). 

This represents an improvement of 2.90%, 7.62%, 11.02%, and 14.42%, respectively. 

 

Regarding precision (PRE), the rates are 95.38%, 92%, 93.10%, and 87.10% for the bi-gram, DTI-BERT, BOW-

GBDT, and DWKNN (Ensemble) methods, respectively, compared to 99.28% for our approach. This corresponds to 

an improvement of 3.90%, 7.28%, 6.18%, and 12.18%, respectively. 

 

For sensitivity (SEN), we observed rates of 97.81%, 92.20%, 79.80%, and 81.10% for the bi-gram, DTI-BERT, 

BOW-GBDT, and DWKNN (Ensemble) methods, respectively, compared to 99.75% for our approach. This results 

in an improvement of 1.94%, 7.55%, 19.95%, and 18.65%, respectively. 

 

As for the Matthews Correlation Coefficient (MCC), the rates are 91.77%, 84%, 74%, and 67% for the bi-gram, 

DTI-BERT, BOW-GBDT, and DWKNN (Ensemble) methods, respectively, compared to 97.42% for our approach. 

This represents an improvement of 5.65%, 13.42%, 23.42%, and 30.42%, respectively. 

 

Our analysis shows that our technique surpasses the bi-gram method by at least 1.94%, DWKNN (Ensemble) by 

12.18%, BOW-GBDT by 6.18%, and the DTI-BERT method by 7.28% on all the studied metrics. 

 

In the study of macromolecular interaction prediction, authors commonly use classification algorithms such as 

Support Vector Machine (SVM) [20], Random Forest (RF) [38], and K-Nearest Neighbors (KNN). In our case, we 

used the Random Forest algorithm and determined the hyperparameters using the grid search method. The optimal 

hyperparameters obtained are: 

 

Bootstrap: True, max_depth: None, min_samples_leaf: 1, min_samples_split: 5, n_estimators: 100.  

 

Discussion:- 
The results obtained in our study reveal better performance of our method for predicting interactions between 

biological macromolecules. Through five-fold cross-validation, we trained three distinct models, and the 

performances achieved, particularly for model 2, demonstrate the efficiency of our approach. With a precision 

(PRE) of 99.29%, an accuracy (ACC) of 99.52%, a recall (SEN) of 99.75%, an F1-score of 99.52%, and an area 

under the ROC curve (ROC AUC) of 99.99%, our method significantly outperforms other techniques compared in 

the literature. On average, the observed performances, with values of 98.83% for precision, 99.4721% for accuracy, 

98.83% for recall, 98.67% for F1-score, and 83.67% for ROC AUC, confirm the robustness and effectiveness of our 

approach. 

 

A comparison with commonly used feature extraction techniques in the literature, such as the bi-gram method, DTI-

BERT, BOW-GBDT, and DWKNN (Ensemble), highlighted the superiority of our method. For instance, our 

approach achieves an accuracy rate of 99.52%, surpassing the bi-gram, DTI-BERT, BOW-GBDT, and DWKNN 

(Ensemble) methods by 2.90%, 7.62%, 11.02%, and 14.42%, respectively. Similarly, for precision, our method 

outperforms the other techniques by 3.90% to 12.18%. The Matthews Correlation Coefficient (MCC) also shows an 

improvement ranging from 5.65% to 30.42%, depending on the method compared. These results not only confirm 

the efficiency of our approach but also its ability to better capture the complex interactions between biological 

macromolecules. 

 

One of the main strengths of our approach lies in the optimized use of Random Forest, combined with a particularly 

effective feature extraction method. Our feature extraction method appears to better capture the relevant information 

from amino acid sequences compared to other methods. Unlike models like DTI-BERT, which may require larger 

data volumes for effective learning, our method seems more suitable even for moderately sized datasets. The choice 

of Random Forest proved to be wise due to its ability to handle complex datasets with nonlinear relationships. 
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Moreover, the optimization of hyperparameters through the grid search method allowed us to maximize the model's 

performance, making our method not only precise but also robust and generalizable to other datasets. 

 

Another key advantage of our method is its flexibility. Unlike methods like DTI-BERT, which require substantial 

data volumes for optimal learning, our approach performs well even with smaller datasets. This feature is 

particularly valuable in the context of predicting interactions between biological macromolecules, where data can be 

limited. 

 

Although our method shows exceptional overall performance, certain limitations deserve to be discussed. The 

average value of the ROC AUC, although respectable at 83.67%, is lower than the other metrics. This could suggest 

sensitivity to false positives or false negatives, an aspect that could be improved in future work. 

 

Furthermore, the complexity of the Random Forest model, although beneficial for precision, can pose challenges in 

terms of computation time, especially during hyperparameter optimization. Future research could explore alternative 

approaches to reduce this complexity without sacrificing precision, such as integrating lighter ensemble learning 

techniques or using more efficient feature selection methods. 

 

Conclusion:- 
In this study, we presented a new feature extraction method to predict interactions between biological 

macromolecules. By generating feature vectors from macromolecule sequences using a combination of bigram 

methods and pseudo-amino acid descriptors, our approach demonstrated its effectiveness. The results obtained, with 

precision and accuracy rates exceeding 99%, attest to the robustness and reliability of our method. 

 

The superiority of our approach compared to traditional techniques lies in its ability to extract relevant and 

representative information from macromolecule sequences, even from moderately sized datasets. This flexibility, 

combined with the use of an optimized Random Forest model, allowed us to maximize predictive performance while 

ensuring a high generalization of results. 

 

We can therefore conclude that our proposed extraction approach constitutes a significant advancement in the field 

of molecular biology. It offers a practical and effective solution for the analysis of macromolecular interactions, 

thereby contributing to the understanding of fundamental biological processes and the development of new 

therapeutic applications. 
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