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We study the drift parameter estimation problem for a fractional
Vasicek-typemodel X:= {X;,t > 0}, that is defined as dX; = 0(n +
X )dt + dBf!, t > 0 withunknown parameters 6>0 and p €R, where
{BH,t > 0}is a fractional Brownianmotion of Hurst index H €]0, 1.
Let 6,and {i,be the least squares-type estimatorsof Oand p, respectively,
based on continuous observation of X. In this paper weassume that the
process {X,t > 0}is observed at discrete time instants t;=iA,,i=1,...,n.

Tightness. We analyze discrete versions O,and fi_for O,and fi, respectively. We
show that the sequence /nA, (é: — 6) is tight and /nA, (I, —p) is
not tight. Moreover, we prove the stronge consistency of 9, .
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed
with credit to the author."”
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2010 AMS Classification Numbers: 60G15; 60G22; 62F12; 62M09; 62M86.

1. Introduction

Let BY: = {BH,t > 0} bea fractional Brownian motion (fBm in short) of Hurst indexH € ]0,1], that is, a centered
Gaussian process starting from zero withcovariance

1
E(B{'B;) = E(t2H + 2 — |t —s|M)

. 1 1 . .
Notice that when H = 7 Bzis a standard Brownian motion.

Consider the fractional Vasicek-type of the first kind X: = {X,, t > 0}, defined as the unique (pathwise) solution to

dX, = 0(u + X)dt + dBfl, t>0,

(1.1)

XO b O,
where p € Rand 8 > Oare considered as unknown parameters.
Let 07 and fi; bethe least squares-type estimators of and p, respectively, based oncontinuous observation of X. It is
well known that, least squares estimators method are motivated by the argument of minimize a quadratic function pa
and 0, respectively,

(16) & f, 1% — 0(u+X)I? dt
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where X,denotes the differentiation of X,with respect to t. By taking the partial derivative for pa and 0, separately,
and then solving the equations, we can obtain the least squares estimators of pa and 0, denoted by 0; and [
respectively,

N %TX% —Xp [} X,ds
GT =
T T
T [, X2ds — (f; X,ds)

ST Xeds— X [} Xsds
Hy = 1 T

5 TXy — fo X, ds
The study of various problems related to model (1.1) has gained attention in recent years. In finance modeling pcan
be interpreted as the long-run equilibri-um value of Xwhereas Orepresents the speed of reversion. For a motivation in
mathematical finance and further references, we refer the reader to [2,3, 4, 5]. When B'is replaced by a standard
Brownian motion, the model (1.1) with p = 0 was originally proposed by Ornstein and Uhlenbeck and then it was
generalized by Vasicek (see [14]).Recent works [8], [11] and [15] developed statistical inference for several
fractional Ornstein-Uhlenbeck (fOU in short) process in the ergodic case . The case of non-ergodic fOU process is
presented in [1], [6], [7], [9] and [10].
Let us describe what is known about the asymptotic behaviors of the estimators (1.2) and (1.3), studied in [9]:
® foreveryH € (0,1), we have almost surely, asT — «,

- (1.2)

(1.3)

(O, 57) = (6, 1) (14)
®  suppose that H € (0,1), andN;~N(0,1), N,~N(0,1), and BY are independent, then as T — o,
Law [200,uN, 1
T8y — 0), T' (I - —B 2N ), 15
(e ( T ) (HT u))_)<P+CBH,oo g1 (1.5)

(SZBH = HE(ZZHH), and CBH,w~N(0’ GEH) is independent of N; and N,.

From a practical standpoint, in parametric inference, it is more realistic and interesting to consider asymptotic
estimation for (1.1) based on discrete observations. Then, in the present paper, we will assume that the process X
given in (1.1) is observed equidistantly in time with the step sizeA, :t;=iA,,i=1,...,n and T,, = nA,denotes the length
of the"observation window".

Here, based on discrete-time observations of X defined in (1.1), we will analyse thefollowing discrete versions
0,and fr for f,and t, respectively, defined as

1 Xr,
— EX%H - n Zf;l Xti—l
6, = — . (1.6)
Al'l Zin=1 Xti_l - Tn (Zin=l Xti_l)
1
— An ZP=1 thi_l - ixtn AH Zf;l Xti_l
o=t )

anXTn - An Z?zl Xti_l
Our paper is organized as follows. In Section 2, we give the basic knowledge about Young integral and some
preliminary results, which will be very useful to our main proof. In Section 3, based on discrete observations of X
defined in (1.1), we study the rate consistency of the estimators 6, and [
2. Preliminaries

In this section, we briefly recall some basic elements of Young integral (see [16] ), which are helpful for some of
the arguments we use.
For anya € [0, 1],, we denote byH*([0,1])the set of Holder continuous functions, that is, the set of functions
f: [0, T] — Rsuch that

Sup f(t) — f(s)I
0<s<t<T (t—s)*
We also set [f].,: = Supyejo,r1/f(t)| and equipH *(|[0, T]|) with the norm
11l 2= 1] + If].0-

Let f € H*([0, T]), and consider the operator T;: C1([0, T]) — C°([0, T]) defined as

T:(@)(® = f fwg'(wdu, t € [0, T].

Ifl, =

281



ISSN(O): 2320-5407 Int. J. Adv. Res. 13(05), May-25, 280-287

It can be shown (see, [13]) that, for any B € ]1 — o, 1[, there exists a constantC,gr > Odepending only on o, Band
Tsuch that, for any g € H ([0, T]),

s fwe' @dull < Coprlifilligllp-

We deduce that, for any a € ]0,1[ any f € H*([0,T])and any B € |1 — a, 1[ the linear operatorT;: C1([0,T])
HPB(0,T]) = HP([0,T]), defined as T;(g) = fo f(uw)g'(u)du is continuous withrespect to the norm . [|g.

By density, it extends (in an unique way) to an operator defined on HP?. As consequence, if f € H*(|[0,T]|), if
g € HP(|[0, T]])and if a + B > 1 then the (so-called) Young integral fo f(u)dg(u)is (well) defined as being T;(g).
The Young integral satisfies the following formula. Let f € H*([0, T]) with

a €]0,1[ andg € H#([0, T])with B € ]0, 1[such that @ + B > 1. Then [; f,dgyand [; f,dg, are well-defined
as Young integrals. Moreover, for all t € [0, T],

fege = fodo+ fo Gudfu+t fo fudga . @.1)

In order to study the strong consistency, we will need the following direct consequence of the BorelCantelli Lemma
(see Kloeden and Neuenirch (2007)), which allows us to turn convergence rates in the p-th mean into pathwise
convergence rates.

Lemma 2.1. ([12]) Let B > 0 and let (Z,),enbe a sequence of random variables. If for everyp > 1there exists a
constant ¢, > Osuch that for all n € N,

(E1Z, ") 7 < €.,
then for all £ > Othere exists a random variable n such that
|Z,| < n,.n"F+ealmost surely

for all m € N. Moreover,E|n,|P < o« for allp > 1.
Next, let us note that the unique solution to (1.1) can be written as

t
X, =u-1)+ e‘”f e %dBf , t>0. (2.2
0
We will also need the following processes, for every t > 0

oi=[, e "dBY ; Y= [ X,dsZ,:= [ e®Blds (2.3)
Using (2.2), we can write
X, =u(e % -1)+e%,. (2.4)
Furthermore, by (1.1),
X, = nét + BY . (2.5)
Moreover, applying the formula (2.1), we have

t
{(i=e%Bi +0 f e %Blds = e 9Bl + 0z, . (2.6)
0

From (2.4) we can also write

X, =e%Z,, WithZ,=pu(1-e%+¢ t=0. 2.7)

Lemma 2.2.([6]). Assume that the process B has Hélder continuous path of order y € 10, 1[. Let(be given by (2.3).
Then for all € € ]0, y[the process (admits a modification with (y — £)-Holder continuous paths.

Moreover

Z,>Z,:=[ e®Bids, § -7,:=0Z, (2.8)

almost surely and in L?(Q)as T — .

Lemma3.2. ([9]). Assume that H € (0, 1). Then, almost surely, as

e Xr > p+, (2.9)
T
1
e‘”’f Xsds - 5(” +4.) (2.10)
e—oT T 1
T fo sXSds—>§(u+(oo) (2.11)
e T T
Wfo |Xs| dsds — 0 for any 6>0 (2.12)
T
1
e‘z‘”J Xids > —(pn+,)° (2.13)

where is defined in Lemma 2.2.
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From now on, the generic constant is always denoted by C(.) which depends on certain parameters in the
parentheses.

3.Main results

Lemme 3.1. Let (Sn, n= 1) and (R,, n = 2) be a random sequences defined by

=0, XX, 5 Spi= 0, X eI (ZE - 23 ). ()
Then for every n=2,
S, e 20Tn = ZAn 1(Ztn . — R (3.2)
In addition if A,— 0 and nAL**— cofor some a > 0,
R,, = 0 almost surely asm — oo, 3.3)

In particular,
2
S,e 20T % almost surely asm — . (3.4)

Proof. Using (2.7), we can write for every n > 2,

—26T, _ —20(n—-i)Ay p—26A, 72
S,e 20T = AnZe (n=Dln =200 72

=
= zaAAn Z e 200 =Dbn (1 - 2419A )Z% 1
e“%n —1 e~98n /i
i=1
This imply that
A n . .
S, e~20Tn = e29A,,n_ 12 1(e—20(n—1)An _ e—20(n+1—1)An)Z%i_1
i=
A,
—20(n+1-i)A
eZBAn _ [ th—1 Z (Ztl 1 tl Z)e (n D n]
A,

= S20h, — 1 [Z%,_, — R
which implies (3.2).
Let us now prove (3.3). First, observe that A,— 0and nAl**— oimply that nA,— c. On the other hand, (2.8)
implies
Zr > p+8,(3.5)
almost surely and in L2(Q) as T — oo.
Thus, by using (2.7),{{;, t = 0} is Gaussian and (3.5), we obtain for every p = 0,
1

1 1
(E[|Z%i - Z%i—1|p])p = (E“(Zti - Zti—1)(zti1+ Zti—1)|p])p
< C(u 6, H)(E“Zti - Zti—1|p])z_)

1
S C(Il: 01 H) (|e_0ti - e_eti_1| + (E”(tz - (ti—l |p])p

N =

< comom (e 1]+ (e[, 5., )
< C(p,u,0,H)(A,e % + AHe=0iln)
< C(p, M 0; H)A,I-lle_ati’ (3 1)

~L _, 0 and the following inequality given in [10] forevery i =1,...,n, n >1,

n

0A
where we used

(k[ 4o ) = cComatte o

Thus for every p > 1,
n—1 2

1 14
(E“Rnlp])p < Z e 20(n-bi, (E”Z%l — Z%i—1|p])
i=1
n-1
< C(p,u,0,H)e "4 pH Z o0y
i=1
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1 — 01y
<C(p,u 0 He np\Heg=0tm

1—e%n
< C(p,p, 6, H)A] 1e 0nin . (3.7
The last inequality comes fromA,,— 0 and 1_eA+9An - % .

Taking a constant Bverifyingl’%y < a < f,thereis € > 0 such that & = sy

Hence, we can write
(nA,)PAL Y= nE(nalte)b— . (3.8)
As a consequence, by (3.7) and (3.8),
1
(E[IR,[PDP < C(p, 0, H)AL e =0nln
1 (na,)F
<C(p,6,pH) nf(nAL+@)f—¢ gbniy
< C(p,6,p, H)n™. (3.9)
Therefore, by combining (3.9) and Lemma 2.1, the convergence (3.3) is proved.
On the other hand, the convergence (3.4) is a direct consequence of (3.2), (3.3)
and (3.5).0
Lemme 3.2. Define for everyn > 1
—20Ty,
D,: =% "X, (3.10)
Assume that A,— 0 and nALl™*— oofor some a > 0, then, for every n > 1,
2a
E(D,*) < €(6,n, H, a)n"T+a (3.11)
Moreover, forevery 0 < 6 < 1,

2 _2a(1-H)
E [((nAn)5Dn) ] <CO,umH an ta . (3.12)
As a consequence, forevery 0 < 8 < 1,

(nA,)? - 0 almost surely asn - . (3.13)

Proof.We first prove (3.11). Using (2.7) and (3.5), we have

e20Tn n e~20Tn n
E(D2) = — Z E (Xti—1Xt,-_1) = Z eOti-110t 1 | (Zti—lztj—l)
ij=1 ij=1
e~20Tn n e 9Tn n z
< C(e, U H) — Z eeti—1+0tj_1 = C(e’ u, H) - Z efti-1
ij=1 i=1
o wH e~0Tn gfnin _ 1 2
- ( l”l ) n egAn _ 1
<CO,uH ( 1 _ L )2
=CO.pH ni, e — 1
1
<CO,uH) L (3.14)
Settingy = 1%{ , We obtain X
a
, -2y n Tra _2a
E(Dn) < C(O,u,H)W = C(O,u,H)T < C(G,M,H,a)n 1+a
(nAl+)Tra

which proves (3.11).
For (3.12), by (3.14), we have,
E[((nAn)HDn)Z] S C(el l‘,'l H) (nAn)_Z(l_Y) .

Thus, using similar arguments as in (3.8), we can conclude
2a(1-H)
E[(nA)"D,)?] < C(O,m, H a)n™ 15a

which implies the desired result.

Finally, the convergence (3.13) is a direct consequence of (3.12) and Lemma 2.1. o

Definition 3.1. Let {Z,,} be a sequence of random variables defined on (Q, F, P). We say {Z,,} is tight (or bounded
in probability), if for every € > 0, there exists M, > 0 such that,
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P(|Z,| >M,) <&, foralln.

Theorem 3.3. Let H € (0, 1). Suppose that A,— 0 and nAL**— oofor some a > 0. Then, for every q > 1,
Ale%Tn (@, — 0) is not tight. (3.15)

In addition if we assume that nA3— 0 as n — oo, then the estimator 8,, is

\/T_n—consistent in the sens that the sequence

JT.(0, — 0) is tight (3.16)
and
V Tn(ft;, — ) is not tight. (3.17)

Proof. Fix ¢ = 1. From (1.6) and (2.7) we can write
236%™ (87, - 6)

1.,
= AdebTn EZT’I — Zr,Dn -0
n 2
e20Tns, — (\/T,D,)
AlefTn 204, A
_ —20Tp g _ n 2
o er [( Tn = 21, 1) + (1 T e20h, _ 1) 77, — 26 (e Sn 200, _ 1ZTn—1)]
2e20Tns, — 2(,/TnDn)
Moeover,
A A
20T ¢ _ n 2 _ ,—20T, e20ti-172 n 2
e Sn 2200, _1 Zr, =€ Anz NZE T @200, _ 1ZTn—1
A n n
— n —20(Tp—t) 72  _ —20(Tn—ti—1) 72
= o208, _ 1 (Z e 20—t )Zti—l z e 20—t 1)Zti ZTn 1>
A i=1 i=1
= ezaAT,;_l R, ,

where R,, is given by (3.1).
Thus we obtain
A%e?Tn (9, - 6)
Aq 0T, ZGA,, 20A
_ 2 n
zeZBTnS [(ZTn Tn 1) + < m) Tp—1 + (m) Rn] . (3 18)

According to (3.6), we get

1

g s
(E [(Aﬁe‘"”(z%n ) ]) < C(0,m H)AL S 0. (3.19)
We also have
20A, e?%n — 1 204, A
q,0Tn (1 _ a+1,6T, ~
Aje (1 eZBAn—1) A e ( A2 ezeAn_1>_)°° (3.20)
since
6Ty 20An_1_
AZHeBTn (nAq+a) q+1 — oo and (e AZ 292n ezsAA:_l) 0
T,* "
Furthermore, by (3.7),
1
(E[(a%e°™R,)*|)* < €O, 1 )AZ™" "> 0. (3.21)

Combining (3.18), (3.19), (3.20), (3.21) and (3.4), we conclude that for every q > 1,A%e%T»(8,, — ) is not tight.
For 0 < q < 1 we have

15e™(8,, — 8) = A1 (8,e°™ (8, - 6)).

which completes the proof of (3.15), where we used the previous case and the fact that Agl_1—> 0,

Next, let us prove (3. 16) It follows from (3.18) that

JTn(6, - 6) = m [(Z -zF, )+ ( zzgiA" )Zrn_1 + ( zzoii'il) Rn] -
Combining this with
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1
2

(E [(\/ Tn(Z%'n - Z%n_l))ZD < C(0,Y)A T, e ®™n > 0,
200 _4_
VT (1= ) = Vs (* A;[ 08 _tu ) g
11—y
2+ a =0Ty

(e[ Tr ) = o e com Tt o,

(nA1+a) a

and the convergence (3.4), we deduce that

JT.(6,-8)—>0 (3.22)
in probability, which proves (3.16).
Now it remains to prove (3.17). Using (1.6) and (1.7), we can show that 8,, and i, satisfy

Tn
X7, (Zl (X, — N X, 1)

n tl 1__(2 tz 1)

a:lmlTn =

Combining this with (1.1), we obtain
Tgan(ﬁrit - I‘)
n ~ n
= uT,(6-8,)+0 j X,dt + B — GnAnz X, ,
0 i=1

= uT,(0-8,)+6, ( " X dt — A, Z?=1Xt,-_1) +(0-8,)f,"X.dt+ B .

Thus, we obtain
VT (i —
H

T A 1 -8,) (™ B
=”E(e—en)+—<j X, dt — A Z X, 1) — ")f X, dt + —=
en \/Tn 0 en\/Tn

=A,+B,+C,+D,
Theorem 3.2 and the convergence (3.22) imply that 4,, = 0 in probability.

We can write C,, = (9 0") fT"Xt dt = ‘/T_"(a ~6n) ( ! fOT"Xt dt).

Then, Theorem 3.2 and the convergence (3.22) imply that \/T_"( ), Oin probability. Moreover, using 1’Hopital
rule,
1 (Tn
lim — | X,dt=1lim X, = lim(u(1—e %)+ 3 ) =p+1,.
Tpoo T4 Jg Tp—oo n Tpoo n

Hence C,, = 0in probability.
Recall that E[(BY — BT)?] = |t —s|?" ; t,s > 0.
Then for H € ]0,%[ , we have almost surely, as T,, = o

H
B Tn

T
Combining this with Theorem 3.2 we obtain that D,;:

— 0, by Borel-Cantelli Lemma.

=5 \/_n — 0in probability.

B 1 (f X, dt — A, E X ) GT"<—"T "th —6Tnp gn X ) (3.23)
= — = n —e n ) .
T\ 1 T o (VAT

n

By lemma 2.3, we have e 9Tn fo X dt - L(u +¢.) almost surely.
We also have

n 2 n n
E (e"’TnAnz Xti_1> = A2¢~20Tn Z E (Xti_lxt]._l) = A2e~26Tn Z eOli-1+04-1| (zti_lzti_l).
i=1 ij=1 ij=1

Then, by using the same arguments as in Lemma 3.2, we obtain

286



ISSN(O): 2320-5407 Int. J. Adv. Res. 13(05), May-25, 280-287

eGnAn_l 2

E|(e™a, X, XtH)Z] < C(u, 6, H)AZe 2T ( ) < €6, H)AZ> 0. (3.24)

ef8n_—1
efTn

Combining (2.10), (3.23), (3.24), and the fact that i

Consequently, the convergence (3.17) is proved. Thus the desired results are obtained. o

— oo, we conclude that B,, — co.

Theorem 3.2. Assume that 0 < H < 1. Suppose that A,— 0 and nAL**— 0 for some 0>0. Then asn — oo,
6, — Balmost surely. (3.25)

Proof. We can write
1 X

_ >XF, =

9 2

" n 2 An n 2
Ay Xy Xti_l ~n (Zi=1 XtH)

Th yn
n Zi=1xti,1

1,-20Tq 2
e nX%, —Zr,Dn

e=208Tng, —( nAnDn)2

Thus, according to (2.9), (3.4), (3.5) and (3.13), we can deduce that
B, — Oalmost surely as n — 0. 0
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