
ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

217

Journal Homepage: -www.journalijar.com

Article DOI:10.21474/IJAR01/21289

DOI URL: http://dx.doi.org/10.21474/IJAR01/21289

RESEARCH ARTICLE

INTRODUCING A SIMULATED GATEWAY FOR VALIDATION OF INDUSTRIAL

COMMUNICATION IN PLC SYSTEMS

Arthur Kniphoff da Cruz
1
, Ana Clara Hackenhaar Kellermann

2
, Jona Wilhelmi

3
, João Vitor Meinhardt

Swarowsky
4
, Christian Siemers

5
 and Lorenz Däubler

6

1. Master of Engineering in Electrical Engineering, Clausthal University of Technology.

2. Bachelor Student in Control and Automation Engineering, Ostfalia University of Applied Sciences.

3. Bachelor Student in Electrical Engineering, Hochschule Karlsruhe University of Applied Sciences.

4. Bachelor Student in Computer Science, Ostfalia University of Applied Science.

5. Doctor in Nature Science, Clausthal University of Technology.

6. Doctor of Engineering in Automation Engineering, Ostfalia University of Applied Sciences.

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 03 May 2025

Final Accepted: 06 June 2025

Published: July 2025

Key words:-
Unit Test, PLC, Simulation, Gateway

Given the need for efficiency in the development of new devices and

protocols for communication and industrial automation, simulation has

become a great ally in this area. In addition, the application of tests on

these new products is extremely important to avoid failures during their

operation in industrial plants or substations of end customers. However,

the tools and methods for applying Unit Tests to Programmable Logic

Controllers (PLCs) programs are currently scarce, making it difficult to

validate them before they are inserted into the plant, opening the door

to inconveniences. This article presents a study on the state of the art of

Unit Tests and their application in PLCs, as well as the validation of a

simulated application-layer gateway that could be used for the

development and testing of proprietary protocols to be used in PLCs in

the future. The results show that the simulated gateway meets the

expectations of the development and is able to function in the same

way as a physical industrial gateway,opening doors for the developmen

t of new industrial and substation communication technologies. The

authors hope that research into the state of the art of Unit Tests in their

industrial applications will help other authors who are looking to learn

more about this subject, aiding the continued development of

technologies in this area.

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed

with credit to the author."

……………………………………………………………………………………………………....

Introduction:-
In 2011, the introduction of the Industry 4.0 (I4.0) concept at the Hannover Messe by Germany's leading names in

industrial automation changed the way industrial automation technology developers work on their products [1].

Proposing a new industrial model based on decentralized control of production processes and collaboration between

people and smart devices, I4.0 is defined by nine enabling technologies, these being Simulation, Collaborative

Robotics, Systems Integration, Internet of Things (IoT), Cloud Computing, Cybersecurity, Additive Manufacturing,

Corresponding Author:-Arthur Kniphoff da Cruz

Address:-Clausthal University of Technology - Institute of Computer Science, Julius-Albert-Str.

4, 38678 Clausthal-Zellerfeld, Germany.

http://www.journalijar.com/

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

218

Big Data and Cyber-Physical Systems[1], these remaining to assist in the achievement of Industry 5.0goals [1].

Currently, industries that are not suited to this new production model can be considered at a disadvantage, since

these technologies increase productivity, flexibility and the independence of production processes [2].

Therefore, considering the need that industries and developers of new technologies face to keep up with the

evolution of industrial standards and consequently of the industry [3], this article presents a simulated application

layer gateway for validating Programmable Logic Controller (PLC) projects containing communication with

external systems. This solution facilitates the development and validation of new protocols and industrial

applications in a laboratory setting, eliminating the need to implement these projects in physical plants or devices

during the engineering or development process. Taking advantage of this opportunity, this article will also present a

survey on the state of the art of Unit Tests and their most current methodologies and tools for PLC programs, critical

parts of the industrial processes, in which software faults can lead to major safety risks to life, equipment and the

environment [4].

This work is organized as follows: Section 2 will introduce the simulated gateway, Section 3 will explore the state of

the art on Unit Tests in PLCs, Section 4 will describe the validation of the simulated gateway, Section 5 will present

the results and discussions, and Section 6 will conclude this work.

The Simulated Gateway

Developed in Python, the simulated application-layer gateway was idealized to support the development of an

extension of a proprietary network protocol. It can receive driver messages from any driver and simulate process

data. For example, the simulated gateway could be used to test the behavior of a PLC program with a new

application-layertelegram or data type. The blocks can thus be developed and tested before a new physical industrial

device or network is completed.

The current version can establish real Transmission Control Protocol/Internet Protocol (TCP/IP) connections to

communication blocks on the PLCs and generate process valuesat the application layer for PLC programs. In these

programs, communication blocks are used to establish communication with external devices, using them to send

process data to the driver blocks, which are used to monitor these data. Both communication and driver blocks are

usually implemented as Function Blocks (FBs).

The reception of the simulated process values can be checked and confirmed with a test FB. Both the gateway and

the communication blocks/PLCs can be operated in redundant or single mode. The supported operating modes in

combination with the controllers are shown in Figure 1.

Figure 1:- Operation modes of the simulated gateway.

Source: The authors.

Figure 2 shows the communication paths between the different agents on the PLC and the simulated gateway sides.

As the simulated gateway communicates with the PLC via TCP/IP, the corresponding ports on the environment - in

this case, a Windows virtual machine (VM) - must be enabled in the firewall (both incoming and outgoing), or the

firewall must be deactivated. For additional protection, the IPs of the PLCs can be authorized in the TCP rules (if

necessary).

The simulated gateway system consists of the GatewaySimulator, KeepAliveManager, DriverManager and

ProcessDataManager classes. The instances of the GatewaySimulator establish connections to the PLCs, receiving

and sending telegrams via TCP/IP. The KeepAliveManager monitors the connections and sends KeepAlive

telegrams to the communication block. The DriverManager saves the driver configurations received. The

ProcessDataManager generates process data based on the driver configurations, which is sent via the gateway

instances.

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

219

Figure 2:-Communication paths between the different system agents.

Source: The authors.

The GatewaySimulator instances establish a TCP connection with the PLC communication blocks. Once a

connection has been established, it is added to the KeepAliveManager, DriverManager and ProcessDataManager.

The KeepAliveManager monitors the transmission times of the GatewaySimulator instances. If it is determined that

a KeepAlive message must be sent,because the time since the last KeepAlive telegramsent has exceeded one second,

the KeepAliveManager itself sends a KeepAlive telegram via the TCP connection that was established by the

GatewaySimulator instance. This is a one-way communication, which means that only KeepAliveManager sends

this message according to the requests of the proprietary protocol and does not receive any message from the

communication block.

The DriverManager receives driver configuration objects - sent from the PLC -through theGatewaySimulator

instance and saves them in a structured dictionary. The ProcessDataManager receives the driver configurations from

the DriverManager and generates the process data telegrams based on them. These are transferred to the relevant

gateway instances, which then send the telegrams to the communication block. There can be up to

fourGatewaySimulator instances per communication block, depending on the redundancy setting. Only one instance

of the KeepAliveManager, DriverManager and ProcessDataManager classes can exist at once.

A new GatewaySimulator instance is created for each TCP connection, and each gateway instance is started as a

new thread. Another thread is started for the send method. Each manager also runs in its own thread. A single TCP

connection (simulated gateway and PLC in single mode and a communication block) therefore has five threads.

Each additional TCP connection therefore adds two new threads. In full redundancy mode with one communication

block there are 11 threads, with two communication blocks there are already 19 threads. It is therefore important to

ensure that the device on which the gateway is running has enough processing power available. The simulated

gateway configuration is made via its configuration tool GatewayConfigurationTool.

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

220

In this way, when using the introduced solution, the software tester can parameterize the gateway according to the

test cases for the PLC program via the GatewayConfigurationTool interface. The data types to be simulated within a

test can be selected there. A test contains as many runs as the number of data types selected by the user. In the first

run, process values are generated for the first data type and sent to all registered drivers until the simulation duration

has expired. The next run then starts for the next data type. The TCP connections to the PLC are disconnected and

reestablished againbetween the runs, with the registration of the communication and driver blocks. At the end of the

test, there are statistics showing how often which data type was generated and sent for which driver.

The ―GW_Test‖ test function block can test up to 16 drivers with one instance. It checks how often the drivers

receive new process values. At the end of the test, the user can compare the statistics of the simulator with those of

the test module and determine whether the test was successful. If it has failed, the user can see which signals have

not received all the process data. The validation of this test function block will be shown in section 4.

Unit Tests on PLCs: State of the Art, Tools and Methods

There are several ways to ensure software quality, one of which is the process of software testing. This topic

includes a wide variety of testing techniques and frameworks for software in general, including those used in PLC

programming.One of the most well-known of these techniques is called Unit Testing, in which every individual part

of a software (units) is tested to ensure theircorrect operation according to their design. These units can be code

pieces like functions or methods, and the testing process can be manual or automated by a framework or tool, always

aiming to catch errors as soon as possible during the software development process [5]. [6], citing [7], says that 79%

of Microsoft developers use unit testing in their daily work, also remembering that ―unit testing is a mandatory task

required in various international standards for different industrial systems, e.g. IEC 61508, ISO26262, RTCADO-

178B/C, etc.‖[6].

However, although unit testing is an important activity to ensure software quality, typically,this technique does not

tend to be applied in PLC software, since there arefew reliable automated tools available for unit test generation in

this context. As a result, these unit test cases are frequently manually written by engineers, which is very time and

cost demanding [6]. According to [8], ―traditional testing techniques are not sufficient to detect latent errors in

control system software‖.This limitation of traditional practices is greatly influenced by the characteristics of

embedded systems, such as cyclic execution and real-time interruptions, making the testing process more difficult

[8], and encouraging companies to use automated testing tools, preferably those capable of also generating the tests,

not just executing them.

Therefore, to take advantage of this reality, a study was conducted to identify reliable unit test generator tools,

particularly for PLC testing.A search in the Scopus database was carried out in order to find articles related to the

use of software for performing tests on PLC programs in the last five years. This database was chosen because it is

known for being comprehensive, containing more than 100 million articles from 330 disciplines [9]. The search

string ―TITLE-ABS-KEY ((unit AND test) AND (programmable AND logic AND controller) OR plc) AND

PUBYEAR > 2019 AND PUBYEAR < 2026 AND PUBYEAR > 2019 AND PUBYEAR < 2026 AND (LIMIT-TO

(SUBJAREA , 'ENGI') OR LIMIT-TO (SUBJAREA , 'COMP')) AND (LIMIT-TO (DOCTYPE , 'ar')) AND (

LIMIT-TO (LANGUAGE , 'English'))‖ was used and returned 40 articles, but only one of them specifically

addressed the topic of our research ([4]). Therefore, the snowball method [10] was used with this article, and its

references were analyzed in order to better understand our technologies of interest. The criterion for this method was

articles about the use of software for generating unit tests for PLCs published from the year 2020 onward and, in the

absence of such articles, the consideration of articles presenting these solutions. Figure 3 shows a timeline of the

release years of five software tools identified in literature during this research, which will be described in more

detail below.

CODESYS:

CODESYS (Controller Development System) is an Integrated Development Environment (IDE), released in 1994,

designed for the programming ofPLCs and other embedded systemsbased on the IEC 61131-3 standard. It has

support for all five programming languages defined by the standard, and provides a huge variety of tools for

developers, such as graphical and textual editor for code writing, library and task configuration,version control via

integration with Git/SVN, hardware independence (CODESYS is hardware-agnostic) and debugging tools that can

be executed without available hardware [11].

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

221

Figure 3:-Software found in this research and their release dates.

Source: The authors.

Arcade.PLC:

This software is a model checker for PLCs, released in 2012, which supports both static analysis and model

checking for Universal Computational Logic (∀CTL) and past-time Linear Temporal Logic (ptLTL), utilizing a

Counterexample-Guided Abstraction Refinement (CEGAR) approach[12]. It is compatible with various industrial

PLC languages and can analyze all types of Program Organizational Units (POUs), which are the building blocks of

PLC programs[12]. Additionally, it can produce execution traces and generate corresponding test cases.A notable

feature of this model is its ability to handle programs written in multiple languages, including Structured Text (ST),

Instruction List (IL), and Siemens SIMATIC S7’s proprietary Statement List (STL)[12]. This is achieved

bycompiling the input programs into an Intermediate Representation (IR), which abstracts the specific details of

each language, enabling a unified analysis process [12].

G4LTL-ST:

This component is a synthesis algorithm released in 2014[13]. It is designed to generate control code for industrial

PLCs based on timed behavioral specifications of input and output signals. It achieves this by applying a pseudo-

Boolean abstraction to data constraints and translating timing constraints into Linear Temporal Logic (LTL). The

synthesis process follows a loop based on abstraction and refinement, guided by counterstrategies.One of the tool’s

key strengths is its ability to produce programs in ST, compliant with the IEC 61131-3 standard. These programs

can then be compiled into executable code for a wide range of industrial field-level devices.A particularly notable

feature of G4LTL-ST is its support for assumption generation. When given specifications that cannot be processed,

the engine can identify the causes and propose additional assumptions to make the specification feasible. It uses

predefined templates and heuristic methods to do this [13].Finally, [13] further highlights that control software

synthesis, as enabled by tools like G4LTL-ST, is regarded as a foundational technology for implementing flexible

and modular control systems in the context of Industry 4.0.

SymTest:

SymTest is a testing framework designed for embedded systemsreleased in 2016[8]. It combines symbolic execution

with constraint solving techniques to automatically generate test sequences. The process begins with the program’s

control flow graph, from which the framework identifies an optimal syntactic path. It then symbolically executes

this path to produce a symbolic execution trace.From this trace, a path predicate is extracted and provided to a

Satisfiability Modulo Theories (SMT) solver. If the solver determines the predicate to be satisfiable, it returns

concrete values that can be used as test inputs.A major benefit of SymTest is its ability to produce minimal-length

test sequences, which leads to lower testing costs and faster execution times. Additionally, the framework supports

customization through user-defined heuristics [8].

PyLC:

PyLC is a translation framework developed to enable automated test generation for PLC programs using the

Pynguin testing tool,being released in 2023[14]. The framework is organized into four sequential phases, each

building on the previous one to support the end goal of automated testing.In the initial phase, PLC programs are

converted into Python code. This transformation is guided by a set of translation rules and adheres to the IEC 61131-

3 standard, which defines the structure and semantics of PLC code.Once translated, the Python code is passed to the

Translation Validation module. This module verifies the correctness of the transformation using three distinct unit

testing strategies to ensure that the behavior of the original PLC code is preserved.Ultimately, the validation step

ensures that the converted Python code is reliable and suitable for further processing, particularly for automated test

generation through Pynguin[14].

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

222

PLCAutoTester:
The PLCAutoTester is the most recent tool found in our research, its release date being January 2024 [4]. The tool is

an implementation of an automated unit test case generation framework, and a supporting algorithm specifically

designed for Structured Text (ST) programs. Its foundational concept involves employing Dynamic Symbolic

Execution (DSE) along with the idea of PLC states to create test cases for ST programs. This incorporation of PLC

states concept into DSE is the key differentiating feature of PLCAutoTester. This feature allows the tool to better

manage the impact of internal variables on logic branch selection across different execution cycles, which is crucial

due to the cyclical execution nature of PLC programs where internal variables retain values from previous cycles.

Beyond the above-mentioned features, the PLCAutoTester also presents other functionalities that are worth pointing

out, such as support for multiple coverage criteria - such as statement coverage, branch coverage, and MC/DC

coverage - and the capability of generating multi-cycle test cases. Finally, the framework can combine extracted

program elements into an intermediate model called ST Control Flow Coverage Graph (ST-CFCG), which integrates

control flow, FB structureand coverage information [4].

Materials and Methods:-
In this validation, a gateway model for merging IEC 61850 Manufacturing Message Specification (MMS) with a

proprietary communication protocol will be analyzed. The goal is to test a PLC program implemented to handle the

proprietary protocol. To achieve this, simulated IEC 61850 MMS data will be generated by the gateway and sent to

the PLC.The test setup is a full redundant configuration consisting of a redundant simulated gateway on a virtual

machine (VM) with 16 CPU cores distributed over two sockets and eitght GB memory, and two Siemens AG

SIMATIC S7-1515-R PLCs.The PLC program consists of one communication blockcontaining one GW_TEST

block, which in turn contains eitght driver blocks. The amount of data points each driver block contains, with their

respective data type and communication style, are shown on Table 1.As this example involves a simulated gateway

for integrating Intelligent Electronic Devices (IEDs) from an industrial electrical substation into a PLC system using

IEC 61850 MMS, the process data to be simulated on the gateway will follow the standard's data types (Bool,

Bitstring[2], Float, Int16, Int32, and Int64) and communication methods (polling and reporting). The data used for

reporting communication includes, in addition to the value, the quality code in Word format and the timestamp in

Date_And_Time format of an IEC 61850 data object. The data used for polling communication includes only the

value and the quality code in Word format.

 Table 1:- Amount of data points contained by each driver block on this test.

Quantity Value Data Type Communication

64 Bool Reporting

10 Bitstring [2] Reporting

10 Float Reporting

10 Int16 Reporting

10 Int32 Reporting

10 Int64 Reporting

10 Bool Polling

10 Bitstring [2] Polling

10 Float Polling

4 Int16 Polling

4 Int32 Polling

2 Int64 Polling

Source: The authors.

According to Table 1, the PLC program used in this test has 1.232 data points, since each driver block contains 154

data points and there are eitght driver blocks in the GW_TEST block on this project.For this test project, the TCP

ports 2000 up to 2007 of the simulated gateway will be used. Next, the network card of the virtual machine must be

configured by adding the IP addresses intended for the simulated gateway. In this case, the IP address

140.82.162.180 will be used for Gateway 1, and 140.82.162.181 for Gateway 2. The communication blocks can be

configured in a cyclic interrupt organization block (OB), with a cycle of 10ms, and the previously configured IPs of

the simulated gateway must be entered in this block. In the same way, the ports specified in the firewall rules must

be entered for the ―REM_PORT_CPU1‖ and ―REM_PORT_CPU2‖ inputs, as shown in Figure 4.

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

223

Figure 4:-Communication block configuration.

Source: The authors.

After configuring the communication blocks, the driver blocks are configured to exchange simulated process data

between the simulated gateway and the PLC. The driver block should be inserted into a cyclic interrupt OB with a

60 ms cycle. Figure 5 shows the layout of the driver and GW_TEST blocks in the program.

Figure 5:-Configured driver and test blocks.

Source: The authors.

To parameterize the test on the PLC side, the inputs for the associated data types can either be set to TRUE offline

when the GW_TEST block is called or changed during RUN. If an input is set to FALSE, no test is performed for

this data type. However, it should be noted that it is not possible to permanently change the value of an input offline

set, in this way, when calling up the function block, the original value is adopted again after a CPU cycle. Figure

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

224

6illustratesthe GW_TEST block on this project.All data types were set to be tested on all instances of the GW_TEST

block.

Figure 6:-Configuration of the GW_TEST block on the project.

Source: The authors.

The simulated gateway is configured using the GatewayConfigurationTool. It generates a config file which is read

by the gateway application. In this tool, the IP addresses for single or redundant operation modes can be configured,

as well as the number of communication blocks (TCP Ports) connected to the simulation. Finally, the process data

generation is also configured, as shown in Figure 7.The user can choose the desired datatypes for simulation, as well

as their update interval and the duration of the simulation. So that the PLC can check the reception, the same data

types as in the GW_TEST module must of course be activated here. After the configuration on the tool, the settings

can be saved, and the configuration file can be loaded into the simulated gateway.

Figure 7:-Process Data generation setting in the GatewayConfigurationTool.

Source: The authors.

In this test each data type was simulated for one minute. At the end of the test, the number of generated data for each

driver block is displayed in the simulation console for each simulated data type (i.e., how often process data was

generated for this data type and sent to the driver block). As it takes some time to register the driver blocks in the

gateway, it is possible that more data was generated for some driver blocks than for others.

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

225

Results and Discussion:-
The results of the data generated by the simulated gateway are presented in Figure 8. As shown in the image, the

most generated process datawas from the BOOL_R (Bool-Reporting) datatype. The figure also shows that the

largest volume of data was generated for the driver block 44 (DB44), likely because it is the first DB to which the

process data is sent. Additionally, it can be observed that the amount of data generated decreases over time as the

tests progress, suggesting a saturation of the simulated gateway due to the computational load required during these

tests.

Figure 8:- Total amount of data types generated by the gateway simulator.

Source: The authors.

Examining the data received in the GW_TEST block of the PLC program reveals a different situation. As Figure 9

shows, the amount of data received on DB44 differs from the amount of data generated by the simulated gateway for

this driver block.On Figure 8, the simulated gateway has generated 101values for DB44, which has received 91 of

them. This behavior was observed only for BOOL_R data types in all the project drivers, suggesting that this

amount of generation load on the simulated gateway could lead to inconsistencies in the test results.

Figure 9:- Receipt of simulated data into the PLC program.

Source: The authors.

Therefore, the authors recommend using fewer driver blocks in the programs to be tested with this version of the

simulated gateway, while this instability is corrected in future versions. Since the BOOL_R data type is present in

massive quantities in the block, the test results were positive, as only one data type showed an inconsistency during

this process.

ISSN(O): 2320-5407 Int. J. Adv. Res. 13(07), July-2025, 217-226

226

Conclusion:-
This paper presents a simulated application-layer gateway for testing PLC open communication before it is applied

in the plant. This solution is in line with the values of Industry 4.0, which encourages the use of technologies such as

simulation to solve problems and innovative applications in the industrial environment.The validation results

showed that the solution is capable of working with PLC systems in full redundant mode, simulating process data

for driver blocks in PLCs, although it still has limitations concerning the amount of data that can be generated at

once, issue that will be treated in further developments.In addition, this paper presented a short state of the art on

existing unit testing technologies for PLC systems, showing their different applications.In future work, the

integration of Artificial Intelligence (AI) in Engineering Tools as the ones we have presented here will be analyzed,

in order to understand how AI technology can assist on test case generation for PLC programs. In addition, this work

will consider virtual PLCs in the next steps. The authors hope that this article will help other researchers in the field

to develop new techniques for testing programs, industrial networks, and protocols before they are applied in plants,

increasing the safety and reliability of these systems.

References:-
 [1] Xu X, Lu Y, Vogel-Heuser B, et al. Industry 4.0 and Industry 5.0—Inception, conception and perception.

Journal of Manufacturing Systems. 2021;61:530–535.

[2] Javaid M, Haleem A, Singh RP, et al. Understanding the adoption of Industry 4.0 technologies in

improving environmental sustainability. Sustainable Operations and Computers. 2022;3:203–217.

[3] ZVEI. Process Industrie 4.0: The Age of Modular Production—On the Doorstep to Market Launch.

Frankfurt am Main, Germany: ZVEI-German Electrical and Electronic Manufacturers Association; 2019.

[4] Shi J, Chen Y, Li Q, et al. Automated Test Cases Generator for IEC 61131-3 Structured Text Based

Dynamic Symbolic Execution. IEEE Trans. Comput. 2024;73:1048–1059.

[5] Wei C, Xiao L, Yu T, et al. How Do Developers Structure Unit Test Cases? An Empirical Analysis of the

AAA Pattern in Open Source Projects. IIEEE Trans. Software Eng. 2025;51:1007–1038.

[6] Zhang C, Yan Y, Zhou H, et al. Smartunit. In: Proceedings of the 40th International Conference on

Software Engineering: Software Engineering in Practice; New York, NY, USA; 2018; p. 296–305.

[7] Software development at microsoft observed. [place unknown]: [publisher unknown]; 2005.

[8] Suresh VP, Chakrabarti S, Jetley R. Automated Test Case Generation for Programmable Logic Controller

Code. In: Proceedings of the 12th Innovations in Software Engineering Conference (formerly known as

India Software Engineering Conference); New York, NY, USA; 2019; p. 1–4.

[9] Elsevier. Scopus: Content coverage guide [Internet] [cited 2025 Jul 11]. Available from:

https://www.elsevier.com/products/scopus/content.

[10] Snowball sampling: A purposeful method of sampling in qualitative research. [place unknown]: [publisher

unknown]; 2017.

[11] CODESYS GmbH. CODESYS – the IEC 61131-3 automation software [Internet] [cited 2025 Jul 11].

Available from: https://www.codesys.com/.

[12] Biallas S, Brauer J, Kowalewski S. Arcade.PLC: a verification platform for programmable logic

controllers. In: Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering; New York, NY, USA; 2012; p. 338–341.

[13] Cheng C-H, Huang C-H, Ruess H, et al. G4LTL-ST: Automatic Generation of PLC Programs. In; 2014; p.

541–549.

[14] Ebrahimi Salari M, Enoiu EP, Afzal W, et al. PyLC: A Framework for Transforming and Validating PLC

Software using Python and Pynguin Test Generator. In: Proceedings of the 38th ACM/SIGAPP

Symposium on Applied Computing; New York, NY, USA; 2023; p. 1476–1485.

