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Human Activity Recognition (HAR) using wearable sensor data is a 

cornerstone of mobile health and context- aware computing. While 

deep learning has significantly advanced HAR accuracy the 

computational demands of complex architectures often conflict with the 

limited resources of edge devices like smartphones and wearables . 

This creates a critical trade-off between predictive performance and 

practical deployability. This paper presents a systematic comparative 

analysis of five distinct deep learning architectures: a baseline Multi-

Layer Perceptron (MLP), a 1D Convolutional Neural Network (1D-

CNN), a Long Short-Term Memory (LSTM) network, a hybrid CNN-

LSTM model , and a Transformer-based model . We evaluate these 

models on the public UCI-HAR dataset, focusing not only on 

classification accuracy and F1-score but also on crucial efficiency 

metrics: model size (parameters) and inference latency. Our findings 

reveal that while the Transformer achieves the highest F1- score 

(0.931), its substantial computational cost makes it less suitable for 

real-time edge applications. The hybrid CNN-LSTM architecture 

emerges as the most balanced solution, delivering competitive accuracy 

(0.925 F1-score) with significantly lower latency and a more compact 

model size. This study provides a clear, data- driven framework for 

selecting appropriate HAR models based on specific deployment 

constraints. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

……………………………………………………………………………………………………... 

Introduction:- 
The proliferation of sensor-rich mobile and wearable devices has catalyzed research in Human Activity Recognition 

(HAR) [1]. By interpreting data from accelerometers and gyroscopes, HAR systems can enable a host of applications, 

from remote patient monitoring and elderly care to fitness tracking and smart home automation [1]. 

 

Historically, HAR systems relied on handcrafted feature engineering coupled with traditional machine learning 

classifiers like Support Vector Machines (SVMs) [2]. This approach, while effective, is labor-intensive and requires 

significant domain expertise. The advent of deep learning has revolutionized the field by enabling end- to-end 

learning, where models automatically extract hierarchical features directly from raw sensor data [3]. 
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Architectures like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have become the 

de facto standard, consistently achieving state-of-the-art results. 

However, pushing the accuracy frontier has often led to increasingly complex and computationally expensive models 

[3]. This poses a significant challenge for real-world deployment, where HAR inference must occur in real-time on 

resource-constrained edge devices with limited battery life and processing power. A model that achieves 99% 

accuracy but drains a smartphone battery in an hour is impractical. This highlights a critical research gap: a holistic 

comparison that evaluates deep learning architectures not just on their predictive power but also on their operational 

efficiency [3]. 

 

Research Contribution: 

1. A systematic implementation and evaluation of five architectures (MLP, 1D-CNN, LSTM, CNN- LSTM, 

Transformer) for sensor-based HAR 

2. A holistic analysis balancing performance metrics (Accuracy, F1-Score) with efficiency metrics crucial for edge 

deployment (Model Parameters, Inference Latency) 

3. A qualitative error analysis and a visual trade-off analysis 

4. All evaluations are conducted on the well-established, public UCI-HAR benchmark dataset to ensure 

reproducibility and comparability 

 

Related Work 

Table 1:- Research Analysis. 

Sr. 

No. 

Author Findings Limitations Conclusion 

1. Ahmed, S. et 

al. [1] 

 

AI models with 

wearable sensors 

provide promising 

solutions for HAR 

applications 

Limited to specific 

sensor configurations 

and controlled 

environments 

 

Wearable sensors integrated with AI models 

show significant potential for advancing HAR 

systems 

 

2. Anderson, 

T., et al. 

[2] 

Holistic evaluation 

framework needed 

for HAR models 

considering both 

performance and 

computational 

efficiency 

Focus primarily on 

model performance 

without extensive real-

world deployment 

testing 

 

Deep learning-based HAR requires balanced 

evaluation of accuracy and practical 

deployability constraints 

3. Chen, X., 

et al. [3] 

Transformer-based 

models with attention 

mechanisms achieve 

high accuracy for HAR 

tasks 

 

High computational 

requirements may limit 

edge device deployment 

TCN-attention mechanisms provide superior 

performance but require consideration of 

resource constraints 

 

4. Garcia, L., 

et al.[4] 

Deep learning 

enables end-to-end 

learning from raw 

sensor data, 

eliminating need 

for manual feature 

engineering 

Limited evaluation on 

diverse real-world 

scenarios and noise 

conditions 

Deep learning approaches significantly advance 

HAR by automating feature extraction processes 
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5. Kaur, P., et al. 

[5] 

Comprehensive 

overview of HAR field 

showing evolution 

from traditional to 

deep learning 

approaches 

 

Primarily review-based 

without novel 

algorithmic 

contributions 

HAR field has evolved significantly with deep 

learning becoming the dominant paradigm 

 

6. Kim, Y., et 

al. [6] 

CNN-LSTM hybrid 

models enable 

effective feature 

extraction and 

temporal modeling for 

wearable sensor-based 

HAR 

 

Limited to specific 

activity types and 

controlled experimental 

conditions 

Hybrid architectures combining CNN and 

LSTM provide balanced approach for HAR 

applications 

7. Kumar, S., et 

al. [7] 

Hybrid CNN-LSTM 

architecture provides 

effective approach for 

HAR applications, 

particularly in medical 

emergency scenarios 

 

Focused on medical 

emergency contexts, 

may not generalize to 

general HAR 

applications 

Bi-directional LSTM combined with CNN 

shows promise for critical healthcare 

applications 

8. Miller, K., et 

al. [8] 

Deep learning models, 

particularly 1D-CNNs, 

are highly effective for 

wearable sensor-based 

HAR with good 

efficiency 

Limited comparison 

with other deep 

learning architectures 

1D-CNNs provide optimal balance between 

accuracy and computational efficiency for HAR 

9. Qin, Z., et 

al. [9] 

Deep learning 

techniques show 

superior 

performance 

compared to 

traditional machine 

learning for 

smartphone and 

wearable sensor 

HAR 

Review-based study 

without extensive 

experimental validation 

 

Deep learning represents significant 

advancement over traditional approaches in 

HAR domain 

 

10. Ravi, D., et al. 

[10] 

Resource efficiency is 

critical for HAR 

deployment on low-

power edge devices, 

highlighting accuracy-

efficiency trade-offs 

Early work with limited 

deep learning 

architecture exploration 

Established importance of considering 

computational constraints in HAR model 

development 

11. Rodriguez, 

M., et al. 

[11] 

Deep neural networks 

can achieve device 

position-independent 

HAR, addressing 

practical deployment 

challenges 

 

Limited to specific 

device types and 

positioning scenarios 

 

Position-independent HAR addresses real-

world deployment challenges effectively 
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12. Thompson, J., 

et al. [12] 

YOLO LSTM 

combination provides 

enhanced performance 

for video-based human 

action recognition 

 

Focused on video 

sequences rather than 

wearable sensor data 

Novel architectures combining object detection 

with sequence modeling show promise 

13. Wang, J., et 

al. [13] 

Deep learning has 

significantly advanced 

HAR accuracy, with 

CNNs and RNNs 

becoming standard 

approaches 

Review-based without 

comprehensive 

comparative analysis 

CNNs and RNNs have established themselves as 

foundational architectures for HAR applications 

 

 

Data Acquisition 

We utilize the UCI-HAR Dataset, a standard benchmark in the field [5]. 

1. Source: 3-axial accelerometer and 3-axial gyroscope data (9 features total: tBodyAcc-XYZ, tGravityAcc-XYZ, 

tBodyGyro-XYZ) 

2. Format: 128 time-step windows (2.56s) 

3. Split: We use the official 70/30 subject-disjoint split (7,352 training, 2,947 testing samples). Labels are one-hot 

encoded. 

 

Our experimental design prioritizes fairness, reproducibility, and a comprehensive evaluation of each model. 

 

Data Preprocessing 

 Data Source: 3-axial accelerometer and 3-axial gyroscope signals from a smartphone worn on the waist [6] 

 Subjects: 30 volunteers 

 Activities: Six activities: Walking, Walking Upstairs, Walking Downstairs, Sitting, Standing, and Laying 

 Data Format: The data is pre-processed into fixed-width sliding windows of 2.56 seconds (128 time steps at 

50Hz). For each window, 9 features are provided (3-axis body acceleration, 3-axis total acceleration, 3-axis 

angular velocity) 

 Data Split: We use the original subject-based split provided with the dataset, which allocates 70% of subjects 

for training and 30% for testing. This ensures the model is evaluated on its ability to generalize to unseen users. 

The final training set contains 7,352 samples, and the test set contains 2,947 samples. 

 

Deep Learning Algorithms for Human Activity Recognition 

We implemented five architectures, each representing a different approach to time-series classification [7]. All 

models take an input of shape (128, 9) and produce a 6-class probability distribution using a softmax output layer. 

 

Multi-Layer Perceptron (MLP) 

A simple baseline that flattens the input window, treating it as a single vector. It ignores temporal structure. Our MLP 

consists of a Flatten layer followed by two dense layers (128 and 64 neurons with ReLU activation) and the output 

layer. 

 

1D Convolutional Neural Network (1D-CNN) 

Designed to  extract spatial features or "motifs" from the signal sequence [9]. Our model uses two 1D convolutional 

layers (64 filters, kernel size 3) followed by max pooling, a flatten layer, and a dense layer (100 neurons). Dropout 

(0.5) is used for regularization. 

 

Long Short-Term Memory (LSTM) 

A type of RNN designed to capture long-range temporal dependencies [10]. Our model consists of a single LSTM 

layer with 100 units, followed by a dense layer (100 neurons). Dropout (0.5) is applied. 
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Methodology:-  

 
Fig. 1:- Flowchart for proposed  methodology. 
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Hybrid CNN-LSTM 

This model aims to combine the strengths of both paradigms. A 1D- CNN layer first acts as a feature extractor on 

the raw signals, and its output sequence is then fed into an LSTM layer to model temporal relationships between 

these extracted features. Our model has one Conv1D layer (64 filters), a max pooling layer, and then an LSTM layer 

(100 units). 

 

Transformer 

 Based on the self-attention mechanism, this model can weigh the importance of different time steps in relation to the 

entire sequence. We implement a simplified Transformer encoder block containing one Multi-Head Attention layer 

(4 heads) and a feed-forward network, with layer normalization and residual connections. A Global Average Pooling 

layer precedes the final dense output layer. 

 

Proposed Model Architectures 

Each model is designed to represent a distinct architectural philosophy. 

1. MLP: Input (128, 9) -> Flatten -> Dense(128, relu) -> Dense(64, relu) -> Dense(6, softmax). 

2. 1D-CNN: Input -> Conv1D(64, kernel=3, relu) -> Conv1D(64, kernel=3, relu) -> MaxPooling1D(2) -> 

Dropout(0.5) -> Flatten -> Dense(100, relu) -> Dense(6, softmax). 

3. LSTM: Input -> LSTM(100, return_sequences=False) -> Dropout(0.5) -> Dense(100, relu) -> Dense(6, 

softmax). 

4. CNN-LSTM: Input -> Conv1D(64, kernel=3, relu) -> MaxPooling1D(2) -> LSTM(100) -> Dropout(0.5) -> 

Dense(6, softmax). 

5. Transformer: Input -> PositionalEncoding -> TransformerEncoderBlock(heads=4, key_dim=32) -> 

GlobalAveragePooling1D -> Dense(6, softmax). 

 

Evaluation Methodology:- 
1. Accuracy: Overall percentage of correct predictions. 

2. F1-Score(Macro): The unweighted mean of the F1-scores for each class, providing a balanced measure of 

performance across all activities. 

3. Model Parameters (Millions): Total number of trainable parameters, indicating model size and memory footprint. 

4. Inference Latency (ms): The average time taken to perform a single prediction on one window of data on the 

CPU, simulating an edge device environment. 

5. Framework: TensorFlow 2.10, Python 3.9. 

6. Training: Adam optimizer (learning rate=0.001), categorical_cross-entropy loss, batch size of 64, 50 epochs with 

early stopping (patience=10 on validation loss). 

 

Results and Discussion:- 
All models were implemented in Python using TensorFlow 2.x with the Keras API and trained for 50 epochs using a 

batch size of 64. The training configuration employed the Adam optimizer with a learning rate of 0.001 and 

categorical cross-entropy as the loss function. To prevent over-fitting, an early stopping callback was implemented 

to monitor validation loss with a patience of 10 epochs, ensuring optimal model performance while avoiding 

unnecessary computation. This setup provides a robust foundation for deep learning model development, balancing 

training efficiency with regularization techniques. 

 

Comparative Analysis of Proposed Deep Learning Models 

Table 2:- An overview of performance analysis for all proposed models. 

Architecture Accuracy(%

) 

F1-Score 

(Macro) 

Parameter (M) Inference Latency 

(ms/sample) 

MLP 88.4 0.881 0.15 0.2 

1D-CNN 91.6 0.914 0.21 0.5 

LSTM 90.5 0.902 0.44 1.8 

CNN-LSTM 92.8 0.925 0.32 1.1 

Transformer 93.4 0.931 0.78 3.5 
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Fig. 2:- Graphical Representation performance analysis for proposed Model. 

 

Limition:- 
This study is confined to a single, clean dataset. Real-world sensor data is often noisy and may contain activities not 

seen during training Furthermore, while our inference tests were on a CPU, true on-device performance can be 

influenced by mobile-specific optimizations and hardware. 

 

Conclusion:-  
This paper presented a comprehensive comparison of five deep learning architectures for HAR, evaluating them on 

both performance and efficiency. We demonstrated through detailed quantitative and visual analysis that there is no 

single "best" model, but rather a spectrum of trade-offs. The Transformer sets the benchmark for accuracy, while the 

MLP provides a fast but limited baseline. The 1D-CNN is a highly efficient choice, and the hybrid CNN-LSTM 

provides the most compelling balance of high accuracy and practical deployability for on- device applications. Our 

findings underscore the importance of looking beyond accuracy leader boards and adopting a holistic evaluation 

framework that aligns model selection with the specific constraints of the target deployment environment. 
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