
ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 4(9), 125-140 

125 

 

Journal Homepage: - www.journalijar.com 

   Article DOI:  
 

 

 

Article DOI: 10.21474/IJAR01/1466 

DOI URL: http://dx.doi.org/10.21474/IJAR01/1466 

 

RESEARCH ARTICLE 
 

MODELLING THE TREND OF FLOWS WITH RESPECT TO RAINFALL VARIABILITY USING 

VECTOR AUTOREGRESSION. 

 

Wahab A. Iddrisu*, Kaku S. Nokoe and Isaac Akoto. 

Department of Mathematics and Statistics, University of Energy and Natural Resources, P.O. Box 214, Sunyani, 

Ghana. 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

 
Received: 12 July 2016 
Final Accepted: 19 August 2016 
Published: 27 September 2016 
 

Key words:- 
Rainfall, Flows, Vector Autoregressive 

(VAR) models, Forecasting; Bui 

 

 

 

 

 

 

 

 

 

 

Vector Autoregressive (VAR) models for multivariate time series 

have been extensively developed and used in econometrics. However, 

use of VAR models outside of these areas is rather limited. This paper 

models the trend of flows at Bui with respect to rainfall variability and 

investigates whether there is any causality (Granger or instantaneous) 

between rainfall and flow in relation to forecasting. Monthly data on 

rainfall and flows from January 1954 to December 2005 was obtained 

from Bui Power Authority in Ghana. Both unrestricted and Bayesian 

VARs were estimated and compared in order to select the best VAR 

model for forecasting and structural analysis. The results showed that 

the unrestricted VAR model outperforms the Bayesian VAR model in 
terms of forecasting flows and rainfall at Bui. Results from the 

structural analysis also revealed a two-way causality from rainfall to 

flow and vice-versa. We conclude that modelling flows and rainfall 

together at Bui improves the forecasting of both of them. 
 

                                Copy Right, IJAR, 2016,. All rights reserved.

…………………………………………………………………………………………………….... 

Introduction:-  
Rainfall and stream flow are key components of the hydrologic cycle consisting of precipitation, evaporation, 

evapotranspiration, infiltration, precipitation and surface water flow. Air humidity and temperature are very 

influential at every stage of the cycle. When temperatures are relatively high there is likely to be evaporation of 

surface water and water vapour would be formed which in certain altitude would form a core of condensation to 

form clouds. The clouds would then drop to the ground in the form of rain, snow, dew, fog, etc due to the influence 

of low temperatures and relatively immense droplets (Raghunath, 2006). Climate variability is likely and expected to 

impact on some of these hydrological processes including evapotranspiration, water temperature, stream flow, soil 

moisture, timing and magnitude of runoff, and frequency and severity of floods, which may lead to changes in 
environmental variables (Nijssen et al., 2001; Zhang et al., 2005).   

 

Despite the fact that stocks of water in natural and artificial reservoirs are helpful to increase the available water 

resources for human society, the main focus in water resources assessments should be on the flow of water (Oki & 

Kanae, 2006). Rainfall and other hydrological data in Ghana generally occur with quite some temporal variability. 

The Northern regions are more affected by prolonged droughts while the Southern regions including the Brong-

Ahafo region experience abundant rainfall that at times cause erosion and floods. Giving the peculiar location of the 
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Bui dam (at the border of the Northern Region (Bole) and Brong-Ahafo Region (Wenchi)), quantifying changes of 

water flows in time is fundamental in addressing issues of power generation and survival of ecosystem downstream. 

 

A number of studies have been conducted the world over concerning rainfall and flow modelling. Examples include; 

Top-down and data-based mechanistic modelling of rainfall - flow dynamics at the catchment scale (Young, 2003); 

Simulating rainfall and river flow dynamics in Ghana (Ampadu, 2007); Statistical modelling of rainfall and river 
flow in Thailand (Boochabun et al., 2004); Comparative analysis of several conceptual rainfall-runoff models 

(Franchini & Pacciani, 1991) and Rainfall-runoff modelling and water resources assessment in north western Ivory 

Coast (Servat & Dezetter, 1993). 

 

In Ghana, Awotwi et al. (2015) conducted a study on the prediction of hydrologic response to climate change in the 

White Volta catchment in West Africa. An ensemble of Regional Climate Model (REMO) was used to simulate and 

project the climate at local scale in order to investigate the hydrological impact of possible future climate change in 

White Volta Catchment (West Africa). They found that, with a small increase of 8% and 1.7% of the mean annual 

precipitation and temperature respectively, annual surface runoff, annual base flow and evapotranspiration recorded 

increment of 26%, 24% and 6% respectively. In a study conducted by the CSIR Water Research Institute (CSIR – 

WRI) in 2000 (CSIR & WRI, 2000), under the United Nations Framework Convention on Climate Change 

(UNFCC) and coordinated by the Environmental Protection Agency (EPA), it was found that there is a decrease and 
highly variable rainfall pattern, and frequent and pronounced dry spells in Ghana. The study also estimated a general 

reduction in annual river flows in Ghana by 15-20 % for the year 2020 and 30-40 % for the year 2050. 

 

VAR models have been extensively developed and used in econometrics. Park (1990) used a set of rigorous 

diagnostic techniques to evaluate the forecasting performance of some multivariate time-series models for the U.S. 

cattle sector, including Bayesian vector autoregression (BVAR), unrestricted vector autoregression (UVAR), 

restricted vector autoregression (RVAR), and vector autoregressive moving-average (VARMA) models. He found 

using the root-mean-squared-error criterion along with an evaluation of the rankings of forecast errors that the 

Bayesian vector autoregression (BVAR) and the unrestricted VAR (UVAR) models generate forecasts which are 

superior to both a restricted VAR (RVAR) and a vector autoregressive moving-average (VARMA) model. Bessler 

(1984) used VAR models to study agricultural prices, money supply and industrial prices in Brazil; Kaylen (1988) 
used VAR together with other models to forecast the U.S Hog market; McCarty & Schmidt (1997) used VAR 

models to study State-Government expenditure; Andersson (2007) compared the forecast performance of random 

walk (RW), autoregressive (AR) and VAR models to forecast Swedish real GDP growth in which VAR emerged as 

the best in terms of forecasting. 

 

In relation to natural phenomena, especially rainfall forecasting, use of VAR models has been rather scarce and 

virtually nonexistent in hydrological modelling. Saputro et al. (2011) studied the correlation between rainfall in a 

region and rainfall in other nearby regions. Adenomon et al. (2013) examined the dynamic relationship between 

rainfall and temperature in Niger State, Nigeria using monthly data from January 1981 to December 2010 and found 

a bi-directional causation from rainfall to temperature and from temperature to rainfall. Nugroho et al. (2014) 

applied VAR models to forecast future rainfall in Semerang, Central Java, Indonesia using monthly data on rainfall, 

humidity and temperature from 2001 to 2013 collected from 5 measurement stations. The VAR method was found 
to perform better than ARIMA method regarding forecasting as having smaller Mean Absolute Error (MAE) and 

Mean Absolute Percentage Error (MAPE) and was also quite accurate in forecasting rainfall in their study area. 

 

Studies relating to rainfall and flow forecasting in Ghana are mostly conducted using univariate time series models. 

Some of the recent ones include; Abdul-Aziz et al. (2013) who examined rainfall patterns over time, from 1974 to 

2010, in the Ashanti region of Ghana using Seasonal Autoregressive Integrated Moving Average (SARIMA). 

Ampaw et al. (2013) developed a time series model for predicting rainfall in the New Juaben Municipality of the 

Eastern region of Ghana. Ampadu et al. (2013) presented a review of some of the approaches employed in rainfall-

riverflow modelling highlighting on the rationale and structure of the modelling approaches, their strengths and 

weaknesses which may assist in making an informed choice of a modelling approach for hydrological studies. In this 

paper, vector autoregression (VAR) for multivariate time series is used to model the trend of water flow at Bui with 
respect to rainfall variability and investigates whether there is any causality (Granger or instantaneous) between 

rainfall and flow in relation to forecasting. 
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Materials and methods:- 
Study area:- 

The Bui Dam as shown in Figure 1 is located at the border of the Bole and Wenchi districts, approximately 150km 

upstream of Lake Volta. With portions of the Dam site falling within Bui National Park, the entire Dam lies within 

Ghana. The terrain of the area is gently undulating with some deeply incised stream valleys. Deep and wide valleys 

of the Black Volta River, inselbergs and ridges, and the Banda Hills are some of the major relief and 

geomorphologic features of the area. Eroded granites corresponding to the Gonja Plateau and greywackes of the 

Birrimian and Tarkwaian formations are the two distinct geological features underlying the area. Upland soils and 

alluvial soils are the two major soil types occurring in the area (Ministry of Energy/Bui Development Committee, 

2007). 

 

The area is characterized by double-peak wet season, maxima in May-June and October. Average yearly rainfall in 

the area is around 1140mm. Whiles monthly temperatures range from around 260 C in August to around 300 C in 
March; the area has a mean annual relative humidity of 75% and a mean annual pan evaporation of 1781mm. The 

dam is drained into the Volta Lake by the Black Volta which has its headwaters in Burkina Faso, where it is called 

the Mohoun River (Ministry of Energy/Bui Development Committee, 2007). 

 
Figure 1:- Map of Study Area. 

Data:- 

Data was obtained from Bui Power Authority in the Brong-Ahafo Region of Ghana. The data consisted of Monthly 

Rainfall and Flow values from January 1954 to December 2005. 

 

Vector autoregressive (VAR) model:- 

Vector autoregressive (VAR) model as one of the most widely used and flexible models for analyzing multivariate 

time series is a natural extension of the univariate autoregressive model to dynamic multivariate time series and has 

superior forecast ability compared with those from univariate time series models and theory-based simultaneous 

equations models.  

 

The basic vector autoregressive (VAR) model of order p, as suggested by Sims (1980) has the form    

𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝐶𝐷𝑡 + 𝑢𝑡        (1) 

 

Where 𝑦𝑡 =  𝑦1𝑡 , 𝑦2𝑡 ,… , 𝑦𝐾𝑡 
′ is a vector of K observable endogenous variables, 𝐷𝑡  contains all deterministic 

variables which may consist of a constant, a linear trend, seasonal dummy variables as well as user specified other 

dummy variables, 𝑢𝑡  is a K-dimensional unobservable zero mean white noise process with positive definite 

covariance matrix 𝐸 𝑢𝑡𝑢𝑡
′  = ∑𝑢 . 𝐴𝑖, and C are parameter matrices of suitable dimension on which you can impose 
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various restrictions. Example, by imposing zero restrictions, the right-hand side variables in equation (1) may be 

different in some of the equations. If we consider only one y variable (K=1), a univariate AR model is obtained. 

 

The parameters in equation (1) are estimated by generalized least squares (GLS). This is done by first estimating the 

individual equations of the system by ordinary least squares (OLS). The residuals are then used to estimate the white 

noise covariance matrix ∑𝑢  as ∑𝑢
 = 𝑇−1 ∑ 𝑢𝑡 𝑢𝑡 

′𝑇
𝑡=1  which is used to compute the GLS estimator. 

 

Bayesian vector autoregressive (BVAR) model:- 

VAR models generally uses equal lag length for all variables in the model which leads to the estimation of many 

parameters, some of which may not be significant. This has become a major drawback of the model resulting in 
possibly large out-of-sample forecasting errors. 

 

Doan et al. (1984) proposed the BVAR model which involves the use of Bayesian prior information to impose 

certain restrictions on the coefficients of the VAR so as to overcome the problem of over parameterization 

associated with VAR models. The prior means and variances they suggested, also known as the Minnesota priors 

take the following form; 

𝛽𝑖  ~ 𝑁 1, 𝜎𝛽𝑖

2       𝑎𝑛𝑑     𝛽𝑗  ~ 𝑁  0, 𝜎𝛽𝑗

2            (2) 

 

Where 𝛽𝑖  represents the coefficients associated with the lagged dependent variable and 𝛽𝑗  denotes any other 

coefficient in each equation of the VAR model. Whiles the prior means for lagged dependent variables are set to 

one, a prior mean of zero is assigned to all other coefficients in the equation. This is done in belief that lagged 

dependent variables are important whiles all other variables in each equation of the VAR model are viewed as less 

important. The prior variances indicate uncertainty about the prior means of one, for lagged dependent variables and 

prior means of zero, for all other variables. 

 

Doan et al. (1984) proposed a formula to generate the standard deviations which is a function of a few 

hyperparameters: 𝜃, 𝜑, and a weighting matrix 𝑤(𝑖, 𝑗), to deal with the problem of over parameterization associated 

with VAR models. The standard deviation of the prior imposed on variable j at lag k in equation i is: 

𝜎𝑖𝑗𝑘 = 𝜃𝑤 𝑖, 𝑗 𝑘−𝜑  
𝜎 𝑢𝑗

𝜎 𝑢𝑖
                                                            (3) 

 

Where 𝜎 𝑢𝑖  and  𝜎 𝑢𝑗  are the estimated standard errors from a univariate autoregression involving variables i and j 

respectfully. 𝜃 is labelled as the ‘overall tightness’ to reflect the standard deviation of the prior on the first lag of the 

dependent variable. 𝑘−𝜑  is a lag decay function with 0 ≤ 𝜑 ≤ 1 which has the effect of imposing the prior means of 
zero more tightly as the lag length increases. The tightness of the prior for variable j in equation i relative to the 

tightness of the own-lags of variable i in equation i, is indicated by the function 𝑤 𝑖, 𝑗  . The weighting matrix used 

in the standard Minnesota prior is given in equation (4) while the overall tightness and lag decay hyperparameters 

used are 𝜃 = 0.1  𝑎𝑛𝑑  𝜑 = 1.0 respectively. 

 

𝑊 =  

1 0.5 ⋯ 0.5
0.5 1 0.5
⋮ ⋱ ⋮

0.5 0.5 ⋯ 1

            (4) 

 

BVAR models with the standard Minnesota prior are usually estimated using the mixed estimation method in Theil 

and Goldberger (Theil & Goldberger, 1961). 

 

Optimal lag length selection criteria:- 

For a range of lag orders n the individual equations of the system are estimated by OLS. The optimal lag order is 

selected by minimizing one of the following information criteria: 
 

Akaike Information Criterion, 𝐴𝐼𝐶 𝑛 = log det ∑𝑢
 (𝑛) +

2

𝑇
𝑛𝐾2      (5) 

 

Hannan-Quinn criterion, 𝐻𝑄 𝑛 = log det ∑𝑢
 (𝑛) +

2 log log 𝑇

𝑇
𝑛𝐾2       (6) 
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Schwarz Criterion, 𝑆𝐶 𝑛 = log det ∑𝑢
 (𝑛) +

log 𝑇

𝑇
𝑛𝐾2      (7) 

 

Final Prediction Error criterion, 𝐹𝑃𝐸 𝑛 =  
𝑇+𝑛∗

𝑇−𝑛∗
 
𝐾

det ∑𝑢
 (𝑛)        (8) 

 

Where ∑𝑢
 (𝑛) is estimated by 𝑇−1 ∑ 𝑢𝑡 𝑢𝑡 

′𝑇
𝑡=1 , 𝑛∗ is the total number of parameters in each equation of the model 

when 𝑛 is the lag order of the endogenous variables. 

 

Structural analysis:- 
Despite the fact that VAR coefficients capture the anticipated impact of a variable, there are often a lot of 

coefficients to interpret. It is usually more common to examine the model’s residuals which represent unforeseen 

contemporaneous events. The next subsections provide relatively non-technical explanations of some of the 

common techniques used for structural analysis of VAR models. 

 

Causality analysis:- 

Both the Granger-causality and instantaneous causality were investigated. For both tests, the vector of endogenous 

variables is divided in two sub vectors, 𝑦1𝑡  𝑎𝑛𝑑 𝑦2𝑡 , with dimensions 𝐾1  𝑎𝑛𝑑 𝐾2 , respectively, so that 𝐾 = 𝐾1 + 𝐾2. 

The sub vector 𝑦1𝑡  is said to be Granger-causal for 𝑦2𝑡 if the past of 𝑦1𝑡 significantly help predicting the future of 

𝑦2𝑡 via the past of 𝑦1𝑡 alone (Granger, 1969). For testing this property, a model of the form 
 

 
𝑦1𝑡

𝑦2𝑡   = ∑  
𝛼11,𝑖 𝛼12,𝑖

𝛼21,𝑖 𝛼22,𝑖
 𝑝

𝑖=1  
𝑦1,𝑡−𝑖

𝑦2,𝑡−𝑖
 + 𝐶𝐷𝑡 +  

𝑢1𝑡

𝑢2𝑡
                   (9) 

 

is considered. In this model setup, 𝑦1𝑡  is not Granger-causal for 𝑦2𝑡 if and only if  

𝛼21,𝑖 = 0,       𝑖 = 1,2, … , 𝑝. 

 

Therefore this null hypothesis is tested against the alternative that at least one of the 𝛼21,𝑖  is nonzero. An F-test 

statistic which is distributed as 𝐹(𝑝𝐾1𝐾2 ,𝐾𝑇 − 𝑛∗) is used for testing the restrictions. Here 𝑛∗ is the total number of 

parameters in the system including the parameters of the deterministic term (Lütkepohl, 1991). The role of  

𝑦1𝑡  𝑎𝑛𝑑 𝑦2𝑡  can be reversed to test Granger-causality from 𝑦2𝑡 to 𝑦1𝑡. 

 

Instantaneous causality is characterized by nonzero correlation of 𝑢1𝑡  𝑎𝑛𝑑 𝑢2𝑡. Thus the null hypothesis 

𝐻0: 𝐸 𝑢1𝑡𝑢2𝑡
′  = 0 

is tested against the alternative of nonzero covariance between the two error vectors in testing for instantaneous 

causality. A Wald test statistic is used to test this hypothesis.    

 

Impulse response analysis:- 

In impulse response analysis the exogenous and deterministic variables are treated as fixed and may therefore be 

dropped from the system. The adjusted endogenous variables are now denoted by 𝑦𝑡. If the process 𝑦𝑡 is stationary 

(I(0)), it has a Wold moving average (MA) representation 

 

𝑦𝑡 = Φ0𝑢𝑡 + Φ1𝑢𝑡−1 + Φ2𝑢𝑡−2 + ⋯,             (10) 
 

Where Φ0 = 𝐼𝐾 and the Φ𝑠 can be computed recursively as 

Φ𝑠 =  Φ𝑠−𝑗

𝑠

𝑗 =1

𝐴𝑗 ,         𝑠 = 1, 2, …, 

 

With Φ0 = 𝐼𝐾 and A𝑗 = 0  𝑓𝑜𝑟 𝑗 > 𝑝. The coefficients of this representation may be interpreted as reflecting the 

responses to impulses hitting the system. The  𝑖, 𝑗 𝑡ℎ elements of the matrices Φ𝑠, regarded as a function of s, trace 

out the expected response of 𝑦𝑖,𝑡+𝑠  to a unit change in 𝑦𝑗𝑡  holding constant all past values of 𝑦𝑡. 

 

Forecast error variance decomposition:- 

Denoting the (𝑖, 𝑗)𝑡ℎ element of the orthogonalized impulse response coefficient matrix Ψ𝑛  by 𝜓𝑖𝑗 ,𝑛 , the variance of 

the forecast error (𝑦𝑘,𝑇+ℎ − 𝑦𝑘,𝑇+ℎ|𝑇) is  
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𝜎𝑘
2 ℎ = ∑  𝜓𝑘1,𝑛

2 + ⋯+ 𝜓𝑘𝐾,𝑛
2  = ∑  𝜓𝑘𝑗 ,0

2 + ⋯ + 𝜓𝑘𝑗 ,ℎ−1
2  𝐾

𝑗=1
ℎ−1
𝑛=0 . 

 

The term  𝜓𝑘𝑗 ,0
2 + ⋯+ 𝜓𝑘𝑗 ,ℎ−1

2   is interpreted as the contribution of variable 𝑗 to the h-step forecast error variance 

of variable k. Dividing the above terms by 𝜎𝑘
2 ℎ   gives the percentage contribution of variable j to the h-step 

forecast error variance of variable k, 

𝑤𝑘𝑗  ℎ =  𝜓𝑘𝑗 ,0
2 + ⋯+ 𝜓𝑘𝑗 ,ℎ−1

2  /𝜎𝑘
2 ℎ  

 

Stability analysis:- 

Even though there are several options available for checking model stability including recursive residuals and 

parameter estimates, Chow tests and Cumulative sum (CUSUM) tests, this study used the CUSUM test to check 

model stability. 

 

The cumulative sum of recursive residuals up to period 𝜏 is 

𝐶𝑈𝑆𝑈𝑀𝜏 = ∑ 𝑢 𝑡
(𝑟)𝜏

𝑡=𝑀+1 /𝜎 𝑢             (11) 

 

Where 𝜎 𝑢 =   𝑇 − 𝑀 −1 ∑ 𝑢 𝑡
2𝑇

𝑡=1   is the usual residual standard deviation estimator based on the full sample. 

It is plotted for 𝜏 = 𝑀 + 1, … , 𝑇 together with the lines  ±𝑐𝛾   𝑇 − 𝑀 + 2(𝜏 − 𝑀)/ 𝑇 − 𝑀 , where 𝑐𝛾  depends on 

the desired significance level of the resulting test. If the CUSUMs wander beyond these lines, then there is evidence 

against structural stability of the underlying model. 

 

Results and Discussion:- 
Descriptive statistics:- 

At an initial step, descriptive statistics for the data on rainfall and flow are produced in Table 1. The results contains 

among others, the minimum, maximum, and average values of rainfall and flow for the period considered. Whiles 

the minimum, maximum, and average values of rainfall are 0.00mm, 407.50mm, and 95.09mm respectively, the 

minimum, maximum, and average values of flow are 0.01cms, 2417.30cms, and 206.42cms respectively. 

 

Table 1:- Descriptive Statistics. 

Rainfall Flow 

Minimum 0.00 Minimum 0.10 

1st Quartile 17.48 1st Quartile 14.72 

Median 83.45 Median 64.10 

Mean 95.09 Mean 206.42 

3rd Quartile 146.15 3rd Quartile 267.27 

Maximum 407.50 Maximum 2417.30 
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Figure 2 shows the time series plot for both rainfall and flow. The figure does not show any level of trend which is 

an indication of stationarity even though the Augmented Dickey Fuller (ADF) test will still be used formally to test 

for stationarity. 

 
Figure 2:- Monthly Rainfall and Flow Levels at Bui. 

 

Stationary test and optimal lag selection:- 

To examine the stationarity (a necessary condition for VAR modeling) of the two time series data, the Augmented 

Dickey Fuller (ADF) unit root test was employed. The ADF test results for rainfall and flow are shown in Table 2. 

The results reveal stationarity for both series confirming the results from the time series plot. This indicates that 

VAR is suitable for modelling the time series data. 

 

Table 2:- Augmented Dickey-Fuller Unit Root Test. 

Rainfall Flow 

Coefficients: Estimate 

[Std. Error] 

t value 

[Pr(>|t|)] 

Coefficients: Estimate 

[Std. Error] 

t value 

[Pr(>|t|)] 

(Intercept) 90.76351 

[6.80386] 

13.34 

[< 2e-16] 

(Intercept) 123.497115 

[11.833747] 

10.436 

[< 2e-16] 

z.lag.1 -0.95384 

[0.06424] 

-14.847 

[< 2e-16] 

z.lag.1 -0.5954 

[0.042936] 

-13.867 

[< 2e-16] 

z.diff.lag1 0.30701 

[0.05669] 

5.416 

[8.76e-08] 

z.diff.lag1 0.634798 

[0.041373] 

15.343 

[< 2e-16] 

z.diff.lag2 0.30663 

[0.05143] 

5.962 

[4.22e-09] 

z.diff.lag2 -0.008697 

[0.046262] 

-0.188 

[0.8509] 

z.diff.lag3 0.28955 

[0.04605] 

6.287 

[6.14e-10] 

z.diff.lag3 0.216862 [0.039406] 5.503 

[5.48e-08] 

z.diff.lag4 0.20482 

[0.03967] 

5.163 

[3.30e-07] 

z.diff.lag4 0.100111 [0.040355] 2.481 

[0.0134] 
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According to Lütkepohl & Saikkonen (1997), when the fitted VAR model order (𝑝) is assumed to vary as the cube 

root of the size of the time series, then 𝑉𝐴𝑅(𝑝 + 1) is fitted to the data such that 𝑝 goes to infinity with sample size. 

Hence for our dataset, we considered VAR models from lag 1 to lag 10 and computed AIC, HQ, SC, and FPE values 

for each. By choosing the fitted candidate model corresponding to the minimum values of these measures, one is 

attempting to select the candidate model which is rendered most plausible by the data at hand. Therefore, the smaller 
the AIC, HQ, SC, and FPE value, the better the model. We observe from Table 3 that, while the AIC, the HQ and 

the FPE criterion favour VAR(10), the SC information criterion rather favoured VAR(4). However for purposes of 

forecasting, economists’ wisdom suggest it is better to use the model favoured by the Schwartz (SC) information 

criterion (Galvao, 2012). Therefore, based on SC values we selected VAR (4) for model fitting. 

 

Table 3:- Optimal Lag Length Selection. 

Lags Criteria 

AIC(n) HQ(n) SC(n) FPE(n) 

1 1.9239E+01 1.9261E+01 1.9296E+01 2.2657E+08 

2 1.8796E+01 1.8829E+01 1.8882E+01 1.4553E+08 

3 1.8607E+01 1.8651E+01 1.8722E+01 1.2042E+08 

4 1.8488E+01 1.8544E+01 1.8632E+01 1.0699E+08 

5 1.8461E+01 1.8528E+01 1.8634E+01 1.0410E+08 

6 1.8454E+01 1.8532E+01 1.8655E+01 1.0336E+08 

7 1.8420E+01 1.8510E+01 1.8650E+01 9.9929E+07 

8 1.8383E+01 1.8484E+01 1.8642E+01 9.6306E+07 

9 1.8374E+01 1.8486E+01 1.8662E+01 9.5468E+07 

10 1.8357E+01 1.8480E+01 1.8674E+01 9.3846E+07 

 

VAR estimation results:- 

Table 4 shows the VAR(4) results for rainfall and flow. The parameter estimates together with their respective 

standard errors, t-values and p-values are presented. Without exceptions, all parameter estimates are significant at 

the 0.05 level of significance. It is however imperative to note that interpreting the impulse response function for the 

model is much more informative than interpreting the individual parameter estimates. 
 

Table 4:- VAR Estimation results. 

Rainfall Flow 

Coefficients: Estimate 

[Std. Error] 

t value 

[Pr(>|t|)] 

Coefficients: Estimate 

[Std. Error] 

t value 

[Pr(>|t|)] 

Rainfall.L1 0.10212 

[0.04170] 

2.449 

[0.0146* ] 

Rainfall.L1 -0.316032 

[0.112927] 

-2.799 

[0.00530*] 

Flow.L1 0.12212 

[0.01541] 

7.923 

[1.11e-14*] 

Flow.L1 0.900972 

[0.041747] 

21.582 

[< 2e-16*] 

Rainfall.L2 0.09650 

[0.04189] 

2.304 

[0.0216*] 

Rainfall.L2 0.365812 

[0.113442] 

3.225 

[0.00133*] 

Flow.L2 -0.16560 

[0.01998] 

-8.290 

[7.26e-16*] 

Flow.L2 -0.576499 

[0.054102] 

-10.656 

[< 2e-16*] 

Rainfall.L3 0.06204 

[0.04101] 

2.513 

[0.01309*] 

Rainfall.L3 0.938559 

[0.111081] 

8.449 

[< 2e-16*] 

Flow.L3 0.01321 

[0.02083] 

1.634 

[0.05261*] 

Flow.L3 0.027008 

[0.056405] 

1.479 

[0.063223*] 

Rainfall.L4 -0.08373 

[0.04286] 

-1.954 

[0.0512*] 

Rainfall.L4 0.646973 

[0.116078] 

5.574 

[3.75e-08*] 

Flow.L4 -0.06893 

[0.01579] 

-4.364 

[1.50e-05*] 

Flow.L4 -0.205122 

[0.042777] 

-4.795 

[2.05e-06*] 

Const 104.93703 
[7.87593] 

13.324 
[< 2e-16*] 

const 22.384929 
[21.330364] 

2.049 
[0.029439*] 

* Significant at 0.05 level 
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Figure 3 is the diagram of fit and residuals for the rainfall model. The standardized residuals plot in the figure shows 

the residuals are distributed randomly around zero which is an indication that the residuals from the model have a 

constant variance. The Auto-Correlation Function (ACF) and the Partial Auto-Correlation Function (PACF) residual 

plots in the figure suggest that there is no autocorrelation in the residuals of the model which indicate no lost of 

information by the rainfall model. 

 
Figure 3:- Diagram of Fit for Rainfall 

 

Figure 4 is the diagram of fit and residuals for the flow model. The standardized residuals plot in the figure shows 

the residuals are distributed randomly around zero which is an indication that the residuals from the model have a 

constant variance. Also, the Auto-Correlation Function (ACF) and the Partial Auto-Correlation Function (PACF) 

residual plots in the figure suggest that there is no autocorrelation in the residuals of the model which indicate no 

lost of information by the flow model. 

 
Figure 4:- Diagram of Fit for Flow. 

BVAR estimation results:- 

The BVAR estimation results for both rainfall and flow are presented in Table 5. For the rainfall model, only flow at 

lag 1 is insignificant among the lags for flow whiles the only significant lag among the lags for rainfall is lag 1. On 

the other hand, rainfall at lags 1 and 2 are significant in the flow model whiles flow at lag 3 is insignificant. 
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Table 5:- BVAR Estimation results. 

Rainfall Flow 

Coefficients: Estimate t value [Pr(>|t|)] Coefficients: Estimate t value [Pr(>|t|)] 

Rainfall.L1 0.4165 11.3237 0.0000* Rainfall.L1 -0.0221 -0.2528 0.8005 

Rainfall.L2 0.0097 0.3204 0.7488 Rainfall.L2 0.1303 2.3092 0.0213* 

Rainfall.L3 0.0031 0.1265 0.8993 Rainfall.L3 0.1524 3.7776 0.0002* 

Rainfall.L4 -0.0298 -1.4898 0.1368 Rainfall.L4 0.0536 1.7120 0.0874 

Flow.L1 0.0164 1.6612 0.0972 Flow.L1 0.8811 26.7440 0.0000* 

Flow.L2 -0.0417 -5.6611 0.0000* Flow.L2 -0.3144 -9.7304 0.0000* 

Flow.L3 -0.0192 -3.5936 0.0004* Flow.L3 -0.0435 -1.7175 0.0864 

Flow.L4 -0.0108 -2.5995 0.0096* Flow.L4 -0.0459 -2.3077 0.0213* 

Const 68.5370 13.0182 0.0000* Const 78.3977 5.7378 0.0000* 

* Significant at 0.05 level 

 

Model selection:- 

Table 6 presents the mean absolute errors (MAEs) and coefficients of determination for both flow and rainfall under 

the VAR and BVAR models. The VAR model accounts for a little over seventy percent of the variability in flow and 

a little over forty percent of the variability in rainfall whereas the BVAR model only accounts for about twenty-nine 
and sixty-one percent of the variability in rainfall and flow respectively. Also, by inspecting the MAE values which 

is a measure of prediction accuracy, we observe that MAE values for VAR models are smaller than those for the 

BVAR models. Hence the VAR model is selected for structural analysis and forecasting. 

 

Table 6:- Model Selection. 

 

 

VAR BVAR 

Rainfall Flow Rainfall Flow 

Multiple R-Squared 0.4182 0.7055 0.2926 0.6173 

Adjusted R-squared 0.4096 0.7012 0.2833 0.6123 

MAE 10.1103 6.5224 14.3451 12.6013 

 

Results of the structural analysis:- 

As indicated earlier, it is often more informative and common to conduct structural analysis after fitting a VAR 

model by examining the model’s residuals. The next subsections provide results of the structural analysis of the 

fitted VAR model. 

 

Causality results:- 
Results of both the Granger and instantaneous causality tests in Table 7 indicate a two-way causality from Rainfall 

to Flow and vice versa. Granger causality is an F-test while Instantaneous causality is a Wald Chi-squared test. 

Testing the hypothesis that Rainfall Granger-causes Flow, the results in Table 7 reveals an F-value of 15.283 with p-

value < 2.2e-16. This indicates the null hypothesis that, Rainfall do not Granger-cause Flow is rejected even at 1% 

level of significance. Furthermore, results of the instantaneous causality between Rainfall and Flow reveals a Chi-

squared value of 74.743 with p-value < 2.2e-16 thereby rejecting the null hypothesis of no instantaneous causality 

between Rainfall and Flow at 1% level of significance. 

 

Table 7:- Causality Tests. 

Granger and Instantaneous Causality Tests 

$Granger 

        Granger causality H0: Rainfall do not Granger-cause Flow 

        F-Test = 15.283, df1 = 10, df2 = 1184, p-value < 2.2e-16 

        Granger causality H0: Flow do not Granger-cause Rainfall 
        F-Test = 24.715, df1 = 10, df2 = 1184, p-value < 2.2e-16 

$Instant 

        H0: No instantaneous causality between: Rainfall and Flow 

        Chi-squared = 74.743, df = 1, p-value < 2.2e-16 
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Impulse response analysis:- 

Impulse response analysis was utilized to analyze the dynamic interactions between rainfall and flow of the VAR (4) 

process. The orthogonal impulse response of rainfall to flow is presented in Figure 5. The response of rainfall has an 

obvious fluctuation; there is a highest positive effect of flow on rainfall in the fifth month (May) and lowest negative 

effect of flow on rainfall in the ninth month (September). In Figure 6, the orthogonal impulse response of flow to 

rainfall is presented, which shows another obvious fluctuation. Whiles the highest positive effect of rainfall on flow 
was recorded in the second month (February), the lowest negative effect of rainfall on flow was recorded in the fifth 

month (May). 

 
Figure 5:- Impulse Response from Rainfall 

 
Figure 6:- Impulse Response from Flow. 

 

Forecast error variance decomposition:- 
Forecast error variance decompositions (FEVDs) are also popular in interpreting VAR models. Results for the 

FEVDs for both rainfall and flow are presented in Figure 7. The results reveal that on the average, whiles about 81% 

of the variability in the trend of rainfall has been explained by past innovations in rainfall figures at Bui, a 

significant proportion (about 19%) of the variability in the trend of rainfall have been explained by past innovations 

in flow values at Bui. The results further reveal that on the average, whiles about 78% of the variability in the trend 

of flow has been accounted for by past innovations in flow values at Bui, about 22% (which is very significant) of 

the variability in the trend of flow has been explained by past innovations in rainfall figures at Bui. This confirms 

the results of the two-way relationship between rainfall and flow obtained from the granger-causality test, and 

indicate that modelling rainfall and flow together will further improve the forecast of each of them. 
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Figure 7:- Forecast Error Variance Decompositions 

 

Stability results:- 

Parameter stability throughout the study period is an important assumption in VAR modelling. If the parameters of 

the model are different during the forecast period than they were during the sample period, then the estimated model 
will not be very useful irrespective of how well it was estimated. Furthermore, if the parameters of the model were 

unstable over the sample period, then the model was not even a good representation of how the series evolved over 

the sample period. Visual examinations of the graphs of the recursive residuals are useful in evaluating the stability 

of the model. The ordinary least squares cumulative sum (OLS-CUSUM) graphs for the fitted models in Figure 8 

indicate structural stability of the underlying models since the cumulative sums wander within the control lines for 

both models. 
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Figure 8:- Diagram of Stability for Rainfall and Flow 

 

Flow and rainfall forecast:- 

The VAR(4) model developed is a predictive model for making forecasts of future flow and rainfall figures at Bui. 

The predicted rainfall and flow values for the first half of 2006 are presented in Figures 9 and 10 respectively. In 

each case, the black line represents the observed values for the first half of 2006 whiles the red line represent the 

predicted values for the same period. The blue lines are the 95% confidence interval for the predicted values. We 

observe from Figure 9 that, the trends of both the observed and predicted lines for rainfall under the model are 

similar at least for the first 3 months. Also, the observed and predicted values themselves are close. This suggests 

that the VAR(4) model developed is very good in forecasting rainfall figures at Bui. The model even performs better 
at predicting flow as observed from Figure 10. The trends of both the observed and predicted lines for flow under 

the model are similar for the entire 6 months and the values are also close. 
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Figure 9:- Predicted Rainfall Figures for the First Half of 2006 under the VAR (4) Model. 

 

 
Figure 10:- Predicted Values of Flow for the First Half of 2006 under the VAR (4) Model 

 

Conclusion:- 
The implications from this study are quite clear. First of all, we investigated to determine between unrestricted and 

Bayesian VAR models the one that is best suited for forecasting flows with respect to rainfall variability at Bui. The 

unrestricted VAR model proved to have superior forecasting abilities than the Bayesian VAR model based on MAE 

values. We also investigated to determine whether past rainfall figures at Bui significantly helps in predicting future 
trends of flows via past flow values alone. The Granger causality test conducted revealed a two-way causality from 

rainfall to flow and from flow to rainfall which was confirmed by results of the forecast error variance 

decomposition. Finally, we modelled the trend of flow with respect to rainfall variability at Bui. Results from the 

fitted VAR(4) model revealed that modelling rainfall and flow together improves the forecast of each of them at Bui, 
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which is an improvement in our understanding and knowledge of hydrological (Flows) variability in the context of 

climate (Rainfall) variability. 
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