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Introduction:-

Polytropes are useful as they provide simple solutions for the internal structure of a star that can be tabulated and
used for estimates of various quantities. They are much simpler to manipulate than the full rigorous solutions of all
the equations of stellar structure. The equation of a polytropic state is a power law relationship between pressure and
density:

1
P=Kp' =Kp'*n ()

where Y is the adiabatic index (a parameter characterizing the behavior of the specific heat of a gas), K is a
polytropic constant and n is called the polytropic index.

As suggested first by Emden in 1908 a simplified stellar model considers a star as an ideal gas self-gravitating in
hydrostatic equilibrium. The equations governing the hydrostatic equilibrium are (Chandrasekhar, S., 1939)

dP _ GM(n)p
dr r2 (2)

dM(r) 2
= 4nrep 3)

M(r) is the enclosed mass under the radius r. Eliminating M(r) between these two equations and use equation (1),
we get

(5 5) = —4nGp @)
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If one is going to investigate the general solution-set of any equation, it is usually a good idea to express the
equation in a dimensionless form. This can be done to equation (4) by transformation to the so-called Emden

p=p,0" : r=oa§ (5)

1 \1/2
(n+1)Kp?
=< 4nGO ) (6)

We then get the more familiar form of the Lane-Emden equation:

where,

5w (8= W)

The Lane-Emden equation is basis of all polytropic models and has analytical solutions for n = 0,1, and 5. For all
other polytrope indices n, a numerical solution to the Lane-Emden equation must be calculated. We used 4™ order
Runge-Kutta method to integrate it. The mass-radius relation can be written as (Horedt, G.P., 2004)

/n—
3-n/n-1 K@n+D]" (n+1)/(n-1) - a6
Mr = 4 [ 4G E (+ d{) (8)

Also, the temperature T and the gravitational acceleration F can be written as (El-Zafarani, H., 1999)
T =uPy/Rpo) 6 9)
F = —[+47G (n + 1)K]/2p{* ™D (F d6/d¢) (10)

The following two functions u, v introduced by Milne (1930, 1932) play important role in fitting up solutions at
the interface of the composite stellar models: (Menzel et al., 1963)

W@ =TS o v =T (11)

Polytropic Models of the Sun:-

Our knowledge of the sun is derived from sophisticated standard solar model (SSM) (Bahcall et al., 2005). The solar
matter is at present approximately 75% hydrogen, 23% helium and 2% metals by mass fraction. Throughout the
solar interior, u is approximately 0.59, except at the surface (1 = 0.613), and in the core (u = 0.846).

When we have used the pressure ( P) and the density (p) data of Standard Solar Model SSM (2005) to plot a
relation between the polytropic exponent (y = d InP/d Inp ) and distance from center of sun in unit of solar radius
(R/Rg.n ), We get a graph that consist of three regions (see Fig.1). These regions are corresponding to the core, the
radiative zone and the convective zone.
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Fig.1: Polytropic exponent (Y’) along the interior of sun.
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Two zones solar model:-

We now will construct a model of sun with two polytropic regions, representing the convective and the radiative
zones. From Fig.1, We take the polytropic index n; = 1.5 (y; = 1.667) for the convective zone, and take the
polytropic index n, = 3.85 (y, = 1.260) for the radiative zone. To avoid confusion, we use the dimensionless
variables ¢, 6 for the convective zone and the variables n , ¢ for the radiative zone. Then, we have the equations of
state for the convective and the radiative zone

P, =K p M%7 where  p; = p,0(6)H7 (12)

P, = K, p,*2® where  p, = py,p(n)'2° (13)

The core region will correspond to an E-solution of Lane-Emden equation (7) with polytropic index n, = 3.85, so
the Lane-Emden equation for the core is

(1/n*) 1/dn (n? d¢/dn) = —¢p>5° (14)

We integrate equation (14) from the center to surface by using 4"™-order Runge-Kutta method, then the values of
N, ¢(t;), ¢' (t;) are obtained. Translate these values into the u, V variables and draw it in (u, V) plane as shown
inFig.2 .

The Lane-Emden function for convective zone is

(1/§%) 1/d§ (8% do/dg) = —6'° (15)

The M-solutions of the Lane-Emden equation (15) are of particular interest because these are the ones which
intersect the polytrope of the radiative zone. These may be generated beginning at & with an arbitrary starting
slope 8'(§) less negative than 6'(&;) [ &, 6'(&,) are the values of & and @' at first zero of Lane-Emden function 6 ]
and integrating inward. Three such solutions are shown in Fig.2.
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Fig.2: The curve | is an E-solutions of Lane-Emden equation of polytropic index n, = 3.85.
The curves 11, 11l and 1V are M-solutions for the convective zone with starting slope
8'(§;) = —0.004,—0.00325 and — 0.002 respectively.

First, let us start with the convective zone. We choose the solution with starting slope 6'(¢;) = —0.0032 because
as we will see blow, this gives the depth of convective zone at R = 0.71 Ry, and gives a good approximation to
SSM (Bahcall, J., Serenelli, A., Basu, S.: 2005(BS2005)).

Using the values of mass M and radius R of the sun in equations (8) and (5), we get the values of the pressure
constant K; and the constant of homology p,, for the convective zone.
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K; =9.892x10° ,  p;, =5351x10° (16)

We determine the intersection point [(u; V;) = (0.1373511, 8.4788239)] between the M-solution of the
convective zone and E-solution of the radiative zone in the (u, V) plane [Fig.2] and the corresponding values of
§; = 2.5927674 and 6; = 0.0047453 by cubic-spline interpolation. The density p,, and the pressure P;; at this
point are

Py = Pro 017 = 1.749 x 107 17)
1
Py =Ky p;' 15 = 5.412 x 102 (18)

Secondly, the radiative zone: The intersection point (u;, V;) between the radiative zone and the convective zone is
corresponding to n; = 5.6345837 and ¢; = 0.1801321 . At this point, the density and the pressure of the radiative
zone and of the convective zone are equal in order to satisfy the continuity, so we have

Py = Py = P20 D1t = 1.749 x 10° (19)

1

Py, = Py = Ky pyi ' 72 = 5412 x 1012 (20)
Then the values of the pressure constant K, and the homology constant p,, are

K, = 8.090 x 10° (21)
P20 = 1.285 x 10° (22)

By knowing (&), ¢(m) , K; , p1,, K5 and p,, . The whole structure of the two zone polytrope is now completely
determined. The numerical values of the physical quantities of our solar model are calculated and it is seen in table
1, where the first two columns contain radius and mass relative to radius and mass of the sun respectively. The four
columns contain density (p), pressure (P), temperature (T) and gravitational acceleration (F). All physical quantities
are expressed in Sl unit.

Table 1: Numerical values of two-zone solar model.

R/Rsun M/Mgyn p P T F
0.05 1.076E-02 1.164E+05 1.948E+16 1.197E+07 -1.178E+03
0.10 7.292E-02 8.810E+04 1.372E+16 1.113E+07 -1.996E+03
0.15 1.926E-01 5.830E+04 8.156E+15 1.000E+07 -2.343E+03
0.20 3.410E-01 3.546E+04 4.360E+15 8.789E+06 -2.333E+03
0.25 4.869E-01 2.066E+04 2.207E+15 7.638E+06 -2.132E+03
0.30 6.131E-01 1.185E+04 1.096E+15 6.612E+06 -1.864E+03
0.35 7.143E-01 6.806E+03 5.450E+14 5.724E+06 -1.596E+03
0.40 7.921E-01 3.946E+03 2.743E+14 4.969E+06 -1.355E+03
0.45 8.505E-01 2.318E+03 1.404E+14 4.328E+06 -1.149E+03
0.50 8.936E-01 1.381E+03 7.311E+13 3.783E+06 -9.783E+02
0.55 9.253E-01 8.341E+02 3.872E+13 3.318E+06 -8.372E+02
0.60 9.483E-01 5.095E+02 2.081E+13 2.920E+06 -7.210E+02
0.65 9.650E-01 3.141E+02 1.132E+13 2.575E+06 -6.252E+02
0.70 9.771E-01 1.950E+02 6.208E+12 2.275E+06 -5.458E+02
0.75 9.837E-01 1.291E+02 3.263E+12 1.806E+06 -4.786E+02
0.80 9.905E-01 8.417E+01 1.599E+12 1.358E+06 -4.236E+02
0.85 9.953E-01 5.004E+01 6.722E+11 9.602E+05 -3.770E+02
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Fig. 3: the mass-radius relation for our two zone solar Fig. 4: Shows the density distribution for our two-zone solar model
model (dashed) and for SSM (solid line) (dashed) and for SSM (solid line).

Three-zones solar model:-

This model is based on that the solar interior, from the inside out, is made up of the core, radiative zone and the
convective zone. From Fig.1, the average value of the polytropic index, along the convective zone isn; = 1.5
(i.e.Y; = 1.667), along the radiative zone is n, = 3.7878 (i.e.¥, = 1.264) and along the core is n; = 20
(i.e. Y3 = 1.05).We use &,0 as the variables in the Lane-Emden equation for the convective zone; n,¢ as the
variables for the radiative zone and 7, as the variables for the nuclear zone. Then, the equations of state for three
zones are

Py =Ky 7 where  p; = p;,6(&HH7 (23)
P, = K; pp'% where  p; = ppop(m)**° (24)
P; = K3 p3'° where  p3 = p3, ()1 (25)

The core region will correspond to an E-solution of Lane-Emden equation, so Lane-Emden equation for the core is

(1/t*) 1/dz (r* dip/dT) = —¢*° (26)

By integrating equation (26) outward using 4"-order Runge-Kutta method, we get the values of 7, ¥(t;), ¢¥'(t;)
then translated these values into the (u, V) variables and draw it in (u, V) plane as shown in Fig.5 . Note that the
polytrope of index equal to 20 has infinite radius (i.e. T; = o where 7, is first zero of Lane-Emden function ).

The Lane-Emden function for convective zone is

(1/§%) 1/d§ (§* do/dg) = —6'° @7)

and the Lane-Emden function for radiative zone is

(1/n*)1/dn (n* dg/dn) = —¢>7%7° (28)

The convective zone will represent by M-solutions of Lane-Emden equation (27). These may be generated
beginning at & with an arbitrary starting slope 6'(¢) less negative than 6'(&;) [, , 8'(§;) are the values of & and
@' at first zero of Lane-Emden function 8] and integrating inward. Three such solutions are shown in Fig.5. In the
same way, we can get M-solutions that represent the radiative zone. Three of such solutions with staring slope ¢'(n)
less negative than ¢'(n1) [ 11, ¢'(n1) are the values of n , ¢’ at first zero of Lane-Emden function ¢] are shown in
Fig.5.
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Fig.5:- The curve | is an E-solution of the core. The curves Il, Il and IV are M-solutions for the
radiative zone with starting slope ¢'(n;) = —0.012325,—0.0117 and — 0.0107 respectively.
The curves V, VI and VIl are M-solutions for the convective zone with starting slope 8'(&;) =
—0.004,—-0.00325 and — 0.002 respectively.

Let us choose the solution with stating slope 6'(¢;) = —0.00325 for the convective zone and the solution with
stating slope ¢'(n;) = —0.012325 for the radiative zone because these give the depth of convective zone at
R = 0.714 R,,, and give a good approximation to SSM.

First, let us start with the convective zone, since the radius and mass of sun are known, we can use equations (5) and
(8) to get the values of K; and py,.

Ky =9.841x10%8 ,  p;, =5269x10° (29)

At the intersection point [ (u;, V;). = (0.135577, 8.622205 )] between the M-solution of the convective zone and
of the radiative zone in the (u, V) plane [Fig.5] which is corresponding to &; = 2.609952 and 6; = 0.004712. This
point and the corresponding values of &;, 6; are determined by cubic-spline interpolation. From equations (23), the

density p,, and the pressure Py; at this point are
Py = Pro 017 = 1.704 x 107 (30)

1
Py = Ky p;" 15 = 5154 x 102 (1)

Secondly, the radiative zone: The intersection point (u;,V;), between radiative zone and convective zone is
corresponding to n;,, = 5.507149 and ¢;, = 0.177308 . At this point, the density and the pressure of radiative
zone and of convective zone are equal in order to satisfy the continuity. So from equations (24), (30) and (31), we
get

Poiy = Py; = P20 P> = 11.704 x 102 (32)
P2i€ = Pli = K2 p2i81+6 = 5,154 x 1012 (33)

From equations (32) and (33), we obtain the values of the pressure constant K, and the homology constant p,, .
K, =7.791 x 10° . P2 = 1.194 x 10° (34)

At the intersection point [(u;, V;). = (2.383569 , 1.048965)] between the M-solution of the radiative zone and E-
solution of the core in the (u, V) plane [Fig.5] which is corresponding to n;. = 0.828439 and ¢,. = 0.906953. The

density p,,. and the pressure P,;. are obtained by
Py = P20 012 = 8.25 x 10* (35)
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1

Py = Ky py,, | 72 = 1.276 x 1016 (36)

Finally, the core: The intersection point (u;, V;). between the M-solution of the radiative zone and E-solution of the
core is corresponding to 7; = 0.455335 and y, = 0.906953 . At this point, the density and the pressure of core and
of radiative zone are equal in order to satisfy the continuity. Then,

Py = Pyic = P3 Vi ° = 8.25 x 10* 37)
1

1+—
Py = Py = K3 p,, " = 1.276 x 1016 (38)

From equations (37) and (38), we get the values of the pressure constant K3 and the homology constant p, ( p,, is
central density of configuration).

K; = 8.785 x 10'° . Py, = 1483 x10° (39)

We see that our model of the sun yields central density p, = 1.483 x 10° Kg m~3 which is very close to that of
standard solar model p_ = 1.529 X 10° Kg m~3.

Now, the values of 6(&),0'(8) , Ky , p,, for the convective zone, ¢(n) , o), K, , p,, for the radiative zone, and
v, v (), K;, p,, for the core are known. So we can compute the physical march from the center to the surface
as shown in Table 2.

Table 2: Numerical values of Three-zones solar model.

R/Run M/Mgyn p | P | T [ F |
0.05 0.0121 1.283E+05 | 2.030E+16 [ 1.609E+07 | -1.323E+03
0.10 0.0770 8.828E+04 | 1.370E+16 | 1.579E+07 | -2.107E+03
0.15 0.1950 5.731E+04 | 8.054E+15 | 1.005E+07 | -2.372E+03
0.20 0.3408 3.490E+04 | 4.303E+15 | B8.813E+06 | -2.332E+03
0.25 0.4848 2.042E+04 | 2.186E+15 | 7.650E+06 | -2.123E+03
0.30 0.6098 1.178E+04 | 1.090E+15 | 6.616E+06 | -1.854E+03
0.35 0.7106 6.797E+03 | 5.441E+14 | 5.722E+06 | -1.588E+03
0.40 0.7885 3.956E+03 | 2.745E+14 | 4.960E+06 | -1.349E+03
0.45 0.8471 2.331E+03 | 1.406E+14 | 4.313E+06 | -1.145E+03
0.50 0.8905 1.391E+03 | 7.324E+13 | 3.764E+06 | -9.749E+02
0.55 0.9224 8.401E+02 | 3.872E+13 | 3.295E+06 | -8.346E+02
0.60 0.9456 5126E+02 | 2.074E+13 | 2.892E+06 | -7.189E+02
0.65 0.9624 3.154E+02 | 1.122E+13 | 2.544E+06 | -6.234E+02
0.70 0.9745 1.951E+02 | 6.116E+12 | 2.241E+06 | -5.443E+02
0.75 0.9836 1.301E+02 | 3.288E+12 | 1.806E+06 | -4.786E+02
0.80 0.9904 8.482E+01 | 1.611E+12 | 1.358E+06 | -4.235E+02
0.85 0.9952 5.043E+01 | 6.774E+11 | 9.602E+05 | -3.770E+02
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Fig. 6: the mass-radius relation for our three-zone solar model Fig. 7: Shows the density distribution for our three-zone solar
(dashed) and for SSM (solid line). model (dashed) and for SSM (solid line).
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