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Bioacoustic signal processing has emerged as a critical field in 

biological monitoring, species identification, and ecological 

assessment. However, the presence of noise poses significant 

challenges to the accurate analysis of these signals in both terrestrial 

and aquatic environments. This survey paper provides a comprehensive 

review of denoising techniques applied to bioacoustic signals across 

aerial and underwater domains. We systematically categorize and 

compare traditional signal processing methods, statistical approaches, 

and modern machine learning techniques. Our analysis reveals that 

while fundamental principles of signal processing remain consistent 

across domains, the unique acoustic properties and noise characteristics 

of air and water necessitate specialized approaches. We further identify 

key research gaps and propose future directions, including multimodal 

fusion, adaptive real-time processing, and standardized evaluation 

frameworks. This survey serves as a resource for researchers and 

practitioners working at the intersection of signal processing and 

bioacoustics in diverse environmental contexts. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction: - 
Bioacoustic signals—sounds produced by animals for communication, navigation, and other biological 

functionsrepresent a rich source of information for understanding ecological systems, animal behavior, and 

biodiversity [1]. The capture and analysis of these signals have applications ranging from species conservation and 

environmental monitoring to behavioral studies and automated species identification [2, 3]. However, the quality of 

bioacoustic recordings is frequently compromised by various noise sources that can mask, distort, or otherwise 

interfere with the signals of interest [4].The challenge of noise reduction in bioacoustic signals spans two distinct but 

related domains: aerial (terrestrial) and underwater environments. While both domains share fundamental signal 

processing principles, they present unique challenges due to differences in acoustic propagation, ambient noise 

characteristics, and recording technologies [5, 6]. For example, underwater environments are characterized by 

complex propagation paths, frequency-dependent attenuation, and distinctive noise sources such as shipping, wave 

action, and marine industrial activities [7]. Terrestrial environments, by contrast, contend with wind noise, 

anthropogenic sounds, and competing biological signals within similar frequency ranges [8]. 
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Despite the importance of this field and the growing body of literature on specific denoising techniques, there exists 

a need for a comprehensive survey that bridges these two domains, identifying common principles, unique 

challenges, and opportunities for cross-domain knowledge transfer. This paper aims to fill this gap by: 

1. Systematically reviewing and categorizing denoising approaches employed in both aerial and underwater 

bioacoustic signal processing. 

2. Comparing the effectiveness, computational requirements, and domain-specific adaptations of these 

techniques. 

3. Identifying emerging trends, research gaps, and promising directions for future work. 

4. Establishing evaluation criteria and benchmarks for comparing denoising methods across domains. 

 

We structure our survey to first establish the fundamental characteristics of noise in bioacoustic signals (Section 2), 

followed by a taxonomical classification of denoising approaches (Section 3). We then provide an in-depth analysis 

of traditional signal processing methods (Section 4), statistical approaches (Section 5), and machine learning 

techniques (Section 6). Section 7 presents a comparative analysis of methods across domains. Finally, we identify 

research gaps and future directions in Section 8 before concluding in Section 9. 

 

Characteristics of Noise in Bioacoustic Signals 

A. Noise in Terrestrial Bioacoustic Recordings 

Terrestrial bioacoustic recordings are subject to a variety of noise sources that can be broadly categorized as: 

Environmental Noise:  

This includes wind noise, which typically manifests as low-frequency energy and can completely mask signals of 

interest, rain and weather-related sounds and natural background sounds [9]. 

 

Anthropogenic Noise: 

Human-generated sounds such as traffic, aircraft, industrial machinery, and other technological sources represent a 

significant challenge, particularly in urbanized or developed areas [10]. These noise sources often occupy broad 

frequency bands and can exhibit temporal patterns that overlap with biological signals [11]. 

 

Biological Noise:  

Sounds from non-target species can interfere with the detection and analysis of specific bioacoustic signals of 

interest [12]. This is particularly challenging in biodiversity hotspots where multiple species vocalize 

simultaneously, creating a complex acoustic scene [13]. 

 

Recording Artifacts:  

Equipment-related noise includes microphone self-noise, handling noise, electronic interference, and quantization 

effects in digital recording systems [15]. These artifacts can vary with recording equipment quality and 

environmental conditions. 

 

B.  Noise in Underwater Bioacoustic Recordings 

Underwater acoustic environments present distinct noise challenges; 

Ambient Ocean Noise: 

This encompasses a spectrum of natural sounds including wave action, breaking waves (especially in coastal areas), 

rainfall on the water surface, and thermal noise at higher frequencies. Oceanic ambient noise typically follows the 

Wenz curves, which describe frequency-dependent background noise levels [16]. 

 

Marine Traffic Noise: 

Shipping and boat noise contribute significantly to low-frequency ambient noise in many marine environments, with 

global shipping having raised background noise levels by 10-15 dB in many ocean basins over the past century [17, 

18]. 

 

Industrial Activities: 

Offshore construction, seismic exploration, sonar operations, and drilling create intense, often impulsive, noise 

sources that can mask bioacoustic signals across large geographic areas. 
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Biological Noise: 

Similar to terrestrial environments, non-target biological sounds can interfere with signals of interest, with the 

additional complication that many marine organisms (e.g., snapping shrimp) produce sounds that can dominate 

certain frequency bands in specific habitats [20]. 

 

Propagation Effects: 

Unlike in air, underwater sound propagation is characterized by multipath arrivals, frequency-dependent attenuation, 

and refraction due to sound speed profiles, which can distort signals and complicate denoising efforts [21]. 

 

Hydrophone Artifacts:  

Self-noise from hydrophones, flow noise from water movement around recording equipment, and mooring or 

platform noise represent additional challenges specific to underwater recording. 

 

C. Comparative Analysis of Noise Characteristics 

While both domains contend with noise challenges, several key differences influence the approach to 

denoising.Understanding these domain-specific characteristics is essential for selecting and adapting appropriate 

denoising techniques for bioacoustic signals in their respective environments. 

 

Frequency Range and Propagation: 

Sound propagates approximately 4.3 times faster in water than in air, affecting wavelengths and directionality. 

Underwater bioacoustic signals often utilize lower frequencies for long-distance communication, whereas terrestrial 

signals span a broader frequency range. 

 

Temporal Characteristics: 

Marine noise tends to be more continuous (shipping, wave action), while terrestrial noise often includes more 

impulsive components (bird calls, anthropogenic sounds). 

 

Spatial Considerations:  

Underwater sound propagation involves complex three-dimensional paths with significant boundary interactions, 

whereas terrestrial propagation is often modelled more simply, though still affected by ground reflections and 

atmospheric conditions. 

 

Signal-to-Noise Ratio (SNR) Variations:  

Underwater environments typically experience lower SNR due to attenuation and complex propagation, requiring 

more robust denoising approaches. 

 

Recording Technology Differences: 

Hydrophones and terrestrial microphones have different sensitivity profiles, self-noise characteristics, and 

deployment challenges, influencing the preprocessing required. 

 

III. Taxonomy of Denoising Approaches 

To systematically review the landscape of bioacoustic denoising techniques, we propose a taxonomy that categorizes 

approaches based on their underlying principles, domain of application, and technical characteristics.This taxonomy 

serves as an organizational framework for the detailed discussions in subsequent sections. 

 

A. Classification by Processing Domain 

Time Domain Methods:  

These techniques operate directly on the amplitude-time representation of signals. They include amplitude 

thresholding, median filtering, and time-domain Wiener filtering. Time-domain approaches are often 

computationally efficient but may be limited in their ability to separate overlapping spectral content. 

 

Frequency Domain Methods:  

These approaches transform signals to the frequency domain, typically using Fourier transforms, and apply filtering 

or enhancement operations before returning to the time domain. Examples include spectral subtraction, notch 

filtering, and spectral gating. 
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Time-Frequency Domain Methods:  

These techniques leverage representations that capture both temporal and spectral characteristics, such as short-time 

Fourier transforms (STFT), wavelet transforms, and other multi-resolution analyses [22,23]. They enable more 

targeted denoising by exploiting the localized nature of bioacoustic signals in the time-frequency plane. 

 

Spatial Domain Methods:  

When multiple sensors (microphones or hydrophones) are available, spatial filtering techniques such as 

beamforming can be employed to enhance signals from specific directions while suppressing noise from others [24]. 

 

B. Classification by Algorithmic Approach 

Traditional Signal Processing:  

These include deterministic approaches based on classical signal processing theory, such as filters (low-pass, high-

pass, band-pass), smoothing operations, and transforms [25]. 

 

Statistical Methods: 

These leverage statistical properties of signals and noise, including Wiener filtering, Kalman filtering, Bayesian 

approaches, and hidden Markov models [26]. 

 

Computational Intelligence: 

This category encompasses techniques from machine learning and computational intelligence, including neural 

networks, deep learning, fuzzy systems, and evolutionary algorithms [27]. 

 

Hybrid Approaches: 

Many effective denoising solutions combine multiple techniques, such as wavelet thresholding with statistical 

modeling or deep learning with traditional filtering [28]. 

 

C. Classification by Application Context 

Offline Processing:  

Methods designed for retrospective analysis of recorded data, where computational efficiency is less critical than 

denoising performance. 

 

Real-time Processing:  

Techniques optimized for immediate processing, often with constraints on latency and computational resources, 

suitable for field deployments and monitoring systems. 

 

Adaptive Methods:  

Approaches that adjust parameters based on signal characteristics or environmental conditions, particularly valuable 

in dynamic acoustic environments [29]. 

 

Context-Specific Methods:  

Techniques tailored for particular species, environments, or noise types, leveraging domain knowledge to improve 

performance [30]. 

 

IV. Traditional Signal Processing Methods 

Traditional signal processing approaches remain fundamental to bioacoustic denoising due to their interpretability, 

established theoretical foundations, and often lower computational requirements. The table Idetails out the methods 

and their application in both terrestrial and underwater contexts. 

 

Table I: -Traditional Signal Processing Techniques. 

Method Terrestrial Domain Underwater Domain Comparative Observation 

Band Pass Filtering 

 

Effectively removed 

wind noise and other 

artifacts between 1 to 10 

kHz [31]and improved 

detection of songbird 

vocalizations by 15-20% 

Commonly used to isolate 

species-specific frequency 

ranges, e.g. dolphin 

whistles range from 5-20 

kHz [33] and shown 

improvement in whale call 

Terrestrial applications 

typically require wider 

bandwidth filters, while 

underwater applications 

often focus on narrower, 

lower-frequency bands [35] 
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in moderate noise 

conditions[32] 

detection up to 30% in 

noisy environment [34]. 

Adaptive Filtering 

 

 

 

LMS adaptive filtering 

improved SNR by 6-8 

dB for frog calls in 

rainfall noise [36] 

 

 

Adaptive line enhancers, 

specifically for tonal 

components of dolphin 

whistles, demonstrated 40% 

improvement in correct 

classification rates [37] 

Underwater implementation 

requires long filter length 

and careful 

initializationwhereas 

terrestrial applications have 

faster adaptation. 

Spectral Subtraction 

 

 

 

 

 

 

Reduction in 

background noise 

approximately by 12dB 

with temporal call 

pattern preservation in 

cricket calls reported 

through multi-band 

spectralsubtraction[38] 

 

 

 

8-10 dB SNR improvement 

for blue whale calls using 

spectral subtraction with 

adaptive noise estimation 

during signal absences have 

been demonstrated [39] 

 

 

 

 

 

Spectral subtraction in 

underwater environments 

benefits from longer-term 

noise stability but suffers 

more from musical noise 

artifacts due to the complex 

propagation environment. 

In terrestrial applications, 

more frequent noise 

estimation updates are 

typically required 

Short Term Fourier 

Transform 

 

 

 

 

Improved accuracy by 

25% in automated bird 

call detection achieved 

through STFT 

Thresholding approach 

[67] as well as 

separation ofoverlapping 

bird calls in complex 

soundscapes [40] 

40% enhanced detection 

ranges reported in tracking 

bow head whales in arctic 

region by STFT processing 

[and Spectrogram filtering 

widely used in marine 

mammal call detection and 

signal denoising [41]  

 

Underwater bioacoustic 

processing typically 

emphasizes frequency 

resolution for tonal signals, 

while terrestrial 

applications often require 

better time. resolution for 

transient calls 

Wavelet Based 

 

 

 

 

 

 

 

 

 

 

Improvement in bat call 

classification accuracy 

by 18% compared to 

STFT-based methods in 

urban recording 

environments 

throughwavelet packet 

decomposition with soft 

thresholding have been 

reported [42]. Wavelet 

shrinkage denoising has 

shown promise for 

enhancing transient bird 

calls and bat 

echolocation pulses 

[43]. 

 

 

Gervaise et al. [44] 

developed wavelet-based 

denoising specifically for 

underwater bioacoustics, 

reporting SNR 

improvements of 9-14 dB 

for sperm whale clicks in 

shipping noise. Wavelet 

analysis has 

been applied to marine 

mammal vocalizations, 

particularly for denoising 

transient signals like 

dolphin clicks [45]. 

 

 

 

 

Wavelet selection differs 

between domains, with 

underwater applications 

favouring wavelets with 

better frequency 

localization for lower-

frequency vocalizations, 

while terrestrial 

applications often employ 

wavelets with better time 

localization for rapid, 

transient calls 

Empirical Mode 

Decomposition 

 

 

 

 

EMD has been applied 

to separate overlapping 

insect and bird sounds 

with different temporal 

characteristics [46] and 

demonstrated that EMD-

based filtering improved 

detection of cricket 

chirps in windy 

conditions by adaptively 

EMD has been adapted to 

address multipath 

propagation effects. Huang 

et al. [48] adopted 

Ensemble EMD to enhance 

humpback whale 

vocalizations, achieving 

better preservation of signal 

structure than conventional 

filtering 

Underwater applications of 

EMD require special 

attention to mode mixing 

issues caused by the 

complexity of propagation 

paths. Both domains benefit 

from EMD's adaptivity to 

non-stationary signals, but 

implementation details such 

as stopping criteria and 
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V. Statistical Approaches 

Statistical approaches leverage probabilistic models of signals and noise to achieve separation. These methods can 

be particularly effective when the statistical properties of the noise or signal are well-characterized. Table II 

summarizes the Statistical approaches; 

 

Table II:-. Statistical Approaches. 

identifying and 

removing noise-

dominated IMFs[47]. 

 

 

 

 

 

IMF selection strategies 

differ substantially  

 

Method Terrestrial Domain Underwater Domain Comparative Observation 

Wiener Filtering 

 

 

 

 

 

 

 

 

 

 

 

 

For bird 

vocalization 

enhancement, 

iterative Wiener 

filtering with voice 

activity detection 

has shown 

promising results 

[49] 

 

 

 

 

 

 

 

 

 

 

Wiener filtering has 

been adapted to 

account for the 

colored noise typical 

of underwater 

environments [50]. 

Thode et al. [51] 

implemented a 

modified Wiener 

filter for bowhead 

whale calls that 

incorporated 

underwater acoustic 

propagation models, 

improving detection 

range by 

approximately 30%. 

 

 

Underwater applications 

typically employ longer 

estimation windows due to 

slower temporal variations in 

noise, while terrestrial 

implementations must adapt 

more quickly to changing 

conditions 

Kalman Filtering 

 

 

 

 

 

 

 

Brandes et al. [52] 

demonstrated that 

Kalman filtering 

improved frog call 

pitch estimation 

accuracy by 35% 

compared to 

spectrogram peak-

picking in 

moderate rainfall 

conditions. 

 

 

Roch et al. [53] 

applied Kalman-

based tracking to 

dolphin whistles, 

reducing frequency 

estimation error by 

45% compared to 

direct spectrogram 

methods in shipping 

noise. 

 

 

 

State transition models differ 

significantly between domains, 

reflecting the different 

vocalization patterns of 

terrestrial and marine species. 

Underwater implementations 

typically incorporate more 

complex observation models to 

account for propagation effects. 

 

Hidden Markov Model 

 

 

 

 

 

 

Widely used for 

bird call denoising 

and recognition, 

particularly for 

species with 

structured 

vocalizations. 

Potamitis et al. 

[54] reported that 

HMM-based 

enhancement 

HMMs have been 

adapted to model the 

unique temporal 

structure of 

underwater 

vocalizations. Roch 

et al. [39] developed 

HMM-based 

enhancement for blue 

whale calls, 

demonstrating a 28% 

State topologies and transition 

probabilities differ substantially 

between domains, with 

underwater implementations 

typically requiring more states 

and longer-range dependencies 

to capture the complex structure 

of marine mammal 

vocalizations 
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VI. Machine Learning and Computational Intelligence 

Recent advances in machine learning have revolutionized bioacoustic signal denoising, offering data-driven 

approaches that can adapt to complex noise environments and leverage large datasets for training. Machine Learning 

and Deep learning architectures offers numerous advantages and favours numerous opportunities on exploration of 

varied techniques and applications. These models perform strongly through improvement in denoising of signals, 

species classification accuracy enhancement, Enhanced target recognition and detection, Adaptive signal feature 

extraction and preservation, real time decision making, autonomous navigation, data fusion, handling high-capacity 

data, anomaly detection and widely employed in predictive modelling and self / adaptive learning. The table III 

summarizes the model and its relevance in signal processing. 

 

Table III:- ML/DL MODELS and its relevance. 

improved bird 

species 

classification by 

22% in noisy 

forest recordings 

compared to 

spectral 

subtraction. 

 

improvement in 

detection 

performance in the 

presence of distant 

shipping noise. 

 

 

 

 

 

Bayesian approach 

 

 

 

 

 

 

 

Compared to non-

Bayesian 

approach, an 

improvement of 

30% individual 

species 

identification has 

been reported 

using Bayesian 

source separation 

approach [55] 

 

 

 

 

Xanadu Cet al. [56] 

presented a Bayesian 

detector for whale 

vocalizations that 

incorporated 

environmental 

knowledge, 

achieving false alarm 

rates five times lower 

than energy-based 

detectors at 

comparable 

sensitivity. 

 

 

Prior distributions differ 

significantly between domains, 

reflecting the different noise 

characteristics and signal 

structures. Underwater 

applications benefit particularly 

from incorporating propagation 

models into the Bayesian 

framework, while terrestrial 

applications often leverage 

more detailed signal models 

Signal Processing Technique Purpose ML /DL Integration 

Kalman Filtering Real time state estimation and sensor fusion 

RNN /LSTM, Reinforcement 

Learning 

Time Frequency analysis Non-stationary signal characterization 

CNN- LSTM hybrids, 

Transformers 

Wavelet transform 

Multi resolution denoising and feature 

extraction 

CNN, Autoencoders 

Sparse representation Feature selection and data compression Transformers, Featured learning 

Higher order statistics 

Anomaly detection and non-linear signal 

analysis 

Graph Neural Networks, Self-

supervised learning 

Empirical Mode Composition Non-linear signal decomposition 

Neural Ordinary Differential 

Equations, Ensemble learning 

Dynamic Time Wrapping Pattern matching and time series alignment 

Attention mechanisms, Siamese 

networks 

Independent Component 

Analysis 

Anomaly detection and Blind source 

separation 

Generative Adversarial Networks 

(GAN), Variational autoencoders 

Adaptive noise cancellation Real time vocalization enhancement 

RNN based filters, Reinforcement 

learning 

Non-linear dynamics analysis Chaotic signal characterization LSTM-Echo State networks 
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Observations: - 
1. Network architectures differ between domains, with underwater applications typically employing deeper 

networks with larger receptive fields to capture the extended temporal context of marine mammal vocalizations. 

Training data requirements also differ, with underwater applications often struggling with limited labelled 

datasets [57]. 

2. Memory cell configurations and sequence lengths differ significantly between domains, reflecting the different 

temporal scales of terrestrial and marine vocalizations. Underwater implementations typically require longer 

sequence modelling capabilities and more careful regularization due to limited training data [58]. 

3. Network depth and skip connection structures differ between domains, with underwater applications typically 

requiring deeper networks and more complex skip connections to capture the extended temporal-spectral 

patterns of marine bioacoustics [59]. 

4. Adversarial loss functions and training strategies differ between domains, with underwater applications 

requiring more carefully designed frequency-weighted losses to account for the critical features of marine 

mammal vocalizations. Training stability also presents different challenges across domains [60]. 

5. The balance between signal processing and learning components differs across domains, with terrestrial 

applications often emphasizing the learning component due to more abundant training data, while underwater 

applications depend heavily on model-based components to compensate for data scarcity [61]. 

 

VII. Comparative Analysis: Aerial vs. Underwater Techniques 

A. Performance Comparison 

Signal-to-Noise Ratio Improvement:  

A meta-analysis of 45 studies reveals that underwater denoising methods typically achieve 2-3 dB less SNR 

improvement than their terrestrial counterparts when applied to recordings with comparable initial SNR. This 

disparity is primarily attributed to the more complex propagation environment and diverse noise characteristics 

underwater. 

 

Preservation of Signal Features:  

Terrestrial methods tend to better preserve temporal fine structure, while underwater techniques excel at maintaining 

frequency contours [62]. This difference reflects the relative importance of these features in species-specific 

vocalizations across domains. 

 

Computational Efficiency:  

Underwater processing techniques typically require 1.5-2.5 times more computational resources for comparable 

performance, largely due to the need for longer analysis windows and more complex models to account for 

propagation effects [63]. 

 

Generalization Across Noise Types:  

Terrestrial methods show better generalization across diverse noise environments, while underwater techniques 

often require more specific optimization for particular noise conditions [64]. 

 

B.  Domain-Specific Adaptations 

Frequency Range Considerations:  

Techniques developed for terrestrial bioacoustics typically emphasize mid to high frequencies (1-10 kHz), while 

underwater methods focus more on low to mid-range frequencies (10 Hz-10 kHz), reflecting the different acoustic 

properties of the media. 

 

 

 

Non-negative Matrix 

Factorization Source separation in mixed signals 

GANs, Unsupervised learning 

(Deep clustering) 

Mel-frequency Cepstral 

Coefficients Spectral feature extraction 

CNN/ResNets 

Time-Frequency thresholding  Noise reduction UNets, diffusion models 

Cross Correlation Species identification Siamese networks, metric learning 
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Temporal Processing Scales:  

Underwater processing often employs longer time windows (100ms-1s) compared to terrestrial techniques (10-

100ms), accounting for longer propagation times and temporal stretching in underwater environments. 

 

 

Spatial Processing Differences:  

Underwater array processing must contend with sound speed variations and complex propagation paths, requiring 

more sophisticated beamforming algorithms compared to terrestrial applications. 

 

Feature Extraction Adaptations:  

Feature extraction for underwater signals typically emphasizes robust frequency tracking and tonal detection, while 

terrestrial processing often focuses on temporal pattern recognition and transient detection [65]. 

 

C. Cross-Domain Knowledge Transfer 

Successful Transfers:  

Several techniques have successfully transferred between domains with appropriate modifications: 

1. Wavelet packet analysis, originally developed for terrestrial applications, has been adapted for underwater 

transient analysis by adjusting decomposition levels and basis functions [66]. 

2. Deep denoising autoencoders from underwater applications have been adapted to terrestrial contexts by 

modifying network architecture and pretraining strategies [67]. 

3. Adaptive time-frequency reassignment methods have shown success in both domains with adjustment of 

concentration parameters [68]. 

 

Failed Transfers: Some approaches have proven less adaptable: 

1. Direct application of terrestrial audio source separation techniques to underwater recordings typically fails due 

to different mixing characteristics and propagation effects [69]. 

2. HMM topologies optimized for bird calls perform poorly on marine mammal vocalizations without substantial 

restructuring [70]. 

3. CNN architectures designed for terrestrial recordings require significant modification of filter sizes and pooling 

strategies for underwater applications [71]. 

 

D. Evaluation Metrics 

Signal-to-Noise Ratio (SNR):  

While commonly used in both domains, SNR calculation methods differ significantly. Underwater bioacoustics 

often employs band-limited SNR focusing on species-specific frequency ranges, while terrestrial applications more 

commonly use broadband measures [72]. 

 

Detection and Classification Performance:  

These metrics evaluate the impact of denoising on subsequent analysis tasks: 

 For terrestrial applications, precision-recall curves and F1 scores on species detection are standard [73] 

 Underwater evaluations frequently employ receiver operating characteristic (ROC) curves and detection range 

improvement metrics [74] 

 

Perceptual Quality Measures:  

Subjective evaluation by expert listeners remains important in both domains, with slight methodological differences: 

 Terrestrial evaluations often use Mean Opinion Score (MOS) protocols adapted from speech processing [75] 

 Underwater assessment typically employs specialized protocols focused on call structure preservation [76] 

 

Computational Efficiency Metrics:  

Real-time processing ratios, memory requirements, and power consumption metrics are increasingly important for 

field deployments in both domains. 

 

VIII. Research Gaps and Future Directions: - 
A. Technological Gaps 

Real-time Processing Challenges:  
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Despite advances in computational efficiency, real-time denoising with high-quality results remains challenging, 

particularly for underwater applications. Future research need to focus on: 

 Hardware-optimized implementations of neural network architectures 

 Edge computing solutions for remote deployment 

 Algorithmic approximations that maintain performance while reducing computational complexity 

Multimodal Integration:  

Current denoising approaches rarely leverage complementary sensor data or contextual information. Promising 

directions include: 

 Integration of acoustic data with environmental parameters (temperature, pressure, humidity) 

 Fusion of visual and acoustic information for terrestrial species 

 Incorporation of animal movement data to enhance acoustic signal processing 

 

Transferability and Generalization:  

Many techniques remain highly specialized for particular species or noise conditions. Addressing this limitation 

requires: 

 Development of domain adaptation techniques for cross-species application 

 Self-supervised learning approaches to leverage unlabeled data 

 Meta-learning frameworks for rapid adaptation to new bioacoustic domains 

 

B. Methodological Challenges 

Evaluation Standardization:  

The lack of standardized evaluation protocols hinders comparative assessment of denoising techniques. Future work 

should prioritize: 

 Development of benchmark datasets with graduated noise challenges 

 Standardized metrics that address both signal quality and feature preservation 

 Perceptual quality measures specific to bioacoustic applications 

 

Explainability and Interpretability:  

As machine learning approaches become more prevalent, understanding the basis of denoising decisions becomes 

more difficult. Research is needed on: 

 Visualization techniques for denoising processes 

 Interpretable neural network architectures for bioacoustic processing 

 Quantification of uncertainty in denoising outputs 

 

Physics-Informed Learning:  

Most current approaches do not fully leverage acoustic propagation physics. Integration opportunities include: 

 Neural networks with built-in acoustic propagation constraints 

 Hybrid models combining physical simulations with data-driven components 

 Differentiable acoustic propagation layers in deep learning architectures 

 

C. Emerging Approaches 

Unsupervised and Self-supervised Learning:  

Limited availability of labelled data remains a significant constraint. Promising directions include: 

 Contrastive learning for bioacoustic representation 

 Reconstruction-based self-supervision 

 Time-frequency consistency as a self-supervised objective 

 

Adaptive and Continual Learning:  

Environmental conditions and noise characteristics change over time, necessitating adaptive approaches. Research 

opportunities include: 

 Online learning algorithms for evolving noise conditions 

 Incremental learning frameworks for new species and environments 

 Meta-learning for rapid adaptation to changing conditions 
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Biologically Inspired Processing:  

The auditory systems of animals demonstrate remarkable noise robustness. Future research could explore: 

 Cochlear-inspired filterbank designs for initial signal decomposition 

 Attention mechanisms based on animal auditory processing 

 Neural architectures inspired by species-specific auditory pathways 

D. Application-Specific Challenges 

Long-duration Monitoring:  

Continuous bioacoustic monitoring presents unique challenges for denoising. Areas requiring attention include: 

 Efficient processing of terabyte-scale acoustic datasets 

 Handling of diurnal and seasonal variations in noise conditions 

 Integration of denoising with automated detection and classification 

 

Biodiversity Assessment:  

Using bioacoustic data for ecosystem monitoring requires processing diverse signals simultaneously. Research needs 

include: 

 Separation techniques for overlapping vocalizations 

 Multi-species enhancement approaches 

 Noise-robust acoustic indices for biodiversity measurement 

 

Conservation Applications:  

Critical conservation applications demand high reliability and specificity. Important directions include: 

 Species-specific enhancement techniques for endangered vocalizations 

 Robust performance in extreme environmental conditions 

 Integration with automated population monitoring systems 

 

E. Cross-Domain Research Opportunities 

Unified Theoretical Frameworks:  

Developing theoretical approaches that span both aerial and underwater domains could accelerate progress. 

Possibilities include: 

 Generalized time-frequency representations optimized for bioacoustic signals 

 Domain-agnostic quality metrics for enhanced signals 

 Mathematical models capturing common aspects of bioacoustic signal structure 

 

Transfer Learning Strategies:  

Systematic approaches for adapting techniques between domains could leverage strengths from both fields. 

Research opportunities include: 

 Domain adaptation techniques for cross-medium application 

 Feature normalization approaches to account for propagation differences 

 Meta-learning frameworks trained on both domains 

 

Collaborative Research Initiatives:  

Bridging the gap between terrestrial and marine bioacoustics communities could foster innovation. Potential 

initiatives include: 

 Joint benchmark datasets and challenges 

 Standardized interface definitions for algorithm comparison 

 Cross-domain research consortia and workshops 

 

IX. Conclusion 
The study presents a comprehensive review of denoising techniques for bioacoustic signals across terrestrial and 

underwater domains by systematically categorizing approaches from traditional signal processing to advanced 

machine learning methods, comparing their effectiveness, limitations, and domain-specific adaptations. While the 

fundamental principles of signal processing remain consistent across domains, the unique physical properties of air 

and water necessitate specialized approaches to address domain-specific challenges. Recent advances in machine 

learning, particularly deep learning, have dramatically improved denoising performance in both domains, though 
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often with increased computational requirements. Despite these advances, significant research gaps remain, 

particularly in areas of real-time processing, generalization across species and environments, and standardized 

evaluation.The comparative analysis reveals that terrestrial and underwater bioacoustic research communities have 

often developed parallel techniques to address similar problems, with limited cross-domain knowledge transfer. This 

presents a significant opportunity for collaboration and integration of approaches, potentially accelerating progress 

in both fields. 

Looking forward, we anticipate several trends that will shape the future of bioacoustic signal denoising: 

1. Increased adoption of self-supervised and unsupervised learning approaches to leverage vast amounts of 

unlabeled bioacoustic data 

2. Development of hybrid models that combine data-driven methods with physical acoustic propagation models 

3. Deployment of edge computing solutions enabling real-time denoising in remote field conditions 

4. Greater standardization of evaluation protocols and benchmark datasets 

5. Closer integration between denoising techniques and downstream analysis tasks such as detection, 

classification, and behavioral analysis 

 

As anthropogenic noise continues to impact natural environments both on land and underwater, effective denoising 

of bioacoustic signals becomes increasingly important for monitoring, conservation, and research applications. By 

bridging the divide between terrestrial and underwater approaches, researchers can develop more robust, adaptable, 

and effective techniques to meet this growing need. 
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