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Introduction:- 
Quadri Ashraf (3) generalized Some Results for Associative Rings. They Proved that if R is Non Associative Ring. 

In which (xy)2-yx2y  is Centre, Then R is Commutative. In this Paper. We show that a non -Associative Ring with 

unity such that for (xy)2=(xy2)x, xy2=y2x and (x,  x
3y3+ x2y2) =0 .Throughout  the paper Z(R) denotes the centre of 

non Associative ring R and (x,y)=xy-yx for all x,y in R 

 

Main Results:- 
We prove the following theorems 

 

Theorem 1: If R be a Non-associative ring with unity 1 such that for (xy)2 = (xy2)x  all  x,y  in R, then R is  

commutative. 

Proof: Given identity is (xy)2   =  (x y2)x 

           Replacing x by x+1 in the given condition,   

                                                 [(x+1)y]2 = [(x+1)y2](x+1) 

                                                    (xy+y)2=[(xy2+y2)(x+1)] 

                                          (xy+y) (xy+y)=[(xy 2 )x+xy2+y2x+y2] 
             (xy)2+(xy)y+y(xy)+y2=(xy 2 )x+(xy2)y+y2x+y2  (by the condition and cancellation law) 

                                              (xy)y+y(xy)= (xy2)+y2x 

             Replacing y by y+ 1,[x(y+1)] (y+1)+(y+1)[x(y+1)] =x(y2+2y+1)+( (y2+2y+1)x 

                                            We get xy=yx. ∀ x,y ∈ R(by the condition and cancellation law) 

                                        Hence R is commutative ring. 

 

Theorem 2:  Let R be a non- associate ring with unity 1 such that xy2=y2x for all  x, y  in R, then R is commutative. 

 Proof: Given identity  xy2=y2x,                                                    

Replacing x by x+1 ,  (x+1)2y3 = y3(x+1)2 

                             (x2+2x+1)y3 = y3( x2+2x+1) 

                           x2y3+2xy3+y3 = y3x2+2y3x+y3 
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                                           x y3 = y3x                                                                            …(1) 

Replacing y by y+1 in  the above result, x(y+1)3 = (y+1)3x                                                                                                                                                                         

                                        x(y+1)(y+1)(y+1)=(y+1)(y+1)(y+1)x                                  

                                         (xy+x)(y2+2y+1)=(y2+2y+1) (xy+x) 

                                       xy
3
+3xy

2
+3xy=  y

2
xy+y

2
x+2yxy+2yx+xy ,(by cancellation law)  since, xy

2
 =yxy , 

                                                                 xy2=y2x,     
                                                       xy3+ 2xy = y2xy+2yx                                               …(2) 

              again replacing y by y+1  in the above result, 

                                            x(y+1)3+2x(y+1)=(y+1)2x(y+1)+2(y+1)x                                             

                           x(y+1)(y+1)(y+1)+2x(y+1)=(y+1)(y+1)x(y+1)+2(y+1)x                                              

                            (xy+x)(y2+2y+1)+2(xy+x) = (y2+2y+1) (xy+x) +(2yx+x) 

                                                xy3+3xy2+4xy= y2xy+4yx + y2x+2yxy,       by cancellation law                                                

                      2xy2 +xy2+2xy=2yx + y2x+2yxy (from result (2) and given condition) 

                                                       2xy2+2xy = 2yxy+2yx    ,( by the theorem x y2  =  yxy)  

                                                                  2xy=2yx 

                                            R is a commutative ring for all x,y. 

 

Theorem 3: Let R be a 2- divisible associate with unity 1 such that (x,  x
3y3+ x2y2) =0   x, y  in R. Then R is 

commutative. 

Proof :  let x,y  be in R, then (x,  x
3y3+x2y2)=0 

That is (x3y3+x2y2)x = x(x3y3+x2y2) 

Replacing y by y+1 in the above condition 

  [  x3(y+1)3+x2(y+1)2)x = x[x3(y+1)3+x2(y+1)2] 

             [ x3(y+1)(y+1)2+x2(y2+2y+1)]x=x[x3(y+1)(y+1)(y+1)+ x2(y+1)(y+1)] 

                                                        5 x3yx+ x3y2x+ 2 x2y x  = 5x4y+ x4y2+ 2x3y      (By the theorem  x n y= xn1y) 

                                                                          we get,x3y2x=x4y 

                   Replacing x by x+1 ,  (x+1)(x+1)(x+1)y2(x+1)=(x+1)(x+1)(x+1)(x+1)y2 

(x2+2x+1)(x+1)(y2x+y2)=(x2+2x+1)(x2+2x+1)y2 

                                                                      3x2y2x+3xy2x =3x3y2+3x2y2 

                               x2y2x+xy2x =x3y2+x2y2,          since , xy2=y2x 

Replacing x by x+1 ,  ,        

                                      (x2+2x+1)(y2x+y2)+(xy2+y2)(x+1)=(x2+2x+1)(xy2+y2)+(x2+2x+1)y2 

                                                                          2xy2x+2y2x=2x2y2+2xy2                   since, (xy2=y2 x) 

  xy2x= x2y2 

                     again replacing x by (x+1),       (x+1)y2 (x+1)=(x+1)2y2 

                                                                      (xy2+y2) (x+1)= (x2+2x+1)y2 

                                                                 xy2x+xy2+y2x+y2= x2y2+2xy2+y2 

                                                                                       y2x =xy2 

                          Replacing y by y+1,                 y2x+2yx+x= xy2+2xy+x                                                                                                                                                                              

                                                                                         xy=yx      ∀ x,y ∈ R(by the condition and cancellation law) 
Hence R is a commutative ring for all x, y. 
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