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Three maincategories of IBNR methods are considered: the standard IBNR 

methods (chain-ladder, Cape Cod, Bornhuetter-Ferguson), the IBNR loss 

ratio methods (loss ratios instead of link ratios) and the stochastic IBNR 

methods (calculation of standard deviation and percentiles). The main IBNR 

loss ratio methods include the individual and collective loss ratio methods as 

well as a credibility mixture of them, the so-called credibility loss ratio 

method. The latter includes variants by Benktander, Neuhaus and an optimal 

version by the author. We observe that the standard IBNR methods can be 

reinterpreted in the context of the IBNR loss ratio methods and extended to 

optimal credible standard IBNR methods. Among the stochastic IBNR 

methods we focus on stochastic chain-ladder models (including the 

multivariate setting), distribution based reserving models and multi-state 

reserving models. In particular, we propose a new and simple stochastic 

IBNR model based on the log-Laplace distribution. Numerical examples 

demonstrate that it is comparable in accuracy to the standard and loss ratio 

IBNR methods. As a new feature,the expected dynamic development of 

IBNR methods is studied in detail. It uses newly defined case reserve 

development factors. Numerical examples illustrate and compare the divers 

IBNR methods. 
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1  Introduction 
 

On the level of a line of insurance business (LOB), an insurer thinks in terms of origin periods, development periods 

and calendar periods, which form the horizontal axis, vertical axis and diagonal of the loss triangle of past reported 

claims available for best estimation of ultimate aggregate paid claims (UAPC) and incurred but not reported (IBNR) 

claims reserves. 
 

Assume that the start of the LOB has been at time  0t   and has lasted for  n   years up to the actual analysis date

nt 0 . For simplicity consider one-year insurance cover periods. In a  nxn  loss triangle, one has    origin 

periods (the different years to which claims are assigned) and    development periods (the years in which claims 

develop following each origin period). For origin periods based on claim occurrence (e.g. accident years) the 

premiums chosen should be the earned premiums, whereas for origins periods based on when the business was 

written (e.g. underwriting years), the premiums chosen should be written premiums. The choice of using an accident 

year or underwriting year classification will depend upon the accounting convention to be applied. For instance, 

accident year is the natural choice under US GAAP, where Lloyd’s accounting requires underwriting year (e.g. 

Boulter and Grubbs [4], p.11). 

n

n
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The loss triangle of (incremental) reported claims   ikS , incorporating for convenience the premiums of each 

accident year, can be displayed in the following form: 

 

  Development period 

Origin period Premium 1 2 … … n-1 n 

1 
1P  11S  12S      

2    … …   

… … … … … …   

… … … … …    

n-1  11nS  12nS      

n        

 

     The number  ,,1, nkiSik   represent the (incremental) reported claims (=paid claims + case reserve) for 

claims assigned to origin period  , which have beenreported in year  1 ki . At analysis date  nt 0 , each 

origin period   ni ,...,2,1   has reported claims for exactly  1 in   development periods indexed with  

 1,...,2,1  ink . The corresponding loss triangle of (cumulative) reported claims contains known entries 

defined by 

   1,...,2,1,,...,1,
1




inkniSC
k

j
ijik .   (1.1) 

 

Reported claims for the lower triangle must be predicted from the upper triangle entries (1.1). The most important 

statistic  1:  iini CRC   represents the most recent value of the (cumulative) reported claims corresponding to the 

origin period   ni ,...,2,1   and the current calendar period  1 ink   at analysis date  nt 0 , which is 

found in the diagonal of the loss triangle   ikC . Some important IBNR reserving methods are described by 

following a classification into 3 categories: 

 

1.   The standard IBNR methods, which consist of the commonly used reserving methods like the Chain-Ladder, 

the Cape Cod and the Bornhuetter-Ferguson methods (consult Boulter and Grubbs [4] for a useful 

elementary description). 

 

2.   The  IBNR loss ratio methods, which consist of a modification of the standard IBNR methods based on loss 

ratios (average ratio of incremental reported claims to premiums for each development period) instead of 

link ratios (average ratio of cumulative reported claims between two consecutive development periods). 

Our presentation is inspired from Hürlimann [21], which is based on older ideas by Benktander [3], 

Neuhaus [38] and Mack [33]. 

 

3.   The stochastic IBNR methods, which allow besides point estimates also a quantification of the standard 

deviation and percentiles of the IBNR reserves. Besides a short survey pointing out to the literature we 

introduce a novel log-Laplace IBNR model. 

 

The simplest methods of the first two categories are specified in detail and made ready for direct implementation. 

The few chosen methods do not at all exhaust the vast amount of possibilities. In particular, all methods can also be 

applied to a loss triangle of (incremental) paid claims as well as extended to a combination of paid and reported loss 

triangles (Munich Chain-Ladder method by Quarg and Mack [44] for example). Finally, the field of IBNR methods 

is still in progress and the need for appropriate stochastic methods is increasing. Among recent work, one finds a 

handbook by Radtke and Schmidt [45], an extensive bibliography by Schmidt [53], and Ph.D. theses by Salzmann 

[50] and Happ [14]. 

12S nS1

2P 21S 22S 12 nS

1nP

nP 1nS

i
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2  Standard IBNR Methods 
 

The standard IBNR methods include the three simplest and most common methods that are applied in practice. All 

these methods use the so-called chain-ladder factors defined by the average link ratios 

 

.   (2.1) 

 

From (2.1) one gets the (ultimate) loss development factors, called LDF reported, 

 

,   (2.2) 

 

which represent the average ratio of the ultimate aggregate paid claims (UAPC) to the (cumulative) reported claims 

of each origin period after    years of development. From the LDF reported one gets immediately the chain-ladder 

lag-factors 

,     (2.3) 

 

representing the average ratio of UAPC from origin period  , which are reported at analysis date in the 

development period  , and the chain-ladder IBNR factors 

 

,     (2.4) 

 

 

representing the average ratio of UAPC from origin period  , which remain unreported at analysis date in the 

development year  . In all of the following, the upper index  ●  stands for the chosen method of 

calculation. For each origin period  , we specify the UAPC at analysis date  , which is denoted  by  

,  and the IBNR reserve, which is denoted by  . The expected dynamic development is specified in 

Section 5. 

 

The Chain-Ladder Method 

 

   (2.5) 

 

One notes that  , that is the claims assigned to the first origin period are fully developed at the 

analysis date, hence UAPC coincide with the reported claims and the IBNR reserve vanishes. 

 

The Cape Cod Method 

 

It uses an estimated average loss ratio (losses to weighted premiums) over all origin periods: 

 

      (2.6) 
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  (2.7) 

 

The ratio (2.6) is obtained by balancing UACP over all origin periods (e.g. Dahl [7], (9.5), p.12):  

  
 

n
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i

CL

i
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i
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i
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i
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The Bornhuetter-Ferguson Method 

 

Instead of an average loss ratio, it uses a selected initial loss ratio    for each origin period: 

 

  (2.8) 

 

 

3  IBNR Loss Ratio Methods 
 

Instead of the link ratios (2.1), the analysis is based on loss ratios representing the incremental amount of reported 

claims per unit of premium in each development period, which are defined by 

 

.    (3.1) 

 

Derived from the  ’s   one gets the loss ratio lag-factors 

 

,    (3.2) 

 

representing the average ratio of UAPC from origin period  , which are reported at analysis date in the 

development period  , and the loss ratio IBNR factors 

 

,     (3.3) 

 

representing the average ratio of UAPC from origin period  , which remain unreported at analysis date in the 

development period  .  

     We distinguish between three main IBNR loss ratio methods: the Individual LR method, the Collective LR 

method and the Credibility LR method, where the latter itself divides into the Benktander Credibility LR method, 

the Neuhaus Credibility LR method and the Optimal Credibility LR method. 

 

Individual LR Method 

 

As in the chain-ladder method, the UAPC of each origin period depends on the current individual claims experience 

at analysis date: 

   (3.4) 
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Collective LR Method 

 

The UAPC of each origin period depends on the overall collective claims experience and the premium assigned to 

the origin period: 

  (3.5) 

 

The Individual and Collective LR methods correspond to extreme positions. The individual method considers the 

current (cumulative) reported claims   as fully credible predictive for   and ignores the prior estimate  

coll

iU   while the collective method ignores    and relies fully on    to settle  . It is natural to 

consider as compromise between these two positions a credibility mixture. 

 

Credibility LR Method 
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where the coefficients    represent credibility weights. These coefficients may be determined according to several 

proposals (author [21]): 

 

Benktander Credibility LR Method 

 

nipZ LR

i
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i ,...,1,       (3.7) 

 

Neuhaus Credibility LR Method 
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     (3.8) 

 

Optimal Credibility LR Method 
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It is important to remark that the standard IBNR methods of Section 2 can be reinterpreted in the context of the 

IBNR loss ratio methods and extended to optimal credible standard IBNR methods as follows. 

 

The Chain-Ladder Method 

 

It is similar to the individual LR method, where the loss ratio lag-factors (3.2) are replaced by the chain-ladder lag-

factors (2.3): 

   (3.10) 

 

The Cape Cod Method 

 

It is a (Benktander type) credibility mixture of the type (3.6) with 
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nipZPLRU
p

RC
U CL

iii

coll
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i

iind

i ,...,1,,,     (3.11) 

 

Another credibility improvement of the Cape Cod method is found in Barnett [2].  

 

The Optimal Cape Cod Method 

 

It is the optimal credibility mixture of the type (3.6) with 

 

  (3.12) 

 

The Bornhuetter-Ferguson Method 

 

It is a (Benktander type) credibility mixture of the type (3.6) with 

 

  (3.13) 

 
Under suitable model assumptions, it is known that these credibility weights produce the optimal linear combination 

of the two predictors  
ind

iU   and  
coll

iU   of UAPC in the sense of minimum quadratic loss (e.g. Dahl [7], Theorem, 

p.10). 

 

The Optimal Bornhuetter-Ferguson Method 

 

It is the optimal credibility mixture of the type (3.6) with 

 

  (3.14) 

 

 

4  Stochastic IBNR Methods 
 

We restrict ourselves to a short survey of available stochastic methods and refer to the literature for the more 

complex recent developments in this area. A recommendable textbook is Wüthrich and Merz[58]. 

 

Stochastic chain-ladder models 

 

The standard chain-ladder method is the simplest and most suggestive tool in claims reserving. Various attempts 

have been made to justify it as a stochastic model (e.g. Mack and Venter [34]). Remarkable progress was achieved 

by Schnieper [55], and Mack [28]-[30], [32], who considered models involving assumptions on conditional 

distributions. The paper by Schmidt and Schnaus [54] extends the model of Mack and proposes a basic model in a 

decision theoretic setting. The model characterizes optimality of the chain ladder factors as predictors of non-

observable development factors and hence optimality of the chain ladder predictors of aggregate claims at the end of 

the first non-observable calendar year. These authors also present a model in which the chain ladder predictor of 

ultimate aggregate claims turns out to be unbiased. However, Taylor [57] has shown that the chain ladder forecast is 

upward biased in general. 

More recent developments concern the extension of the chain-ladder technique to a multivariate setting. Since Ajne 

[1] it is well-known that the univariate chain-ladder method cannot be applied to a portfolio of risks consisting of 

several sub-portfolios. In general, the chain-ladder predictors of sums differ from the sums of chain-ladder 
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predictors. This is due to the fact that the univariate chain-ladder method neglects the dependence structure between 

the sub-portfolios of a portfolio. Braun [6] has constructed a bivariate model, which allows calculation of prediction 

errors for the sum of the univariate chain-ladder predictors taking into account the correlation structure of sub-

portfolios. In the recent paper by Pröhl and Schmidt [42], the authors extend both the method of Braun and the 

univariate model of Schmidt and Schnaus to a multivariate chain-ladder model. In particular, this model resolves the 

problem of non-additivity of the univariate chain-ladder method by arguing that the only reasonable predictor of the 

sum of non-observable (future) aggregate claims of a portfolio is the multivariate chain-ladder predictor consisting 

of the sum of the multivariate chain-ladder predictors of the sub-portfolios. The author [19] proposes a linear 

approximate estimation of the bivariate chain-ladder factors, which leads to simple approximate lower and upper 

bounds for the IBNR claims reserve of a portfolio and its components. It is based on a Taylor approximation, where 

the second order quadratic term can be neglected in practice. 

Finally, the application of the chain-ladder technique to reinsurance must be done with care. The analysis of 

reinsurance treaties often requires a separate analysis of both paid and reported (or incurred) claims. However, such 

a method can lead to very different ultimate projections. Quarg and Mack [44] proposed a solution to this well- 

known problemin their presentation of the so-called Munich Chain-Ladder method (see also Merz and Wüthrich 

[36]). In reinsurance it is also advisable to separate attritional claims from large claims in loss triangles. A technique 

for this is found in Klemmt [26]. 

 
Distribution based reserving models 

 

A main and very important advantage of the standard and loss ratio IBNR methods is their distribution-free validity. 

However, in a risk consulting environment, there is an accrued interest to know more about the standard deviation 

and the higher percentile values. Therefore, attempts to model adequately not only the mean of the IBNR claims 

reserves but also its full distribution have the potential to retain more attention from both a theoretical and practical 

viewpoint. Early developments in this area include work by Bühlmann et al. [5], and Hertig [15].  

Later on, Mack has proposed distribution dependent IBNR claims reserving methods, in particular a cross-classified 

parametric method of multiplicative type based on the gamma distribution (see Mack [31], Section 3.3.3, pp. 281-

283). The author [20] considers two modifications of this latter model. The first model assumes independent 

development periods and allocates the coefficient of variation of the total ultimate claims of a line of business with 

multiple origin periods to the coefficient of variation of the total ultimate claims of a single origin period inverse 

proportionally to the squared-root premium volumes. The second model extension is based on a simple Fréchet like 

multivariate distribution, which models the whole range of dependence between independent and comonotone 

dependent development periods. The chosen model uses only one additional dependence parameter, which is chosen 

such that it yields the most conservative model for IBNR claims reserving with respect to the concordance order for 

the bivariate margins of this model. 

In the next Section 5, we propose a new and simple stochastic IBNR model based on the log-Laplace distribution. 

The numerical examples of Section 6 demonstrate that it is comparable in accuracy to the standard and loss ratio 

IBNR methods summarized in the Sections 2 and 3. 

 

Multi-state reserving models 

 

The paper by Orr [40] shows how a simple multi-state claims number reserving model can be obtained from a multi-

state Markov chain modelling of the claims reserving process along the line of papers including Hachemeister [13], 

Norberg [39] and Hesselager [16]. The author[25] considers the simplest extension of the model of Orr [40] to a 

multi-state aggregate claims reserving model with gamma distributed claim sizes, which can be approximated for 

sufficiently large portfolios by a gamma distributed aggregate claims reserving model. 

 

 

5  The log-Laplace IBNR model 
 

In recent years the log-Laplace distribution has become quite popular in applied stochastic modeling. There exist 

several theoretical reasons for this, in particular the power tails and the self-similarity of this law. Kozubowski and 

Podgorski [27] provide an excellent overview of the historical development and applications of the log-Laplace 

models together with new results on their properties with particular attention to their stability with respect to 



ISSN 2320-5407                               International Journal of Advanced Research (2015), Volume 3, Issue 3, 384-402 

 

391 

 

geometric products. To our knowledge the application of the log-Laplace distribution to the important IBNR claims 

reserving problem has not been considered so far. 

We consider the three parameter “skew log-Laplace” distribution as defined in [27] and also called “double Pareto” 

in Reed [46]. A random variable    distributed according to the density (5.1) below is said to have a log-Laplace  

distribution with parameters  . This distribution is denoted by  . Analytical 

expressions for the distribution function and percent point function are given in (5.2). 

 

    (5.1) 

,    (5.2) 

 

In practice, the “symmetric log-Laplace” is even more frequently encountered. It is the “symmetric” version  

  of the three parameter “skew log-Laplace” with density, distribution function and percent 

point function given by 

   (5.3) 

,   (5.4) 

 

It is interesting to observe that the symmetric log-Laplace has Pareto tails with index  , and thus this simple 

special model is consistent in the tail region with Mandelbrot’s Pareto hypothesis for financial returns (see 

Mandelbrot [35], Fama [11], [12]. In particular, the mean excess function is linear and increasing in the tails, and in 

accordance with extreme value theory (e.g. Embrechts et al. [9]), the symmetric log-Laplace is thus susceptible to 

model long-tailed insurance claims data. The symmetric log-Laplace can be viewed as special case of the 

logarithmic double Weibull distribution (e.g. Hürlimann [17], Section 4). 

The limiting cases of the three parameter log-Laplace as    or    are allowed (Pareto type tails at 

zero and infinity respectively). In case    one obtains a special beta distribution with density 
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and in case    one gets the Pareto distribution with density 
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.   (5.7) 

 

A log-Laplace IBNR claims reserving model can be obtained as follows. We assume that the reported claims  

  follow independent random variables with log-Laplace distributions  . The parameters 

must be predicted from the upper loss triangle  . A comparison of the ratio 

of mean values using (5.7) suggests a natural estimation of the    parameters using the chain-ladder factors (2.1) 

as average link ratios between    and    as follows: 

 

.    (5.8) 

 

The estimation of    can be done according to some optimality criterion. We suggest to choose    such that the 

overall estimated IBNR claims reserve    is closest to the value obtained from the optimal credibility 

method in Section 3 (see the numerical examples in Section 6). Assuming now that the    parameters are known, 

we estimate the parameters    using the method of maximum likelihood estimation. Under the assumption 

that the observed reported claims are independent, the log-likelihood function equals 

 

 (5.9) 

 

The maximum likelihood estimators of the parameters   are those values, which maximize  

, that is the simultaneous solutions of the equations 

 

 (5.10) 

 (5.11) 

 

For convenience consider the quantities 

 

   (5.12) 

 

Then the equations (5.10) and (5.11) are equivalent to the equations 
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   (5.13) 

 

Solving (5.13) yields the maximum likelihood estimators 

 

   (5.14) 

 

Of course, the cases    or    correspond to the limiting cases     or    defined 

under (5.5) and (5.6). In our stochastic model the random IBNR claims reserves are obtained as the independent 

differences defined by 

 

     (5.15) 

 

The mean and variance of the IBNR claims reserves are obtained from the formulas 

 

  (5.16) 

 

   (5.17) 

 

Percentiles of the IBNR claims reserves can also be obtained. Unfortunately, the distribution of independent 

differences of log-Laplace distributions is not available in analytical closed-form. Instead, various approximations 

can be used. For example, it is possible to evaluate a distribution free Chebyshev-Markov upper bound of these 

percentiles, which is based on the mean, variance, skewness and kurtosis (use Theorem 4.1 in Hürlimann [18]). 

Alternatively, and as suggested by the technical specification QIS5 [43] for Solvency II, a practical log-normal 

approximation of percentiles based on the mean and variance might be appropriate. Setting  

 the log-normal IBNR value-at-risk approximation to the 

confidence level    is given by  (   denotes the  -percentile of the standard normal distribution) 
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6  Expected Dynamic Reserve Development 
 

The upper index  ●  stands for the chosen IBNR method. For each origin period   ni ,...,2,1 , the UACP at 

analysis date    is denoted  by  . The (average) dynamic development of IBNR reserve and (cumulative) 

reported claims of an origin period for the development years following the analysis date is described by the time 

dependent formulas 
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For each origin period the known (cumulative) reported claims    at analysis date are obtained as the sum of the 

known (cumulative) paid claims    and the known (outstanding) case reserves  , that is 

 

     (6.3) 

 

Assume that case reserves, after the analysis date, develop according to case reserve development factors

  such that  , and set by convention  

. We suppose that the development of case reserves for claims reported after the analysis date follow the 

same deterministic pattern . Through analysis one gets the following formulas for the case 

reserves and (cumulative) paid claims of an origin period    after the analysis date: 
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    ,,...,1,)( 000 mikktRktRCktP iii  
    (6.5) 

 

where by convention  . Formula (5.4) shows that the case reserves at date  

  are obtained as the sum of the (remaining) case reserves known from the analysis date and all those 

(remaining) case reserves emanating from incremental reported claims of the development periods  

 which are revealed after the analysis date. Using (6.1) and (6.2) one checks 

without difficulty that at date    all claims from all origin periods have been reported and paid out, that is 

 

 (6.6) 

 

The Figure 6.1 illustrates graphically the expected dynamic reserve development process in a special case. 

 

Figure 6.1:  Expected dynamic reserving process for the claims of a specific origin period 
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7  Numerical example 
 

The IBNR methods of Sections 2, 3 and 5 are illustrated with two different loss triangles. The first (fictive) loss 

triangle is taken from Boulter and Grubbs [4]. Its use is justified as far as it allows an easy understanding of the 

methods from simple figures. The second real-world loss triangle from A.M. Best concerns the Private Passenger 

Auto Liability insurance business. The reader is recommended to implement its own spreadsheet calculations in 

order to figure out the details. 

 

Swiss Re exemplary loss triangle (Boulter and Grubbs [4]) 

 

Starting point is the following loss triangle of (cumulative) reported claims, premiums, chain-ladder factors and 

ultimate loss development factors (LDF reported): 

 

 
 

As input for the Bornhuetter-Ferguson method, it is necessary to estimate initial loss ratios for each origin period. As 

natural projection beyond the current calendar year 2000 we use average loss ratios: 

 

 
From the LDF reported one gets immediately the chain-ladder lag-factors (2.3) and IBNR factors (2.4): 

 

 
 

Applying the standard IBNR methods of Section 2 one gets the estimates of UACP and IBNR reserves shown 

below, where the relative deviation is calculated with respect to the values obtained from the optimal credibility 

method in Section 3, which are summarized afterwards. 

 

 

Development Period in Months estimated

Origin Period 12 24 36 48 60 72 Premium

1995 90 210 310 420 500 500 625

1996 130 280 360 460 600 625

1997 140 290 440 600 625

1998 160 240 420 625

1999 120 260 625

2000 110 625

Chain-ladder factors 2.000 1.500 1.333 1.250 1.000 1.000

LDF reported 5.000 2.500 1.667 1.250 1.000 1.000

Development Period in Months estimated

Origin Period 12 24 36 48 60 72 Loss Ratio

1995 0.144 0.192 0.160 0.176 0.128 0.000 0.800

1996 0.208 0.240 0.128 0.160 0.224 0.000 0.960

1997 0.224 0.240 0.240 0.256 0.176 0.000 1.136

1998 0.256 0.128 0.288 0.197 0.176 0.000 1.045

1999 0.192 0.224 0.204 0.197 0.176 0.000 0.993

2000 0.176 0.205 0.204 0.197 0.176 0.000 0.958

Average 0.982

IBNR

lag factors factors

origin period i p_i q_i

1 1.00000 0.00000

2 1.00000 0.00000

3 0.80000 0.20000

4 0.60000 0.40000

5 0.40000 0.60000

6 0.20000 0.80000

Standard Method: Chain-Ladder Cape Cod Bornhuetter-Ferguson

origin period i U_i IBNR_i U_i IBNR_i U_i IBNR_i

1 500 0 500 0 500 0

2 600 0 600 0 600 0

3 750 150 723 123 742 142

4 700 280 666 246 681 261

5 650 390 628 368 633 373

6 550 440 601 491 589 479

all origin periods 3'750 1'260 3'718 1'228 3'745 1'255

relative deviation 1.718% 5.060% 0.841% 2.364% 1.580% 4.635%
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The next table displays the required loss ratios (3.1), loss ratio lag-factors (3.2) and loss ratio IBNR factors (3.3) as 

well as the credibility weights (3.7)-(3.9): 

 

 
 

The application of the IBNR loss ratio methods of Section 3 yields the following table, where again the relative 

deviation is calculated with respect to the optimal credibility method. 

 

 
 

As next we use the log-Laplace IBNR method of Section 5. The    parameters (5.1), the suggested estimate  , 

and the other parameters in (5.14) and (5.16)  are the following ones (a zero entry for     corresponds to a 

limiting case as the parameter goes to  ∞): 

 

 
 

The following table displays reported claims, ultimate aggregate paid claims and IBNR reserves by origin period 

using (5.18) as well as the relative deviations with respect to the optimal credibility method: 

 

 
 

It is remarkable that all used IBNR methods yield stable values of the total UACP over all origin periods with 

relative deviations within -0.3% (individual loss ratio method) and 1.6% (chain-ladder method) of the chosen 

optimal credibility value. The total IBNR reserve over all origin periods is less stable with a range of relative 

deviation between -1.8% (individual loss ratio method) and 4% (chain-ladder method). The log-normal IBNR value-

at-risk approximations (5.20) to the 90% confidence level together with the required standard deviations (5.19) are 

shown below. One notes that the total 90% value-at-risk 1’614 is 33% above the average optimal value 1’211. 

vector of m_k's 20.000% 20.480% 20.400% 19.733% 17.600% 0.000% 98.213%

origin period i p_i q_i RC_i P_i ZB_i ZN_i ZO_i

1 1.00000 0.00000 500 625 1.00000 0.98213 0.50000

2 1.00000 0.00000 600 625 1.00000 0.98213 0.50000

3 0.82080 0.17920 600 625 0.82080 0.80613 0.47534

4 0.61988 0.38012 420 625 0.61988 0.60880 0.44050

5 0.41216 0.58784 260 625 0.41216 0.40480 0.39099

6 0.20364 0.79636 110 625 0.20364 0.20000 0.31095

LR Method: Individual Method Collective Method Benktander Method Neuhaus Method Optimal Method

origin period i U_i IBNR_i U_i IBNR_i U_i IBNR_i U_i IBNR_i U_i IBNR_i

1 500 0 614 0 500 0 502 0 557 0

2 600 0 614 0 600 0 600 0 607 0

3 731 131 614 110 710 127 708 127 670 120

4 678 258 614 233 653 248 653 248 642 244

5 631 371 614 361 621 365 621 365 620 365

6 540 430 614 489 599 477 599 477 591 471

all origin periods 3'680 1'190 3'683 1'193 3'683 1'217 3'683 1'217 3'687 1'199

relative deviation -0.193% -0.815% -0.099% -0.526% -0.099% 1.510% -0.099% 1.473% 0.000% 0.000%

k n

ii  ,

index i / k 1 2 3 4 5 6

A_i 0.00000 0.04684 0.19180 0.14728 0.04002 0.00000

B_i 0.17815 0.00851 0.00000 0.00000 0.00000 0.08701

α_i 0.000 14.969 5.214 6.790 24.987 0.000

β_i 5.613 35.113 0.000 0.000 0.000 11.493

δ_k 120            240            360            480            600            600             

RC_i U_i IBNR_i

500 500 0

600 600 0

600 748 148

420 701 281

260 635 375

110 552 442

2'490 3'737 1'247

relative deviation 1.279% 2.930%
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A.M. Best loss triangle for the Private Passenger Auto Liability line of business 

 

It is natural to ask whether the above numerical stable results are obtained by chance or whether they apply also to 

real-world loss triangles. Starting point is the following loss triangle: 

 

 
 

Initial loss ratios for the Bornhuetter-Ferguson method are obtained from the following table: 

 

 
Next we list the chain-ladder lag-factors (2.3) and IBNR factors (2.4): 

 

 

90% Perc. σ[IBNR_i]

0 0

0 0

333 232

465 144

412 28

501 45

1'614 278

Development Period in Months estimated

Origin Period 12 24 36 48 60 72 84 96 108 120 Premium

1994 35'676'056 41'669'881 43'323'363 43'984'520 44'150'389 44'190'053 44'221'618 44'253'092 44'258'956 44'268'181 60'910'084

1995 36'359'147 42'299'117 44'144'506 45'012'422 45'218'221 45'333'208 45'439'196 45'464'921 45'484'323 63'201'025

1996 37'061'077 42'961'817 45'102'738 45'941'840 46'334'591 46'540'489 46'671'487 46'709'735 65'433'383

1997 37'174'474 43'067'460 45'181'515 46'272'564 46'732'712 46'921'079 46'930'329 66'558'884

1998 37'412'178 43'605'555 46'018'215 47'237'090 47'784'254 47'981'868 67'498'626

1999 39'238'795 46'375'818 49'208'459 50'542'496 51'050'486 74'149'663

2000 41'434'635 49'562'321 52'535'619 53'952'933 80'259'593

2001 42'716'488 50'947'581 53'999'486 83'271'830

2002 45'093'972 53'343'255 87'467'542

2003 45'291'039 87'110'732

Chain-ladder factors 1.175 1.053 1.023 1.008 1.003 1.002 1.001 1.000 1.000 1.000

LDF reported 1.283 1.092 1.037 1.014 1.006 1.003 1.001 1.000 1.000 1.000

Development Period in Months estimated

Origin Period 12 24 36 48 60 72 84 96 108 120 Loss Ratio

1994 0.586 0.098 0.027 0.011 0.003 0.001 0.001 0.001 0.000 0.000 0.727

1995 0.575 0.094 0.029 0.014 0.003 0.002 0.002 0.000 0.000 0.000 0.720

1996 0.566 0.090 0.033 0.013 0.006 0.003 0.002 0.001 0.000 0.000 0.714

1997 0.559 0.089 0.032 0.016 0.007 0.003 0.000 0.001 0.000 0.000 0.707

1998 0.554 0.092 0.036 0.018 0.008 0.003 0.001 0.001 0.000 0.000 0.713

1999 0.529 0.096 0.038 0.018 0.007 0.003 0.001 0.001 0.000 0.000 0.694

2000 0.516 0.101 0.037 0.018 0.007 0.003 0.001 0.001 0.000 0.000 0.685

2001 0.513 0.099 0.037 0.018 0.007 0.003 0.001 0.001 0.000 0.000 0.679

2002 0.516 0.094 0.037 0.018 0.007 0.003 0.001 0.001 0.000 0.000 0.677

2003 0.520 0.100 0.037 0.018 0.007 0.003 0.001 0.001 0.000 0.000 0.687

Average 0.700

IBNR

lag factors factors

origin period i p_i q_i

1 1.00000 0.00000

2 0.99979 0.00021

3 0.99951 0.00049

4 0.99881 0.00119

5 0.99730 0.00270

6 0.99407 0.00593

7 0.98602 0.01398

8 0.96401 0.03599

9 0.91569 0.08431

10 0.77924 0.22076
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The standard IBNR methods of Section 2 yield the following values: 

 

 
 

The required input for application of the IBNR loss ratio methods is as follows: 

 

 
 

The application of the IBNR loss ratio methods of Section 3 leads to the following results: 

 

 
 

 

Our input for the log-Laplace IBNR method is 

 

 
 

and it yields the following results 

Standard Method: Chain-Ladder Cape Cod Bornhuetter-Ferguson

origin period i U_i IBNR_i U_i IBNR_i U_i IBNR_i

1 44'268'181 0 44'268'181 0 44'268'181 0

2 45'493'803 9'480 45'493'546 9'223 45'493'803 9'480

3 46'732'628 22'893 46'732'182 22'447 46'732'631 22'896

4 46'986'202 55'873 46'985'757 55'428 46'986'251 55'922

5 48'111'924 130'056 48'109'647 127'779 48'112'021 130'153

6 51'354'849 304'363 51'358'242 307'756 51'355'444 304'958

7 54'718'095 765'162 54'738'904 785'971 54'721'377 768'444

8 56'015'256 2'015'770 56'098'039 2'098'553 56'033'989 2'034'503

9 58'254'733 4'911'478 58'507'598 5'164'343 58'338'112 4'994'857

10 58'121'989 12'830'950 58'758'234 13'467'195 58'509'747 13'218'708

all origin periods 510'057'660 21'046'025 511'050'330 22'038'695 510'551'557 21'539'922

relative deviation -0.154% -3.200% 0.041% 1.366% -0.057% -0.928%

vector of m_k's 54.013% 9.505% 3.389% 1.554% 0.573% 0.231% 0.108% 0.050% 0.020% 0.015% 69.460%

origin period i p_i q_i RC_i P_i ZB_i ZN_i ZO_i

1 1.00000 0.00000 44'268'181 60'910'084 1.00000 0.69460 0.50000

2 0.99978 0.00022 45'484'323 63'201'025 0.99978 0.69445 0.49997

3 0.99949 0.00051 46'709'735 65'433'383 0.99949 0.69424 0.49994

4 0.99876 0.00124 46'930'329 66'558'884 0.99876 0.69374 0.49985

5 0.99720 0.00280 47'981'868 67'498'626 0.99720 0.69265 0.49965

6 0.99388 0.00612 51'050'486 74'149'663 0.99388 0.69035 0.49923

7 0.98563 0.01437 53'952'933 80'259'593 0.98563 0.68462 0.49819

8 0.96325 0.03675 53'999'486 83'271'830 0.96325 0.66907 0.49532

9 0.91446 0.08554 53'343'255 87'467'542 0.91446 0.63518 0.48882

10 0.77761 0.22239 45'291'039 87'110'732 0.77761 0.54013 0.46860

LR Method: Individual Method Collective Method Benktander Method Neuhaus Method Optimal Method

origin period i U_i IBNR_i U_i IBNR_i U_i IBNR_i U_i IBNR_i U_i IBNR_i

1 44'268'181 0 42'308'024 0 44'268'181 0 43'669'545 0 43'288'103 0

2 45'494'243 9'920 43'899'308 9'572 45'493'895 9'920 45'006'905 9'813 44'696'732 9'746

3 46'733'622 23'887 45'449'899 23'231 46'732'966 23'887 46'341'115 23'686 46'091'678 23'559

4 46'988'411 58'082 46'231'670 57'147 46'987'476 58'081 46'756'651 57'796 46'609'924 57'614

5 48'116'486 134'618 46'884'413 131'171 48'113'039 134'608 47'737'814 133'558 47'500'018 132'893

6 51'364'787 314'301 51'504'210 315'155 51'365'641 314'307 51'407'960 314'566 51'434'606 314'729

7 54'739'572 786'639 55'748'156 801'133 54'754'066 786'847 55'057'663 791'210 55'245'689 793'912

8 56'059'487 2'060'001 57'840'449 2'125'446 56'124'932 2'062'406 56'648'854 2'081'658 56'958'303 2'093'030

9 58'333'310 4'990'055 60'754'783 5'197'197 58'540'452 5'007'775 59'216'713 5'065'625 59'571'110 5'095'941

10 58'243'940 12'952'901 60'506'944 13'456'171 58'747'210 13'064'823 59'284'636 13'184'342 59'446'500 13'220'339

all origin periods 510'342'038 21'330'403 511'127'856 22'116'221 511'127'856 21'462'653 511'127'856 21'662'254 510'842'661 21'741'762

relative deviation -0.098% -1.892% 0.056% 1.722% 0.056% -1.284% 0.056% -0.366% 0.000% 0.000%

index i / k 1 2 3 4 5 6 7 8 9 10

A_i 0.00000 0.00000 0.00000 0.00000 0.00028 0.05821 0.11905 0.14392 0.18925 0.19029

B_i 0.07314 0.04918 0.02587 0.02035 0.00323 0.00000 0.00000 0.00000 0.00000 0.00000

α_i 0.000 0.000 0.000 0.000 816.650 17.178 8.400 6.948 5.284 5.255

β_i 13.673 20.332 38.658 49.131 239.550 0.000 0.000 0.000 0.000 0.000

δ_k 37'442'904 43'999'324 46'321'329 47'378'554 47'765'699 47'920'588 47'993'339 48'026'940 48'040'465 48'050'478 
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All used IBNR methods yield remarkable stable values of the total UAPC over all origin periods with relative 

deviations within -0.14% (chain-ladder method) and 0.07% (collective loss ratio method) of the chosen optimal 

credibility value. The total IBNR reserve over all origin periods is a bit less stable with a range of relative deviation 

between -1.7% (chain-ladder method) and 3.3% (collective loss ratio method). Moreover, the chosen parameters of 

the log-Laplace method almost reproduce the results of the optimal credibility method. The log-normal IBNR value-

at-risk approximations (5.20) to the 80% confidence level together with the required standard deviations (5.19) are 

shown below. One notes that the total 80% value-at-risk 29’617’712 is 38% above the average optimal value 

21’400’252. 

 

 

 
 

 

8  Conclusion 
 

One cannot conclude without mentioning some further claims reserving topics that might suggest possible future 

developments.  

     Let us begin with two specific dependence modelling issues. First, claims reserving models assume independence 

between different accidents years. For this reason, they fail to model claims inflation appropriately, because claims 

inflation acts on all accident years simultaneously. A model that accounts for accident year dependence in runoff 

triangles has been proposed by Salzmann and Wüthrich [50]. Second, predictions of claims reserves often rely on 

individual loss triangles, where each triangle corresponds to a different line of business. Since different lines of 

business are often dependent it is necessary to develop models for loss triangle dependence. Examples that use 

copulas are Regis [48] and De Jong [8]. 

     In view of the world-wide importance of solvency systems it is also necessary to adapt the classical claims 

reserving models. Some typical recent developments include Merz and Wüthrich [37], Hürlimann [22], Savelli and 

Clemente [51], Pirra et al. [41], Eling et al. [10], Salzmann [49] and Happ [14]. 

     Among the many further methods, let us mention the development of claims reserving models based on multiple 

risk factors. Besides [52] and [22] we would like to point out [23], where the use of stochastic LDF’s is 

RC_i U_i IBNR_i

44'268'181 44'268'181 0

45'484'323 45'493'867 9'544

46'709'735 46'732'680 22'945

46'930'329 46'986'328 55'999

47'981'868 48'111'377 129'509

51'050'486 51'352'868 302'382

53'952'933 54'715'657 762'724

53'999'486 56'019'333 2'019'847

53'343'255 58'340'067 4'996'812

45'291'039 58'391'531 13'100'492

489'011'635 510'411'887 21'400'252

relative deviation -0.067% 0.000%

80% Perc. σ[IBNR_i]

0 0

522 3'039'157

3'706 1'670'425

19'619 1'327'955

162'472 293'263

144'351 4'455'291

381'290 10'446'986

1'562'051 13'296'030

5'080'261 19'291'437

18'316'945 18'190'126

29'617'712 31'979'525
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advocated.Finally, computational issues have rarely been taken into account. For example, to report IBNR reserves 

more frequently than the usual yearly periods, it is necessary to perform an extrapolation prior to the end of the first 

year and an interpolation for each successive development year. Early contributions include Sherman [56], and 

Robbin and Homer [47]. A more recent approach is Hürlimann [24]. 
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