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One of the most important contributions which stellar structure has made for 

equilibrium configuration is the theory of self gravitating polytrope. In this 

paper we use the Standard Solar Model SSM of Bahcall, Serenelli, 

Basu(2005) as a basic to developed a solar models in hydrostatic equilibrium 

expressing the physical structure of a sequence of two zones polytropes 

associated to the convective and radiative regions, and three zones polytropes 

associated to the nuclear, the radiative and the convective regions of the solar 

interior. We show that a composite three zones polytrope is a good 

representation for SSM. 
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Introduction:- 
Polytropes are useful as they provide simple solutions for the internal structure of a star that can be tabulated and 

used for estimates of various quantities. They are much simpler to manipulate than the full rigorous solutions of all 

the equations of stellar structure. The equation of a polytropic state is a power law relationship between pressure and 

density: 

P = K ρϒ = K ρ1+
1

n                                                                     (1) 

where ϒ is the adiabatic index (a parameter characterizing the behavior of the specific heat of a gas), K is a 

polytropic constant and  n  is called the polytropic index.  

 

As suggested first by Emden in 1908 a simplified stellar model considers a star as an ideal gas self-gravitating in 

hydrostatic equilibrium. The equations governing the hydrostatic equilibrium are (Chandrasekhar, S., 1939) 

dP

dr
= −

GM  r ρ

r2                                                        (2) 

dM (r)

dr
= 4πr2ρ                                                                     (3) 

M r  is the enclosed mass under the radius r. Eliminating M r  between these two equations and use equation (1), 

we get 

 
1

r2  
d

dr
 

r2

ρ
 
dP

dr
 = −4πGρ                                                           (4) 
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If one is going to investigate the general solution-set of any equation, it is usually a good idea to express the 

equation in a dimensionless form. This can be done to equation (4) by transformation to the so-called Emden  

ρ = ρ
0
θ

n
           ,            r = αξ                                                        (5) 

where, 

α =  (n+1)Kρ
0

1
n−1

4πG

 

1/2

                                                             (6) 

We then get the more familiar form of the Lane-Emden equation: 

1

𝜉2  
1

𝑑𝜉
 𝜉2  𝑑𝜃

𝑑𝜉
 = −𝜃𝑛                                                       (7) 

The Lane-Emden equation is basis of all polytropic models and has analytical solutions for 𝑛 = 0, 1, 𝑎𝑛𝑑 5. For all 

other polytrope indices 𝑛, a numerical solution to the Lane-Emden equation must be calculated. We used 4
th

 order 

Runge-Kutta method to integrate it. The mass-radius relation can be written as (Horedt, G.P., 2004) 

𝑀𝑟3−𝑛 n−1 = 4𝜋  
𝐾 𝑛+1 

4𝜋𝐺
 
𝑛 𝑛−1 

𝜉(𝑛+1) (𝑛−1)    ∓
𝑑𝜃

𝑑𝜉
                                 (8) 

Also, the temperature 𝑇 and the gravitational acceleration 𝐹 can be written as (El-Zafarani, H., 1999) 

𝑇 =  𝜇 𝑃0 ℛ 𝜌0   𝜃                                                                     (9) 

𝐹 = − ±4𝜋𝐺  𝑛 + 1 𝐾 1 2 𝜌0
(𝑛+1) 2𝑛 

 (∓ 𝑑𝜃 𝑑𝜉 )                                (10) 

The following two functions  𝑢 , 𝑣  introduced by Milne (1930, 1932) play important role in fitting up solutions at 

the interface of the composite stellar models: (Menzel et al., 1963) 

𝑢 𝜉 = ∓𝜉 
𝜃𝑛

𝜃 ′
       ;       𝑣(𝜉) = ∓𝜉

𝜃 ′

𝜃
                                               (11) 

Polytropic Models of the Sun:- 
Our knowledge of the sun is derived from sophisticated standard solar model (SSM) (Bahcall et al., 2005). The solar 

matter is at present approximately 75% hydrogen, 23% helium and 2% metals by mass fraction. Throughout the 

solar interior, 𝜇  is approximately 0.59, except at the surface (𝜇 = 0.613), and in the core (𝜇 = 0.846). 

When we have used the pressure ( 𝑃 ) and the density ( 𝜌 ) data of Standard Solar Model SSM (2005) to plot a 

relation between the polytropic exponent ( 𝛾 = 𝑑 𝑙𝑛𝑃 𝑑 𝑙𝑛𝜌  ) and distance from center of sun in unit of solar radius 

(𝑅/𝑅𝑠𝑢𝑛 ), we get a graph that consist of three regions (see Fig.1). These regions are corresponding to the core, the 

radiative zone and the convective zone. 

 

 

Fig.1: Polytropic exponent (ϒ) along the interior of sun. 
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Two zones solar model:- 

We now will construct a model of sun with two polytropic regions, representing the convective and the radiative 

zones. From Fig.1, We take the polytropic index  𝑛1 = 1.5 (𝛾1 = 1.667) for the convective zone, and take the 

polytropic index 𝑛2 = 3.85 (𝛾2 = 1.260) for the radiative zone. To avoid confusion, we use the dimensionless 

variables 𝜉 , 𝜃 for the convective zone and the variables 𝜂 , 𝜙 for the radiative zone. Then, we have the equations of 

state for the convective and the radiative zone 

 𝑃1 = 𝐾1  𝜌1
1.67           where      𝜌1 = 𝜌1𝑜𝜃(𝜉)1.67                                                 (12) 

𝑃2 = 𝐾2  𝜌2
1.26           where       𝜌2 = 𝜌2𝑜𝜙(𝜂)1.26                                               (13) 

The core region will correspond to an E-solution of Lane-Emden equation (7) with polytropic index 𝑛2 = 3.85, so 

the Lane-Emden equation for the core is 

 1 𝜂2  1 𝑑𝜂  𝜂2  𝑑𝜙 𝑑𝜂  = −𝜙3.85                                                         (14) 

We integrate equation (14) from the center to surface by using 4
th

-order Runge-Kutta method, then the values of 

𝜂𝑖  , 𝜙 𝜏𝑖  , 𝜙′ (𝜏𝑖) are obtained. Translate these values into the 𝑢 , 𝑉 variables and draw it in (𝑢, 𝑉) plane as shown 

in Fig.2 . 

The Lane-Emden function for convective zone is 

 1 𝜉2  1 𝑑𝜉  𝜉2  𝑑𝜃 𝑑𝜉  = −𝜃1.5                                                        (15) 

The M-solutions of the Lane-Emden equation (15) are of particular interest because these are the ones which 

intersect the polytrope of the radiative zone. These may be generated beginning at  𝜉1   with an arbitrary starting 

slope 𝜃′(𝜉) less negative than 𝜃′(𝜉1) [ 𝜉1  , 𝜃′(𝜉1) are the values of  𝜉 and  𝜃 ′ at first zero of Lane-Emden function 𝜃 ] 
and integrating inward. Three such solutions are shown in Fig.2. 

 

 

Fig.2: The curve I is an E-solutions of Lane-Emden equation of polytropic index 𝑛2 = 3.85. 

The curves II, III and IV are M-solutions for the convective zone with starting slope 

𝜃 ′ 𝜉1 = −0.004 ,−0.00325 𝑎𝑛𝑑 − 0.002 respectively. 

First, let us start with the convective zone. We choose the solution with starting slope 𝜃′(𝜉1)  = −0.0032 because 

as we will see blow, this gives the depth of convective zone at  𝑅 = 0.71 𝑅𝑆𝑈𝑁  and gives a good approximation to 

SSM (Bahcall, J., Serenelli, A., Basu, S.: 2005(BS2005)). 

 

 

Using the values of mass  𝑀 and radius  𝑅 of the sun in equations (8) and (5), we get the values of the pressure 

constant 𝐾1 and the constant of homology  𝜌1𝑜  for the convective zone. 
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𝐾1 = 9.892 × 108       ,        𝜌1𝑜 = 5.351 × 105                                           (16) 

We determine the intersection point [(𝑢𝑖 , 𝑉𝑖)  =  (0.1373511 , 8.4788239)] between the M-solution of the 

convective zone and E-solution of the radiative zone in the (𝑢, 𝑉) plane [Fig.2] and the corresponding values of  

𝜉𝑖 = 2.5927674  and  𝜃𝑖 = 0.0047453 by cubic-spline interpolation. The density 𝜌
1𝑖

 and the pressure   𝑃1𝑖   at this 

point are 

𝜌
1𝑖

= 𝜌1𝑜  𝜃𝑖
1.5 = 1.749 × 102                                                  (17) 

𝑃1𝑖 = 𝐾1  𝜌𝑖
1+

1

1.5 = 5.412 × 1012                                        (18) 

Secondly, the radiative zone: The intersection point (𝑢𝑖 , 𝑉𝑖) between the radiative zone and the convective zone is 

corresponding to 𝜂𝑖 = 5.6345837 and  𝜙𝑖 = 0.1801321 . At this point, the density and the pressure of the radiative 

zone and of the convective zone are equal in order to satisfy the continuity, so we have 

𝜌
2𝑖

= 𝜌
1𝑖

= 𝜌2𝑜  𝜙𝑖𝑒
𝑛2 = 1.749 × 102                                          (19)  

𝑃2𝑖𝑒 = 𝑃1𝑖 = 𝐾2  𝜌2𝑖𝑒
1+

1

𝑛2 = 5.412 × 1012                                (20) 

Then the values of the pressure constant 𝐾2 and the homology constant 𝜌2𝑜  are 

𝐾2 = 8.090 ×  109                                            (21) 

𝜌2𝑜 = 1.285 × 105                                                    (22) 

By knowing 𝜃 𝜉 , 𝜙 𝜂  , 𝐾1  , 𝜌1𝑜 , 𝐾2 and 𝜌2𝑜  . The whole structure of the two zone polytrope is now completely 

determined. The numerical values of the physical quantities of our solar model are calculated and it is seen in table 

1, where the first two columns contain radius and mass relative to radius and mass of the sun respectively. The four 

columns contain density (𝜌), pressure (𝑃), temperature (𝑇) and gravitational acceleration (𝐹). All physical quantities 

are expressed in SI unit. 

Table 1: Numerical values of two-zone solar model.  

R/Rsun M/Msun ρ P T F 

0.05 1.076E-02 1.164E+05 1.948E+16 1.197E+07 -1.178E+03 

0.10 7.292E-02 8.810E+04 1.372E+16 1.113E+07 -1.996E+03 

0.15 1.926E-01 5.830E+04 8.156E+15 1.000E+07 -2.343E+03 

0.20 3.410E-01 3.546E+04 4.360E+15 8.789E+06 -2.333E+03 

0.25 4.869E-01 2.066E+04 2.207E+15 7.638E+06 -2.132E+03 

0.30 6.131E-01 1.185E+04 1.096E+15 6.612E+06 -1.864E+03 

0.35 7.143E-01 6.806E+03 5.450E+14 5.724E+06 -1.596E+03 

0.40 7.921E-01 3.946E+03 2.743E+14 4.969E+06 -1.355E+03 

0.45 8.505E-01 2.318E+03 1.404E+14 4.328E+06 -1.149E+03 

0.50 8.936E-01 1.381E+03 7.311E+13 3.783E+06 -9.783E+02 

0.55 9.253E-01 8.341E+02 3.872E+13 3.318E+06 -8.372E+02 

0.60 9.483E-01 5.095E+02 2.081E+13 2.920E+06 -7.210E+02 

0.65 9.650E-01 3.141E+02 1.132E+13 2.575E+06 -6.252E+02 

0.70 9.771E-01 1.950E+02 6.208E+12 2.275E+06 -5.458E+02 

0.75 9.837E-01 1.291E+02 3.263E+12 1.806E+06 -4.786E+02 

0.80 9.905E-01 8.417E+01 1.599E+12 1.358E+06 -4.236E+02 

0.85 9.953E-01 5.004E+01 6.722E+11 9.602E+05 -3.770E+02 
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Three-zones solar model:- 

This model is based on that the solar interior, from the inside out, is made up of the core, radiative zone and the 

convective zone. From Fig.1, the average value of the polytropic index, along the convective zone is 𝑛1 = 1.5   
(i.e. 𝛶1 = 1.667 ), along the radiative zone is 𝑛2 = 3.7878 (i.e. 𝛶2 = 1.264 ) and along the core is 𝑛3 = 20 

(i.e. 𝛶3 = 1.05).We use 𝜉 , 𝜃 as the variables in the Lane-Emden equation for the convective zone; 𝜂 , 𝜙 as the 

variables for the radiative zone and 𝜏 , 𝜓 as the variables for the nuclear zone. Then, the equations of state for three 

zones are 

 

𝑃1 = 𝐾1  𝜌1
1.67           where      𝜌1 = 𝜌1𝑜𝜃(𝜉)1.67                                                 (23) 

𝑃2 = 𝐾2  𝜌2
1.26           where      𝜌2 = 𝜌2𝑜𝜙(𝜂)1.26                                               (24) 

𝑃3 = 𝐾3  𝜌3
1.05           where      𝜌3 = 𝜌3𝑜𝜓(𝜏)1.05                                                (25) 

The core region will correspond to an E-solution of Lane-Emden equation, so Lane-Emden equation for the core is 

 1 𝜏2  1 𝑑𝜏  𝜏2  𝑑𝜓 𝑑𝜏  = −𝜓20                                           (26) 

 

By integrating equation (26) outward using 4
th

-order Runge-Kutta method, we get the values of   𝜏𝑖  ,  𝜓 𝜏𝑖  , 𝜓′ 𝜏𝑖  
then translated these values into the (𝑢, 𝑉) variables and draw it in (𝑢, 𝑉) plane as shown in Fig.5 . Note that the 

polytrope of index equal to 20 has infinite radius (i.e. 𝜏1 = ∞ where  𝜏1   is first zero of Lane-Emden function  𝜓 ).  

The Lane-Emden function for convective zone  is 

 1 𝜉2  1 𝑑𝜉  𝜉2  𝑑𝜃 𝑑𝜉  = −𝜃1.5                                                   (27) 

and the Lane-Emden function for radiative zone is 

 1 𝜂2  1 𝑑𝜂  𝜂2  𝑑𝜙 d𝜂  = −𝜙3.7878                                               (28) 

The convective zone will represent by M-solutions of Lane-Emden equation (27). These may be generated 

beginning at  𝜉1   with an arbitrary starting slope 𝜃′(𝜉) less negative than  𝜃 ′ 𝜉1  [ 𝜉1 , 𝜃′(𝜉1) are the values of 𝜉 and 

𝜃′ at first zero of Lane-Emden function  𝜃] and integrating inward. Three such solutions are shown in Fig.5. In the 

same way, we can get M-solutions that represent the radiative zone. Three of such solutions with staring slope 𝜙′(𝜂) 

less negative than 𝜙′(𝜂1) [ 𝜂1 , 𝜙′(𝜂1) are the values of 𝜂 , 𝜙′ at first zero of Lane-Emden function 𝜙] are shown in 

Fig.5. 
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Fig. 4: Shows the density distribution for our two-zone solar model 

(dashed) and for SSM (solid line). 
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Fig.5:- The curve I is an E-solution of the core. The curves II, III and IV are M-solutions for the 

radiative zone with starting slope 𝜙′ 𝜂1 = −0.012325 ,−0.0117 𝑎𝑛𝑑 − 0.0107 respectively. 

The curves V, VI and VII are M-solutions for the convective zone with starting slope 𝜃 ′ 𝜉1 =
−0.004 ,−0.00325 𝑎𝑛𝑑 − 0.002 respectively. 

 

Let us choose the solution with stating slope 𝜃′(𝜉1) = −0.00325 for the convective zone and the solution with 

stating slope 𝜙 ′ 𝜂1 =  −0.012325 for the radiative zone because these give the depth of convective zone at 

 𝑅 =  0.714 𝑅𝑠𝑢𝑛  and give a good approximation to SSM.  

First, let us start with the convective zone, since the radius and mass of sun are known, we can use equations (5) and 

(8) to get the values of  𝐾1 and  𝜌1𝑜 . 

𝐾1 = 9.841 × 108       ,        𝜌1𝑜 = 5.269 × 105                                       (29) 

At the intersection point [  𝑢𝑖 , 𝑉𝑖 𝑒 = ( 0.135577 , 8.622205 )] between the M-solution of the convective zone and 

of the radiative zone in the (𝑢, 𝑉) plane [Fig.5] which is corresponding to 𝜉𝑖 = 2.609952 and  𝜃𝑖 = 0.004712. This 

point and the corresponding values of  𝜉𝑖 , 𝜃𝑖   are determined by cubic-spline interpolation. From equations (23), the 

density  𝜌
1𝑖

 and the pressure  𝑃1𝑖  at this point are   

𝜌
1𝑖

= 𝜌1𝑜  𝜃𝑖
1.5 = 1.704 × 102                                                   (30) 

𝑃1𝑖 = 𝐾1  𝜌𝑖
1+

1

1.5 = 5.154 × 1012                                        (31) 

Secondly, the radiative zone: The intersection point  𝑢𝑖 , 𝑉𝑖 𝑒  between radiative zone and convective zone is 

corresponding to 𝜂𝑖𝑒 = 5.507149  and  𝜙𝑖𝑒 = 0.177308 . At this point, the density and the pressure of radiative 

zone and of convective zone are equal in order to satisfy the continuity. So from equations (24), (30) and (31), we 

get 

𝜌
2𝑖𝑒

= 𝜌
1𝑖

= 𝜌2𝑜  𝜙𝑖𝑒
𝑛2 = 1.704 × 102                                          (32)  

𝑃2𝑖𝑒 = 𝑃1𝑖 = 𝐾2  𝜌2𝑖𝑒
1+

1

𝑛2 = 5.154 × 1012                               (33) 

 

From equations (32) and (33), we obtain the values of the pressure constant  𝐾2 and the homology constant  𝜌2𝑜  . 

𝐾2 = 7. 791 ×  109        ,      𝜌2𝑜 = 1.194 × 105                                     (34) 

At the intersection point [ 𝑢𝑖 , 𝑉𝑖 𝑐 = ( 2.383569  , 1.048965)] between the M-solution of the radiative zone and E-

solution of the core in the (𝑢, 𝑉) plane [Fig.5] which is corresponding to 𝜂𝑖𝑐 = 0.828439 and  𝜙𝑖𝑐 = 0.906953. The 

density  𝜌
2𝑖𝑐

 and the pressure  𝑃2𝑖𝑐  are obtained by 

𝜌
2𝑖𝑐

= 𝜌2o  ϕ
ic
n2 = 8.25 × 104                                                (35) 
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P2ic = K2  ρ
2ic

1+
1

n 2 = 1.276 × 1016                                         (36) 

Finally, the core: The intersection point  ui , Vi c  between the M-solution of the radiative zone and E-solution of the 

core is corresponding to  τi = 0.455335 and ψ
i

= 0.906953 . At this point, the density and the pressure of core and 

of radiative zone are equal in order to satisfy the continuity. Then,  

ρ
3i

= ρ
2ic

= ρ
3o
ψ

i

n3 = 8.25 × 104                                          (37) 

P3i = P2ic = K3  ρ
3i

1+ 
1

n 3 = 1.276 × 1016                                  (38) 

From equations (37) and (38), we get the values of the pressure constant K3 and the homology constant  ρ
3o

 (  ρ
3o

 is 

central density of configuration). 

K3 = 8.785 × 1010         ,      ρ
3o

= 1.483 × 105                                       (39) 

We see that our model of the sun yields central density ρ
c

= 1.483 × 105  Kg m−3 which is very close to that of 

standard solar model ρ
c

= 1.529 × 105 Kg m−3. 

Now, the values of  θ ξ  , θ′ ξ  , K1 , ρ
1o

 for the convective zone, ϕ η  , ϕ′ η  , K2 , ρ
2o

 for the radiative zone, and 

ψ τ  , ψ′ τ  , K3 , ρ
3o

for the core are known. So we can compute the physical march from the center to the surface 

as shown in Table 2.  

 

Table 2: Numerical values of Three-zones solar model. 

R/Rsun M/Msun ρ P T F 

0.05 0.0121 1.283E+05 2.030E+16 1.609E+07 -1.323E+03 

0.10 0.0770 8.828E+04 1.370E+16 1.579E+07 -2.107E+03 

0.15 0.1950 5.731E+04 8.054E+15 1.005E+07 -2.372E+03 

0.20 0.3408 3.490E+04 4.303E+15 8.813E+06 -2.332E+03 

0.25 0.4848 2.042E+04 2.186E+15 7.650E+06 -2.123E+03 

0.30 0.6098 1.178E+04 1.090E+15 6.616E+06 -1.854E+03 

0.35 0.7106 6.797E+03 5.441E+14 5.722E+06 -1.588E+03 

0.40 0.7885 3.956E+03 2.745E+14 4.960E+06 -1.349E+03 

0.45 0.8471 2.331E+03 1.406E+14 4.313E+06 -1.145E+03 

0.50 0.8905 1.391E+03 7.324E+13 3.764E+06 -9.749E+02 

0.55 0.9224 8.401E+02 3.872E+13 3.295E+06 -8.346E+02 

0.60 0.9456 5.126E+02 2.074E+13 2.892E+06 -7.189E+02 

0.65 0.9624 3.154E+02 1.122E+13 2.544E+06 -6.234E+02 

0.70 0.9745 1.951E+02 6.116E+12 2.241E+06 -5.443E+02 

0.75 0.9836 1.301E+02 3.288E+12 1.806E+06 -4.786E+02 

0.80 0.9904 8.482E+01 1.611E+12 1.358E+06 -4.235E+02 

0.85 0.9952 5.043E+01 6.774E+11 9.602E+05 -3.770E+02 
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Fig. 6: the mass-radius relation for our three-zone solar model 

(dashed) and for SSM (solid line). 

Fig. 7: Shows the density distribution for our three-zone solar 
model (dashed) and for SSM (solid line). 

 


