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Introduction:-

Let BH: = {BH, t > 0} be a fractional Brownian motion (fBm in short) of Hurst indexH € ]0,1], that is, a centered
Gaussian process starting from zero with covariance

1
E(BIB) = E(tZH + s2H — |t — s|2H)

1

Notice that when H = i Bzis a standard Brownian motion.
Consider the fractional Vasicek-type of the first kind X: = {X,, t > 0}, defined as the unique (pathwise) solution to

{dxt =0(u+Xpdt+dBf, t>0,

(1.1

X, =0,
where p € Rand 6 > Oare considered as unknown parameters.
Let 8 and fi; be the least squares-type estimators of and L, respectively, based on continuous observation of X. It
is well known that, least squares estimators method are motivated by the argument of minimize a quadratic function
pa and 6, respectively,

T
(0) - f X — 0+ X)I? dt
0

where X.denotes the differentiation of X,with respect to t. By taking the partial derivative for pa and 0, separately,
and then solving the equations, we can obtain the least squares estimators of pa and 6, denoted by 8; and [
respectively,
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TXE — Xr f, X,ds

oy = ~ (1.2)
T [ X3ds — (f; X,ds)
[ X3ds = >Xq [ Xgds

5= 2 (1.3)

“TXp — J, Xyds
The study of various problems related to model (1.1) has gained attention in recent years. In finance modeling pcan
be interpreted as the long-run equilibrium value of Xwhereas Orepresents the speed of reversion. For a motivation in
mathematical finance and further references, we refer the reader to [2,3, 4, 5]. When BHis replaced by a standard
Brownian motion, the model (1.1) with p = 0 was originally proposed by Ornstein and Uhlenbeck and then it was
generalized by Vasicek (see [14]).Recent works [8], [11] and [15] developed statistical inference for several
fractional Ornstein-Uhlenbeck (fOU in short) process in the ergodic case . The case of non-ergodic fOU process is
presented in [1], [6], [7], [9] and [10].

Let us describe what is known about the asymptotic behaviors of the estimators (1.2) and (1.3), studied in [9]:

® for everyH € (0,1), we have almost surely, asT — oo,

(6r.157) = (6,) (1.4)
®  suppose that H € (0,1), andN, ~N(0,1), N,~N(0,1), and BH are independent, thenas T — oo,
— Law [200,uN, 1
oT _ 1-H (7~ _ B™ 2 _
(e°7 (87 —0), T (i — ) ) > (u o 9N1>. (15)
2n = %, and {gu ,~N(0, o3r) is independent of N; and N,.

From a practical standpoint, in parametric inference, it is more realistic and interesting to consider asymptotic
estimation for (1.1) based on discrete observations. Then, in the present paper, we will assume that the process X
given in (1.1) is observed equidistantly in time with the step sizeA,:t;=iA,,i=1,...,n and T, = nA,denotes the length
of the"observation window".

Here, based on discrete-time observations of X defined in (1.1), we will analyse the following discrete versions
B,and fi_for 6,and [i, respectively, defined as

12 XTy yn
ZXTn n Zi=1Xti_1

0. = - _ (1.6)
An Zin:1 Xt21—1 T (Z?ﬂ Xti_l)
ALY X2 —ix A YR X,

l,Tn= n &i=1t_q 2 Ptn TN 4i=1 2 (17)

~TXr, = An T, Xy,
Our paper is organized as follows. In Section 2, we give the basic knowledge about Young integral and some
preliminary results, which will be very useful to our main proof. In Section 3, based on discrete observations of X
defined in (1.1), we study the rate consistency of the estimators 6,and g

2. Preliminaries

In this section, we briefly recall some basic elements of Young integral (see [16] ), which are helpful for some of
the arguments we use.
For anya € [0, 1],, we denote byF*([0,1])the set of Holder continuous functions, that is, the set of functions
f: [0, T] — Rsuch that
If], = Sup |f(t) — £(s)

@ 0<s<t<T (t—s)*
We also set [f].,: = Supyefo|f(t)| and equip? (][0, T]|) with the norm
[Ille := Ifle + Ifl...
Let f € 2£*([0, T]), and consider the operator Tg: C*([0, T]) — C°([0, T]) defined as
Ti(@)(®) = J, fwg'(w)du, t € [0, T].

It can be shown (see, [13]) that, for any B € ]1 — o, 1, there exists a constantC, g+ > Odepending only on o, Band
Tsuch that, for any g € H*([0, T]),

1S fwg @dull, < Cagrliflaliglly.
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We deduce that, for any o € ]0,1[ any f € H*([0, T])and any B € ]1 — a, 1[ the linear operatorTe: C1([0,T]) c
HE([0,T]) —» HF([0,T]), defined as Te(g) = J, f(w)g'(w)du is continuous with respect to the norm |l. |l.

By density, it extends (in an unique way) to an operator defined on # 8. As consequence, if f € H*(|[0,T]|), if
g € HE(|[0,T]Pand if a + B > 1 then the (so-called) Young integral f, f(u)dg(u) is (well) defined as being T¢(g).
The Young integral satisfies the following formula. Let f € H*([0,T]) with
a €]0,1[ andg € H# ([0, T]with B €]0,1[such that @ + g > 1. Then | f,dg,and [, f,,dg, are well-defined as
Young integrals. Moreover, for all t € [0, T],

f9e = fogo + f Gudfu+ f fudge - @2.1)
0 0

In order to study the strong consistency, we will need the following direct consequence of the Borel-Cantelli Lemma
(see Kloeden and Neuenirch (2007)), which allows us to turn convergence rates in the p-th mean into pathwise
convergence rates.

Lemma 2.1. ([12]) Let B > 0 and let (Z,,)nbe @ sequence of random variables. If for everyp > 1there exists a
constant ¢, > Osuch that for all n € N,
(E|Z,P)'/p < CpnF,
then for all € > Othere exists a random variable n, such that
|Z,] <n..n7A*¢  almost surely
forall n e N. Moreover, E|n.|? <o forall p=>1.

Next, let us note that the unique solution to (1.1) can be written as
t

X, =u(e’ —1)+ eefj e % dBH , t>0. (2.2)
0
We will also need the following processes, for every t = 0
Goi=[ e®dBl ;Y= [ X,dszZ,:= [ e¥Blds (2.3)
Using (2.2), we can write
X, =u(e % —1) +e%¢,. (2.4)
Furthermore, by (1.1),
X, = ubt + BY . (2.5)
Moreover, applying the formula (2.1), we have
t
(e =e 9B + 6-[ e 9 Blds = e 9Bl + 07, . (2.6)
0

From (2.4) we can also write
X, =e%Z, WithZ, = pu(1—e%)+t>0. 2.7)

Lemma 2.2.([6]). Assume that the process B has Holder continuous path of order y € ]0,1[. Let{be given by (2.3).
Then for all € € ]0, y[the process { admits a modification with (y — &)-Holder continuous paths.
Moreover

Zy > Zoi=f, e OBlds, (> {oi= 07, (2.8)
almost surely and in L?2(Q)) as T — oo.

Lemma3.2. ([9]). Assume that H €(0, 1). Then, almost surely, as

e‘(’TXYT ->u+ (io (2.9)
e"”fo Xsds = 2 (1 + ) (2.10)
€_9T T 1

T fo sXgds —>5(,u+(w) (2.11)
o JT X, dsds > 0 for any 550 (2.12)
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T
1
e—zerf X2ds H%(u+{w)2 (2.13)
0

where is defined in Lemma 2.2.
From now on, the generic constant is always denoted by C(.) which depends on certain parameters in the

parentheses.
3. Main results

Lemme 3.1. Let (S,,,n = 1) and (R,,,n = 2) be a random sequences defined by

Sn: = An Z?:lxtzi_l l Sn: = An 2?2_11 e—ZB(Tn—fi) (thl - thi—l)' (31)
Then for everyn = 2,

S @=20Tn — _An
n

e2bn—1

(ZZ_, —Ry). (3.2)
In addition if A,— 0 and nAL**— oo for some a > 0,
R, — 0 almost surely asn — co. 3.3)

In particular,
2
S,e~20Tn — % almost surely as n — oo, (3.4)
Proof. Using (2.7), we can write for every n > 2,

n
20T, — —20(n—i)A —260A 2
S,e "—AnZe (=Dln g=200n72
i=1

n
— A” Z e 20(n-DAn (1 — 1 72
e20An _ 1 e204n ti—1"
i=1

A n
~20T, _ n E 20(-DAy _ ,—20M+1-D)Ap) 72
Sqe n e e— i:1(e n—e ”)Zti_l

A, n .
_ 2 E 2 2 —260(n+1-i)A
rTy— [an—1 - izl(Zti_l - Zfi_z)e (n+1-0) n]

A
= 2w, =7 | Ztns — Ral

This imply that

which implies (3.2).
Let us now prove (3.3). First, observe that A,— 0and nAL**— wimply that nA,,— c. On the other hand, (2.8)
implies
almost surely and in L2 () as T — co.
Thus, by using (2.7), {{,,t = 0} is Gaussian and (3.5), we obtain for every p = 0,
1 1

(E”thl - thi_llp])g < (E[l(Zfl - Zfi_l)(zfi + Zti_11)|p])E
< C(uw,0,H)(E[|2, - Z,,_ ["])?

<C(u6,H) <|e‘9ti — e'eti-1| + (E“(ri - fti_1|p])5)

1
<C(p,u.0,H) (e_etileeAn — 1| + (E [kfi - zti_1|2])2>
< C(p,u, 0, H)(A, e + Alle=0itn)
< C(p,u, 0, H)AH e 0, 3.1

6An _
¢ =2 5 0andthe following inequality given in [10] for everyi =1,...,n, n>1,

where we used

n
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1
(E 12y~ @a|’])” = o, myageou
Thus for every p > 1,

1 n-1 %
L o ,
(E[IR,IPDr < Z e—20(n-Dan (E“Zle _ thi_1| D
i=1
n-1
< C(p,u, 0,H)e e pll Z e—0(m—0a,
i=1
- e—9(n—1)An
< C(p,p, 6, H)e monafle™00n ———o—
S C(p'.u" B;H)A.,I-ll_le_gnAn . (37)
The last inequality comes from A,— 0 and —5;- eA_"gAn > % _
Taking a constant § verifying 1% <a<p,thereise > 0 such thata = =~
Hence, we can write
(n8, )P 8,7 = n® (g, (3.8)

As a consequence, by (3.7) and (3.8),

1
(E[IR,IP)? < C(p, 6, u, H)AL " e=0min
1 (nA,)P
< C(p; 6; U, H) ng(nA}l+a)ﬁ—£ e@nAn
<

C(p,0,u,H)ne. (3.9

Therefore, by combining (3.9) and Lemma 2.1, the convergence (3.3) is proved.
On the other hand, the convergence (3.4) is a direct consequence of (3.2), (3.3)
and (3.5). o

Lemme 3.2. Define for everyn > 1

e—20Tn n
Dy:=— X X - (3.10)
Assume that A,— 0 and nAL**— oofor some a > 0, then, for everyn > 1,
2a
E(D,?) < C(0,w H,a)n"Tva . (3.11)
Moreover, for every 0 < 6 < 1,
2 _2a(1-H)
E [((nAn)‘sDn) ] <CO,u,H a)n 1+a . (3.12)
As a consequence, for every 0 < § < 1,
(nA,)? -0 almost surely as n — oo, (3.13)
Proof. We first prove (3.11). Using (2.7) and (3.5), we have
—20T, & e~20Tn & . .
— — ti_1+0t;_
E(D) = D E(X X ) =T ) et (2, 7, )
iL,j=1 Lj=1
e—20Tn & e=0Tn z
<C(,uH) 2 Z eOti-1t0tj_ 1 — C0,u H) - Zeeti_l
i,j=1 i=1
I e—0Tn by _ 1\?
=C6,mH) n ef%n—1
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E(D2) < C(0 H(l A )2
n) < COwH) nh, efn — 1
1

< C0, 1 ) s (3.14)
- [24 .
Settingy = o W obtain .
n-2v n i+a _z2a
E(D}) < C(H.M.H)W =CO,uH)—————<CO ,pH a)n i+a,
n

(nAL+e)ira
which proves (3.11).
For (3.12), by (3.14), we have,

E[((n8,)"Dp)?] < C(6, u, H)(nA,) 72077,

Thus, using similar arguments as in (3.8), we can conclude
2a(1—-H)

E[((nA)PD)?]1 < C(O, 1, Hya)n™ 1+a

which implies the desired result.
Finally, the convergence (3.13) is a direct consequence of (3.12) and Lemma 2.1. o

Definition 3.1. Let {Z,,} be a sequence of random variables defined on (Q, F, P). We say {Z,,} is tight (or bounded
in probability), if for every € > 0, there exists M, > 0 such that,
P(|Z,| > M,) <e, foralln.
Theorem 3.3. Let H € (0,1). Suppose that A,— 0 and nAL**— oo for some a > 0. Then, for every q = 1,

Ale®™n(8, — 0) is not tight. (3.15)

In addition if we assume that nA3— 0 as n — oo, then the estimator 8, is \/T_n—consistent in the sens that the
sequence

JT. (6, — ) is tight (3.16)
and
JT, (@, — w) is not tight. (3.17)

Proof. Fixg = 1. From (1.6) and (2.7) we can write

82e7™(3; - 6)
1
—Z%n — ZTnDn

= AlefTn 2 =—0
eZBTnSn _ ( ,TnDn)
AqeGTn ZBAn A
— -20Tp¢ ™
s Ty |28, 23,_) + (1 - s ) 28, — 20 (e, — et — 73, ]
e mon — ntn

Moeover,
n
A A
—26T, _ n 2 — ,—26T, 20t;_ 2 _ n 2
€ "Sn 2040y _ 1ZTn—1 =e nA"Z e lzti—l e20An _ 1ZTn—1

=1

n n
An — Ty, — — Ty, —
2—< E e (Tn L)Ztil_ E e (Tn 11)Zti1_ZT 1)

A i=1 i=1
= 826A1711_1 Ry,
where R,, is given by (3.1).
Thus we obtain

_ Al efTn 26A 260A
8o (8, - 0) =5 2| (23, - 72, .) + (1~ p) Zhcs + (s ) Rn] (3.18)
n
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According to (3.6), we get

1
.
(2 |(age™ (73, - 73,)) )" = cCom AT~ 0. (319)
We also have
20A e?0%n — 1 — 204, A
q,0T, (1 _ 272\ _ Aq+1 67y, n
Ay e (1 o260, _1) =A) e ( AZ 260, _ 1) — (3.20)
since
q+1 9T, qray o fTn e20n_1_20A, A,
AT g0 = (npAl*®) @ 77T — % and ( — ezﬂAn—l) - 6.
T, % "
Furthermore, by (3.7),
1
(E[(a%e™R,)*| ) < cO,1 )AL "> 0. (3.21)

Combining (3.18), (3.19), (3.20), (3.21) and (3.4), we conclude that for every q > 1, Ale®™ (8, — ) isnot tight.
For 0 < g < 1 we have
8167, ~ 0) = a7 (8,07 (@ - 0)).

which completes the proof of (3.15), where we used the previous case and the fact that Afl_1—> o,
Next, let us prove (3.16). It follows from (3.18) that

\/T_n(a; - 9) - % [(Z%n B Z%”_l) + (1 - eZZBGA%) Z72"n—1 + (eZZBQAin_l) Rn] .
Combining this with 1
1
(E [(\/T_n(Z%n —Z%n_l))Z])Z <CO, VAT > 0,
200n_4_
VT (1- ) = g (£ ) o

1
2+

i 4
a e—@Tn

(E[(/TRs)’ ]) < C(O, AL Toe™ = C(6,9) 22— 5 0,

(nA1+a)_
and the convergence (3.4), we deduce that

JT(6,—6) = 0 (3.22)
in probability, which proves (3.16).
Now it remains to prove (3.17). Using (1.6) and (1.7), we can show that 8,, and [z, satisfy

XTn (Zn_lezt 1 __Zn 1Xf1 1)
n (Z Xt_i_l)z

f11

Oty T =

Combining this with (1.1), we obtain

Tn ~ n
X dt+B7I:1 _gnAnz th. .
0

= uT, (6= 8,) + 0, (J" X, dt — 8, D0y Xy, 1)+(9 8,) Ji" X, dt + B,

T — 1) = T (0~ 8,) + 6

Thus, we obtain

_ Ty, 1 ( an n ) (6-6,) an Bf,
(@ —w) =—==(0-6,)+—(| X, dt—nA E X, |+ —=——="| X, dt+=—2=
n(:un ,Lt) gn ( n) \/?n 0 t n =1 ti—q en Tn o t Hm/T_n

:=A,+B,+C,+D, .

Theorem 3.2 and the convergence (3.22) imply that 4,, — 0 in probability.
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We can write C, (6 9") fT"Xt dt = @ (TifoT"Xt dt).
Then, Theorem 3.2 and the convergence (3.22) imply that @
rule,

— 0in probability. Moreover, using 1’Hopital

1 (T
lim —f X dt = lim Xp, = lim (u(1—e ™) + ¢ ) = p+ O
0 o © 00

Tp—o0 n
Hence C,, —» 0 in probability.
Recall that E[(Bff — BE)?] = |t — s|?® ; t,s = 0.
Then for H € ]0%[ , we have almost surely, as T,, - o

H

JLT—: — 0, by Borel-Cantelli Lemma.

Combining this with Theorem 3.2 we obtain that D,,: =

\/_

1 ( Tn n ) e”n( or Tn or n
Bi=— f th—AZ X |= e” "f X dt —e” "AZ X ) 3.23
n \/T_n 0 t n i=1 ti—q \/T_ o t n =1 ti—q ( )

n

By lemma 2.3, we have e ~¢n fOT” X, dt - %(/4 + {.) almost surely.

We also have
n 2 n n
E (e‘GT"AnZXtH) = A2e20Tn Z E (XX, ,) = AZe720T Z e¥-10-iE (7, 7, ).
i=1 1j=1 ij=1
Then, by using the same arguments as in Lemma 3.2, we obtain
n—1q 2
E[(e™a, I, X, _,)] < C 0, H)AZe 20T (Tl) < C(1, 6, H)AZ> 0. (3.24)

Consequently, the convergence (3.17) is proved. Thus the desired results are obtalned o

Theorem 3.2. Assume that 0 < H < 1. Suppose that A,— 0 and nA}**— 0 for some 0>0. Thenasn — oo,

6,— 06 almost surely. (3.25)

Proof. We can write
X1y

_XTn_T i 1th 1
A Z t1 1 An(zl 1 t1 1)

1 _
Ee ZeTnXTn— ZTnDn

e_zeTnSn—(«/nAnDn)Z

n

Thus, according to (2.9) , (3.4), (3.5) and (3.13), we can deduce that
8, —» 0 almost surelyasn — . O
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