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In the present paper the structures and dynamics of a food chain prey- 

predator model are proposed and studied. The two stages and refuge in 

prey and two predators (top and mid) are considered. Different types of 

functional responses have been proposed. The conditions, which 

guarantee the existence of equilibrium points, have been investigated. 

Uniqueness and boundedness of the solution of the system are proven. 

The local and global dynamical behaviors are discussed and analyzed. 

Finally, numerical simulations are carried out not only to confirm the 

theoretical results obtained, but also to show the effects of the refuge 

and the variation of each parameter on our proposed system. 
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Introduction:- 
The first pattern formation of predator–prey model was introduced in 1927 by the well- known Lotka[15] and 

Volterra[28] which starting from a simple and classical supposition, more complexity but factual predator–prey 

models have been constructed by mathematicians and ecologists. In 1992, Berryman [6] considered that the dynamic 

interaction between predators and preys has long taken and go on to be one of the most important and central 

subjects which play a great role in each of the mathematical ecology, natural, social, and technological sciences, 

especially in the research on biology and ecology [5, 17, 26, 27]. 

  

Many researchers working in these fields paying a great amount of attention to improve and generalize the pattern 

formation of prey– predator models to more involvement and realistic system, and  merging this advantage into 

many applications that give the nature of existence and global asymptotic stability of predator–prey models a great 

interest. 

 

On the other hand, the dynamical behavior of prey-predator models has been investigated by a lot of articles 

and peppers which results a significant expansion in the structural of the prey – predator models to involve multi- 

species; different functional responses, several types of food chain, refuge, harvesting, stage-structure, several 

types of diseases…etc. 

 

Lately, Samantha[25] studied the existence and global asymptotic stability of a delay predator–prey model with 

disease in the prey, Paletal.[20–24]proposed prey–predator harvesting model under impreciseness by considering 

biological parameters as interval number, Naji and Mustafa [19] studied the dynamics of an eco-epidemiological 

model with nonlinear incidence rate. Majeed and Shawka studied prey-predator model involving SI and SIS 

infectious disease in prey population and the disease transmitted within the same species by contact and external 
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source [4]. A lot of researches efforts have been made to investigating the interaction and coexistence mechanism of 

the harvested prey–predator. 

  

In fact, the influence of refuge, stage-structure and the multiplicity of functional responses in the prey–predator 

ecosystem are the most important topics of interest. In recent years, stage structure models have been studies widely 

by a lot of researchers, Aiello and Freedman (1990) studied the single species model with stage structure [1, 2], 

several researchers studied prey–predator model with different functional responses. The prey–predator models with 

prey refuge have been investigated by Kar[14]. Maetal. [16]studied the effects of prey refuges on a prey–predator 

model with a class of function responses. Chenetal.[8] discussedaprey–predator model with Holling type II functiona 

lresponse in corporating a constant prey refuge. 

  

Moreover, someoftheexperimentalandtheoreticalworkhavestudiedtheeffectsofpreyrefuges and drawn a 

conclusion thatthepreyrefuges have a positively effectonthestabilityof the consideredinteractions,andprey 

extinction canbeconserved by theadditionofrefuges[9, 11, 12, 13, 17],Kadhim, Majeed and Naji [29] studied the 

stability analysis of food web stage structured prey-predator model with refuge involving Lotka-Volterra type of 

function response, Ali and Majeed discussed stability analysis of a food chain  stage structured prey-predator model 

incorporating a preyrefuge and two types of functional responses such that the mid-predator consumed the mature 

prey individual only according to the Lotka-Voltera type of functional response and the top predator consumed the 

mid- predator individual only according to Holling type-II functional response. 

 

In spite of the effect of prey refuges on the dynamical behavior of the system is very difficult in the reality, but 

it has been considered and analysis in this paper. 

  

In this paper, a complicated four species food chain model with two functional responses has been proposed 

and analyzed. Two such stages (mature and immature) with refuge in the prey and two predators (top and mid) 

are also considered.   

 

It is well known that the logistic function represents a mutualism interaction between the mature and immature 

prey, and due to the short of resources the typeIIfunctionalresponse is considered to describe the nature of the 

interaction between the mid predator and immature prey, while Lotka-Volterra type of functionalresponse 

considered due to unlimited resources and the linearly relationship between the mid predator and mature prey. 

 

Furthermore, there is not any relationship between the top predator and the two stages of prey, while according 

to a food chain the interaction between the two predators has been considered by Lotka–Volterra type of 

functionalresponse. 

  

Actually, due to the complexity of interactions in the proposed model especially among the top predator and the two 

stages of prey and the nature of interaction between the mid predator and the immature prey it was not easy to find 

an example identical of this model in the nature, but in any case is not impossible, so after more efforts and with the 

help of the biologist, we could find an example across two different environments represented by the aquatic and 

terrestrial environment such that the two aquatic species Blue Shark (Prionaceglauca) and Wels Catfishrepresent the 

top and mid predators respectively, and the terrestrial species pigeons ( doves ) represent the two stages of prey.   

 

Finally, the behavior of the catfish when hunting pigeons is highlighted in the study, published on Dec. 5. The study 

says: “Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture… Since 

this extreme behavior has not been reported in the native range of the species, our results suggest that some 

individuals in introduced predator populations may adapt their behavior to forage on novel prey in new 

environments, leading to behavioral and trophic specialization to actively cross the water-land interface.” [10, 7]. 
 

The mathematical model:- 

Consider the food chain model consisting of mid and top- predators, stage-structure prey in which the prey species 

growth logistically in the absence of predation, while the predators decay exponentially in the absence of prey 

species. It is assumed that the prey population divides into two compartments: immature prey population 𝑋1(t) that 

represents the population size at time t and mature prey population 𝑋2(t) which denotes to population size at time t. 

Furthermore the population size of the mid- predator at time t is denoted by 𝑌1(t), while 𝑌2(t) represents the 

population size of top predator at time t.  

http://news.yahoo.com/blogs/sideshow/catfish-learning-hunt-pigeons-land-video-231659764.html
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0050840
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Now in order to formulate the dynamics of such system the following assumptions are considered:  

1. The immature prey depends completely in its feeding on the mature prey that growth logistically with intrinsic 

growth rate𝑟 > 0 and carrying capacity𝑘 > 0. The immature prey individuals grown up and become mature prey 

individuals with grown up rate 𝑠 > 0 .However the immature and mature prey facing death with natural death rate  

𝑑1 > 0 and 𝑑2 > 0 respectively.                                         

2. There is type of protection of the prey species from facing predation by the mid- predator with refuge rate 

constant𝑚 ∈   0 , 1  .      

3. The mid-predator consumed the immature prey individual according to Holling type-II functional response with 

predation rate 𝑎1 > 0 and half saturation constant  𝑏 > 0.And consumed the mature prey individual according to 

theLotka-Voltera type of functional response with predation rate 𝑎2 > 0and contribute a portion of such food with 

conversion rates 0 < 𝑒1 < 1  𝑎𝑛𝑑  0 < 𝑒2 < 1respectively. Moreover, the top predator consumed the mid-predator 

individual only according to the Lotka-Voltera type of functional response with predation rate 𝑎3 > 0and 

contributes a portion of such food with conversion rate  0 < 𝑒3 < 1. 

 

Finally, in the absence of food the mid and top predators facing death with natural death rate𝑑3 > 0 𝑎𝑛𝑑𝑑4 > 0  

respectively. 

 

Therefore the dynamics of the above proposed model can be represented by the following set of first order nonlinear 

differential equations. 
𝑑𝑋1

𝑑𝑇
= 𝑟𝑋2   1 −

𝑋2

𝑘
 −

𝑎1 (1 − 𝑚)  𝑋1

𝑏 + 𝑋1
𝑌1 − 𝑠𝑋1 − 𝑑1𝑋1 

𝑑𝑋2

𝑑𝑇
= 𝑠𝑋1 − 𝑎2 1 − 𝑚 𝑋2𝑌1 − 𝑑2𝑋2                                                                                                                                     (1) 

𝑑𝑌1

𝑑𝑇
=

𝑒1𝑎1 (1 − 𝑚)  𝑋1

𝑏 + 𝑋1
𝑌1 + 𝑒2𝑎2 1 − 𝑚 𝑋2𝑌1 − 𝑎3𝑌1 𝑌2 − 𝑑2𝑌1 

𝑑𝑌2

𝑑𝑇
= 𝑒3𝑎3𝑌1 𝑌2 − 𝑑4𝑌2 .                                                                                  

 

With initial conditions 𝑋𝑖( 0 )≥ 0 and 𝑌𝑖( 0 )≥ 0 , 𝑖 = 1 , 2 .  

  

Not that the above proposed model has fourteen parameters in all which make the analysis difficult. So in order to 

simplify the system, the number of parameters is reduced by using the following dimensionless variables and 

parameters: 

𝑡 = 𝑟 T  , 𝑢1 =
b

k
  , 𝑢2 =

s

r
  , 𝑢3 =

d1

r
  , 𝑢4 =

a2  k

a1
 , 𝑢5 =

d2

r
 , 𝑎6 =

𝑒1𝑎1

𝑟
 , 𝑢7 =

𝑒2𝑎2𝑘

𝑟
  ,  

𝑢8 =
𝑑3

𝑟
   , 𝑢9 =

𝑒3𝑎3𝑘

𝑟
  , 𝑢10 =

𝑑4

𝑟
  , 𝑥 =

𝑋1

𝑘
  ,   𝑦 =

𝑋2

𝑘
  , 𝑧 =

𝑎1𝑌1

𝑟𝑘
    , 𝑤 =

𝑎3𝑌2

𝑟
  .      

Then the non-dimensional form of system (1) can be written as: 
𝑑𝑥

𝑑𝑡
= 𝑥  

𝑦 1 − 𝑦 

𝑥
−

 1 − 𝑚 𝑧

𝑢1 + 𝑥
− (𝑢2 +  𝑢3) =  𝑓1 𝑥, 𝑦 , 𝑧, 𝑤  

𝑑𝑦

𝑑𝑡
= 𝑦  

𝑢2𝑥

𝑦
− 𝑢4 1 − 𝑚 𝑧 − 𝑢5 = 𝑓2 𝑥, 𝑦 , 𝑧, 𝑤                                                                                                         (  2  ) 

𝑑𝑧

𝑑𝑡
= 𝑧  

𝑢6  1 − 𝑚 𝑥

𝑢1 + 𝑥
+ 𝑢7 1 − 𝑚 𝑦 − 𝑤 − 𝑢8 =  𝑓3 𝑥, 𝑦 , 𝑧, 𝑤  

𝑑𝑤

𝑑𝑡
= 𝑤 𝑢9𝑧 − 𝑢10 =  𝑓4 𝑥, 𝑦 , 𝑧,𝑤 . 

With𝑥  0  ≥ 0 , 𝑦  0  ≥ 0 , 𝑧  0  ≥ 0  𝑎𝑛𝑑𝑤  0  ≥ 0 . 
It is observed that the number of parameters have been reduced from fourteen in the system  1  to eleven in the 

system  2  . 
Obviously the interaction functions of the system   2    are continuous and have continuous partial derivatives on the 

following positive four dimensional space.                                                                                                             

𝑅+
4 ={ 𝑥, 𝑦 , 𝑧, 𝑤 ∈ 𝑅4 ∶ 𝑥  0  ≥ 0, 𝑦  0  ≥ 0 , 𝑧  0  ≥ 0 ,𝑤 0 ≥ 0 }. 
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Therefore these functions are Lipschitzian on  𝑅+
4  , and hence the solution of the system  2  exists and is unique. 

Further, all the solutions of system  2   with non-negative initial conditions are uniformly bounded as shown in the 

following theorem.   

Theorem  𝟏 :All the solutions of system   2   which initiate in 𝑅+
4  are uniformly bounded. 

Proof:Let  𝑥 𝑡  , 𝑦 𝑡  , 𝑧 𝑡  , 𝑤 𝑡   be any solution of the system   2   with non-negative initial condition  

 𝑥0 , 𝑦0  , 𝑧0 , 𝑤0 ∈ 𝑅+
4  . 

According to the first equation of system   2   we have 

𝑑𝑥

𝑑𝑡
= 𝑦 1 − 𝑦 −

 1 − 𝑚 𝑥𝑧

𝑢1 + 𝑥
− (𝑢2 +  𝑢3)𝑥  . 

So,
𝑑𝑥

𝑑𝑡
≤

1

4
− (𝑢2 +  𝑢3)𝑥 . 

Now, by using the comparison theorem on the above differential inequality with the initialpoint𝑥 0 = 𝑥0, weget: 

𝑥 𝑡 ≤
1

 4(𝑢2+ 𝑢3) 
+  𝑥0 −

1

 4 (𝑢2+ 𝑢3) 
 𝑒−(𝑢2+ 𝑢3)𝑡 . 

Thus,    lim𝑡→∞𝑥 𝑡 ≤
1

4  𝑢2+ 𝑢3 
, and hence 𝑠𝑢𝑝𝑥 𝑡 ≤

1

4  𝑢2+ 𝑢3 
 ,    ∀𝑡 > 0. 

Now define the function∶    𝑁 𝑡 = 𝑥 𝑡 + 𝑦 𝑡 + 𝑧 𝑡 + 𝑤 𝑡 ,  and then taken the time derivative of 𝑁 𝑡  along 

the solution of the 
𝑑𝑁

𝑑𝑡
= 𝑦 − 𝑦2 −  1 − 𝑢6 

 1 − 𝑚 𝑥𝑧

𝑢1 + 𝑥
−  𝑢4 − 𝑢7 𝑦𝑧 −  1 − 𝑢9 𝑧𝑤 − 𝑢3𝑥 − 𝑢5𝑦 − 𝑢8𝑧 − 𝑢10𝑤. 

So, due to the fact that the conversion rate constant from prey population to predator population cannot exceeding 

the maximum predation rate constant from predator population to prey population, hence from the biological point 

of view, always  𝑢6 < 1 ,𝑢9 < 1 and  𝑢7 < 𝑢4 , we get, 
𝑑𝑁

𝑑𝑡
≤ 𝑦 − 𝑠𝑁 , where     s = min 𝑢3, 𝑢5, 𝑢8, 𝑢10 , and hence,

𝑑𝑁

𝑑𝑡
≤

𝑢2

4 𝑎5 𝑢2 +  𝑢3 
− 𝑠𝑁 .   

Then,
𝑑𝑁

𝑑𝑡
+ 𝑠𝑁 ≤ 𝐺  ,               𝑤𝑕𝑒𝑟𝑒𝐺 =

𝑢2

4 𝑎5(𝑢2 +  𝑢3)
  .            

Again by solving this differential inequality for the initial value 𝑁 0 = 𝑁0 ,we get: 

𝑁 𝑡 ≤
𝐺

𝑠
+  𝑁0 −

𝐺

𝑠
 𝑒−𝑠𝑡 .   Then ,   lim

𝑡→∞
𝑁 𝑡 ≤

𝐺

𝑠
   .  So , 0 ≤ 𝑁 𝑡 ≤

𝐺

𝑠
, ∀𝑡 > 0, 

hence all the solutions of system   2   are uniformly bounded andthe proof is complet. 
 

The existence of equilibrium points:- 

In this section, the existence of all possible equilibrium points of system   2  is discussed. It is observed that, system 
  2   has at most four equilibrium points, which are mentioned in the following: 

⦿The equilibrium point 𝐸0 =   0 ,0 ,0 ,0  , which known as vanishing point is always exists. 

⦿The free predators' equilibrium point𝐸1 =  𝑥  , 𝑦  ,0 ,0  t, where: 

𝑦 = 1 − 𝑢5  
𝑢2+𝑢3

𝑢2
   ,    𝑎𝑛𝑑𝑥 =  

𝑢5

𝑢2
 ( 1 − 𝑢5  

𝑢2+𝑢3

𝑢2
  , exists uniquely in 𝐼𝑛𝑡. 𝑅+

2  (Interior of 𝑅+
2 ) of 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 if 

the necessary condition holds: 

𝑢5 <
𝑢2

𝑢2 + 𝑢3
 .                                                                                                                                                                ( 3 ) 

⦿The free top predator' equilibrium point𝐸2 =  𝑥 , 𝑦 , 𝑧  ,0  , where: 

𝑧 =
𝑢2𝑥 − 𝑢5𝑦

𝑢4 1 − 𝑚 𝑦
 .                                                                                                                                                        4 𝑎  

And,  

𝑦 =
𝑢8 𝑢1 + 𝑥 − 𝑢6  1 − 𝑚 𝑥

𝑢7 1 − 𝑚  𝑢1 + 𝑥 
.                                                                                                                               4 𝑏  

While,𝑥   is a positive root of the following fourth order polynomial: 

𝑓 𝑥 = 𝛾1𝑥
4  +  𝛾2𝑥

3 +  𝛾3𝑥
2 +  𝛾4𝑥 + 𝛾5 = 0 ,                                                                                                 4 𝑐  

where: 
𝛾1 = 𝑢7

2 1 − 𝑚 3 𝑢4 𝑢2 + 𝑢3 (𝑢6 1 − 𝑚 −𝑢8) − 𝑢2𝑢7 1 − 𝑚   
𝛾2 = −𝑢4 1 − 𝑚  𝑢6 1 − 𝑚 −𝑢8 [𝑢7 1 − 𝑚 +  𝑢6 1 − 𝑚 −𝑢8 

2] 

−𝑢7
2 1 − 𝑚 3 𝑢5 𝑢6 1 − 𝑚 −𝑢8 + 𝑢1𝑢4𝑢8 𝑢2 + 𝑢3  − 2𝑢1𝑢7

2 1 − 𝑚 3 𝑢2𝑢7 1 − 𝑚 − 𝑢4 𝑢6 1 − 𝑚 −𝑢8  . 
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𝛾3 = 𝑢1𝑢4𝑢8 1 − 𝑚  𝑢6 1 − 𝑚 −𝑢8 [3 𝑢6 1 − 𝑚 −𝑢8 − 2𝑢7 1 − 𝑚 ]  +  𝑢1𝑢4𝑢7 1 −𝑚 2 𝑢6 −𝑚 −𝑢8 
2 

−𝑢1
2𝑢4𝑢7

2 𝑢2 + 𝑢3  1 − 𝑚 3 3𝑢8−𝑢6 1 − 𝑚  + 𝑢1𝑢7
2 1 − 𝑚 3 𝑢5𝑢8 − 𝑢1𝑢2𝑢7 1 − 𝑚   

−𝑢1𝑢5𝑢7
2 1 − 𝑚 3 𝑢6 1 − 𝑚 −𝑢8 . 

𝛾4 = 𝑢1
2𝑢7𝑢8 1 − 𝑚 2 𝑢4𝑢8 + 𝑢5𝑢7 1 − 𝑚  − 𝑢1

2𝑢4𝑢8 1 − 𝑚  𝑢6 1 − 𝑚 −𝑢8  3𝑢8+2𝑢7 1 − 𝑚   
−𝑢1

3𝑢7
2𝑢4𝑢8 1 − 𝑚 3 𝑢2 + 𝑢3 . 

𝛾5 = 𝑢1
3𝑢4𝑢7𝑢8

2 1 − 𝑚 2 + 𝑢1
3𝑢4𝑢8

3 1 − 𝑚 > 0 .  
Clearly, by using Descartes' rule of sign Eq.  4 𝑐 hasa unique positive root, denoted by𝑥 , if 

𝛾𝑖 < 0 ,    𝑖 = 1,2,3   𝑎𝑛𝑑 𝛾4 < 0  𝑜𝑟𝛾4 > 0  . 
Therefore, the free top predator' equilibrium point 𝐸2 =  𝑥 , 𝑦 , 𝑧  ,0   exists uniquely in the interior 𝑅+

3  of𝑥𝑦𝑧 − 𝑠𝑝𝑎𝑐𝑒 

if the following conditions hold: 

𝑢6  1 − 𝑚 

3
< 𝑢8 < 𝑢6 1 − 𝑚 .                                                                                                                                    ( 4 𝑑 ) 

𝑢2 > max  
𝑢5 𝑦 

𝑥 
 ,

𝑢5 𝑢8 

𝑢1 𝑢7  1 − 𝑚 
 .                                                                                                                                    4 𝑒  

 𝑢6 1 − 𝑚 −𝑢8 < min⁡⁡{
𝑢1 𝑢8 

𝑥 
 ,

 2𝑢7  1 − 𝑚 

3
,
𝑢2𝑢7  1 − 𝑚 

𝑢4 
,
𝑢2𝑢7  1 − 𝑚 

𝑢4  𝑢2 + 𝑢3 
,  

𝑢1𝑢7  𝑢2 + 𝑢3  1 − 𝑚 (3𝑢8 − 𝑢6  1 − 𝑚 )}.   4 𝑓  

 

⦿Finally, the positive (coexistence) equilibrium point 𝐸3 𝑥
∗, 𝑦∗, 𝑧∗ , 𝑤∗ , where: 

𝑧∗ =
𝑢10

𝑢9
 .                                                                                                                                                                            ( 5 𝑎 ) 

𝑤∗ =
𝑢6  1 − 𝑚 𝑥+ 𝑢7 1 − 𝑚  𝑢1 + 𝑥 𝑦 − 𝑢8 𝑢1 + 𝑥 

𝑢1 + 𝑥
.                                                                                      5 𝑏  

𝑥∗ =
(𝑢4 𝑢10  1 − 𝑚 + 𝑢5𝑢9)𝑦

𝑢2𝑢9
 .                                                                                                                                   ( 5 𝑐 ) 

While,  𝑦∗ is a positive root of the following polynomial:  

𝑓 𝑦 =  𝑦(𝛿1𝑦
2 +  𝛿2𝑦 +  𝛿3) = 0 ,                                                                                                                         5 𝑑  

where: 
𝛿1 = −𝑢2𝑢9(𝑢4 𝑢10  1 − 𝑚 + 𝑢5𝑢9) <  0 .      
𝛿2 = 𝑢2𝑢9(𝑢4 𝑢10  1 − 𝑚 + 𝑢5𝑢9) − 𝑢1𝑢2

2𝑢9
2 −  𝑢2 + 𝑢3  𝑢4  1 − 𝑚 + 𝑢5𝑢9 

2. 

𝛿3 = 𝑢2[𝑢1𝑢2𝑢9
2−(𝑢4 𝑢10  1 − 𝑚 + 𝑢5𝑢9)(𝑢10  1 − 𝑚 + 𝑢9 𝑢2 + 𝑢3 )].    

Straightforward computation shows that the quadratic eq.  5 𝑑 , has a unique positive root, denoted by 𝑦∗, if and 

only if the following condition holds:  

𝑢1 >
(𝑢4 𝑢10  1 − 𝑚 + 𝑢5𝑢9)(𝑢10  1 − 𝑚 + 𝑢9 𝑢2 + 𝑢3 )

𝑢2𝑢9
2 .                                                                                ( 5  𝑒) 

Therefore, the positive (coexistence) equilibrium point𝐸3 𝑥
∗, 𝑦∗, 𝑧∗ , 𝑤∗ exists uniquely in the interior 𝑅+

4 if in 

addition to the condition (5 e) the following condition holds: 

𝑦∗ >
𝑢8 

𝑢7  1 − 𝑚 
.                                                                                                                                                              ( 5  𝑔)  

 

The local stability analysis of system 𝟐  
In this section, the local stability analysis of system  2  around each of the above equilibrium points is discussed 

through computing the Jacobian matrix𝐽 𝑥, 𝑦 , 𝑧, 𝑤 of system  2  at each of them which is given by: 

𝐽 =  𝑎𝑖𝑗  4×4
     ,     𝑤𝑕𝑒𝑟𝑒                                                                                                                                            ( 6 ) 

𝑎11 = −
𝑢1 1 − 𝑚 𝑧

 𝑢1 + 𝑥 2
−  𝑢2 +  𝑢3 ,     𝑎12 = 1 − 2 𝑦 ,     𝑎13 = −

 1 − 𝑚 𝑥

𝑢1 + 𝑥
, 𝑎14 = 0 ,      𝑎21 = 𝑢2,   

 

𝑎22 = −𝑢4 1 − 𝑚 𝑧 − 𝑢5, 𝑎23 − 𝑢4 1 − 𝑚 𝑦, 𝑎24 = 0 ,     𝑎31 =
𝑢1𝑢6 1 − 𝑚 𝑧

 𝑢1 + 𝑥 2
  ,      𝑎32 = 𝑢7 1 − 𝑚 𝑧 , 

 

𝑎33 =
𝑢6 1−𝑚 𝑥

𝑢1+𝑥
+ 𝑢7 1 − 𝑚 𝑦 − 𝑢8 − 𝑤 , 𝑎34 = −𝑧,   𝑎41 = 0,    𝑎42 = 0 , 𝑎43 = 𝑢9𝑤 , 𝑎44 = 𝑢9𝑧 − 𝑢10. 
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The local stability analysis at  𝑬𝟎 ∶ 
The Jacobian matrix of system  2  at𝐸0can be written as: 

𝐽0 = 𝐽 𝐸0 =  

−(𝑢2 + 𝑢3) 1     0 0
𝑢2

0
−𝑢5 0

 0 −𝑢8

0
0

0 0         0 −𝑎10

                                                                                          ( 7 𝑎 ) 

Then the characteristic equation of 𝐽(𝐸0) is given by: 

 𝜆2 + 𝐴𝜆 + 𝐵  −𝑢8 − 𝜆  −𝑢10 − 𝜆 = 0 ,                                                                                                              7 𝑏  
where: 
𝐴 = 𝑢2 + 𝑢3 + 𝑢5              ,      𝐵 = 𝑢5 𝑢2 + 𝑢3 − 𝑢2,. 
𝑠𝑜, 𝑒𝑖𝑡𝑕𝑒𝑟        

 −𝑢8 − 𝜆  −𝑢10 − 𝜆 = 0  ,   7 𝑐  
this gives two eigenvalues of  𝐽0  by: 𝜆0𝑧 = −𝑎3 < 0 , and   𝜆0𝑤 = −𝑎8 < 0. 

Or 

𝜆2 + 𝐴𝜆 + 𝐵 = 0 ,                                                                                                                                                              7 𝑑  
where: 
𝑡𝑟 𝐴 = 𝜆0𝑥 + 𝜆0𝑦 = − 𝑢2 + 𝑢3 + 𝑢5 < 0    , and           𝑑𝑒𝑡 𝐴 = 𝜆0𝑥  .  𝜆0𝑦 =  𝑢5 𝑢2 + 𝑢3 −

𝑢2,                    which gives the other two eigenvalues of  𝐽0 with negative real parts provided that the following 

condition holds: 

𝑢5 >
𝑢2

 𝑢2 + 𝑢3 
  .                                                                                                                                                              ( 7 𝑒 ) 

Then 𝐸0 is locally asymptotically stable in the𝑅+
4  . However, it is a saddle point otherwise. 

 

The local stability analysis at 𝑬𝟏 

The Jacobian matrix of system   2   at 𝐸1 can be written as: 

𝐽1 = 𝐽 𝐸1 ==  𝑏𝑖𝑗  4×4
 ,                                                                                                                        8 𝑎  

where: 

𝑏11 = − 𝑢2 +  𝑢3 ,    𝑏12 = 1 − 2 𝑦  ,   𝑏13 = −
 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
 , 𝑏14 = 0 , 𝑏21 = 𝑢2,  𝑏22 = −𝑢5,    

𝑏23 − 𝑢4 1 − 𝑚 𝑦 ,, 𝑏24 = 0 , 𝑏31 = 0  , 𝑏32 = 0, 𝑏33 =
𝑢6 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
+ 𝑢7 1 − 𝑚 𝑦 − 𝑢8,  

𝑏34 = 0,    𝑏41 = 0, 𝑏42 = 0  ,   𝑏43 = 0,   𝑏44 = −𝑢10. 

Then the characteristic equation of 𝐽1is given by: 

 𝜆2 + 𝐴 𝜆 + 𝐵   𝑏33 − 𝜆  −𝑢10 − 𝜆 = 0 ,  8 𝑏  
where: 
𝐴 − 𝑡𝑟(𝐴) = 𝑢2 + 𝑢3 + 𝑢5,  

𝐵 = 𝑑𝑒𝑡 𝐴 = 𝑢5 𝑢2 + 𝑢3 − 𝑢2 + 𝑢2𝑦 , 

𝑠𝑜, 𝑒𝑖𝑡𝑕𝑒𝑟         
 𝑏33 − 𝜆  −𝑢10 − 𝜆 = 0,                                                                                                                                              8 𝑐  

which gives two eigenvalues of   𝐽1   by: 

𝜆1𝑧 =  
𝑢6 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
+ 𝑢7 1 − 𝑚 𝑦 − 𝑢8, and  𝜆1𝑤 = −𝑢10 < 0    

Or       𝜆2 + 𝐴 𝜆 + 𝐵 = 0,                                                                                                                                                            8 𝑑  
where:        𝑡𝑟 𝐴 = 𝜆0𝑥 + 𝜆0𝑦 = − 𝑢2 + 𝑢3 + 𝑢5 < 0    , and    𝑑𝑒𝑡 𝐴 = 𝜆0𝑥  .  𝜆0𝑦 =  𝑢5 𝑢2 + 𝑢3 − 𝑢2 + 𝑢2𝑦 , 

which gives the other two eigenvalues of  𝐽1 with negative real parts due to the condition( 3 ). 

Then, 𝐸1is locally asymptotically stable in 𝑅+
4 if in addition to the condition (8 e), the following condition holds: 

𝑢8 >
𝑢6 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
+ 𝑢7 1 − 𝑚 𝑦  .                                                                                                                           ( 8 𝑒 ) 

However, it is a saddle point otherwise. 

 

The local stability analysis at   𝑬𝟐 

The Jacobian matrix of system   2   at 𝐸2 can be written as: 
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𝐽2 =   𝐽 𝐸2 =  𝑐𝑖𝑗  4×4
  ,                                                                                                                                       9 𝑎   

where: 

𝑐11 = −
𝑢1 1 − 𝑚 𝑧 

 𝑢1 + 𝑥  2
−  𝑢2 +  𝑢3 < 0 ,       𝑐12 = 1 − 2 𝑦  ,       𝑐13 = −

 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
< 0 ,      𝑐14 = 0 ,    𝑎21 = 𝑢2 > 0 , 

 𝑐22 =
−𝑢2𝑥 

𝑦 
< 0, 𝑐23 − 𝑢4 1 − 𝑚 𝑦 < 0 , 𝑐24 = 0 ,      𝑐31 =

𝑢1𝑢6 1 − 𝑚 𝑧 

 𝑢1 + 𝑥  2
> 0  ,         𝑐32 = 𝑢7 1 − 𝑚 𝑧 > 0 , 

𝑐33 =
𝑢6 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
+ 𝑢7 1 − 𝑚 𝑦 − 𝑢8,      𝑐34 = −𝑧 < 0,       𝑐41 = 0,      𝑐42 = 0 ,      𝑐43 = 0 ,       𝑐44 = 𝑢9𝑧 −  𝑢10 . 

Then the characteristic equation of  𝐽2 is given by: 

 𝜆3 +  𝐴1𝜆
2 + 𝐴2 𝜆 + 𝐴3  𝑢9𝑧 −  𝑢10 − 𝜆  = 0 ,                                                                                                    9 𝑏   

where: 
𝐴1 =  −( 𝑐11 + 𝑐22) > 0         
𝐴2 = 𝑐11𝑐22 − 𝑐12𝑐21 − 𝑐13𝑐31 − 𝑐23𝑐32 

𝐴3 = 𝑐32(𝑐11𝑐23 − 𝑐13𝑐21) + 𝑐22𝑐13𝑐31 − 𝑐12𝑐23𝑐31 ,                              

𝑠𝑜, 𝑒𝑖𝑡𝑕𝑒𝑟        
𝑢9𝑧 − 𝑢10 − 𝜆 = 0.                                                                                                                                                           9 𝑐   

Or𝜆3 +  𝐴1𝜆
2 + 𝐴2 𝜆 + 𝐴3 = 0.                                                                                                                                                9 𝑑   

Hence from equation   9 𝑐   we obtain that: 

𝜆2𝑤 = 𝑢9𝑧 −  𝑢10 , which is negative if the following condition holds: 

𝑧 <
𝑢10

𝑢9

  9 𝑒   

Since𝐴1 > 0, then by using Routh-Hawirtiz criterion equation   9 𝑑   has roots (eigenvalues) with negative real 

parts if and only if  

𝐴3 > 0   𝑎𝑛𝑑   ∆ = 𝐴1𝐴2 − 𝐴3 > 0.  

Straightforward computation shows that:  

      ∆= − 𝑐11 + 𝑐22 𝑐11𝑐22 + 𝑐11 𝑐12𝑐21 + 𝑐13𝑐31 + 𝑐22𝑐23𝑐32 + 𝑐12𝑐23𝑐31 + 𝑐21 𝑐22𝑐12 + 𝑐13𝑐32 .   
Now, according to the form of 𝐴3 and signs of the Jacobian elements all terms of 𝐴3 will be positive under the 

following conditions: 

𝑦 >
1

2
                                                                                                                                                                                  ( 9 𝑓 ) 

𝑢7 >
𝑢1𝑢6 2𝑦 − 1 

𝑢1 1 − 𝑚 𝑧 + (𝑢2 + 𝑢3)(𝑢1 + 𝑥 )2
.                                                                                                                  ( 9 𝑔 ) 

However ∆ becomes positive, since the first four terms of ∆ are positive, while the last one will be positive if and 

only if in addition to the condition ( 9 𝑓 ) the following condition holds:    

𝑢7 <
𝑢2 2𝑦 − 1 (𝑢1 + 𝑥 )

 1 − 𝑚 2𝑦 𝑧 
.                                                                                                                                              ( 9 𝑕) 

Therefore, all the eigenvalues of 𝐽2 have negative real parts under the given conditions and hence 𝐸2 is locally 

asymptotically stable. However, it is unstable otherwise.  

 

The local stability analysis at  𝑬𝟑 

The Jacobian matrix of system  2  at 𝐸3 can be written as: 

𝐽3 =  𝑑𝑖𝑗  4×4
    ,                                                                                                                                            10 𝑎   

𝑤𝑕𝑒𝑟𝑒: 

𝑑11 = −
𝑢1 1 − 𝑚 𝑧∗

 𝑢1 + 𝑥∗ 2
−  𝑢2 +  𝑢3 < 0 ,     𝑑12 = 1 − 2 𝑦∗ ,     𝑑13 = −

 1 − 𝑚 𝑥∗

𝑢1 + 𝑥∗
< 0 ,   𝑑14 = 0 ,   𝑑21 = 𝑢2 > 0, 

𝑑22 =
−𝑢2𝑥

∗

𝑦 
< 0,    𝑑23 − 𝑢4 1 − 𝑚 𝑦∗ < 0,    𝑑24 = 0 ,    𝑑31 =

𝑢1𝑢6 1 − 𝑚 𝑧∗

 𝑢1 + 𝑥∗ 2
> 0  ,    𝑑32 = 𝑢7 1 − 𝑚 𝑧∗ > 0 , 

𝑑33 =
𝑢6 1 − 𝑚 𝑥∗

𝑢1 + 𝑥∗
+ 𝑢7 1 − 𝑚 𝑦∗ − 𝑢8 − 𝑤∗, 𝑑34 = −𝑧∗ < 0,      𝑑41 = 0,      𝑑42 = 0 ,   𝑑43 = 𝑢9𝑤

∗ > 0 , 

𝑑44 = 𝑢9𝑧
∗ − 𝑢10 . 

 

Then the characteristic equation of  𝐽3 is given by: 

 𝜆4 + 𝐵1𝜆
3 + 𝐵2𝜆

2 + 𝐵3 𝜆 + 𝐵4 = 0,                                                                                                                        10 𝑏   
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where: 
  𝐵1 = −𝛼0 >  0. 
  𝐵2 = 𝛼1 − 𝛼2 − 𝛼3 − 𝛼4 − 𝛼5. 

  𝐵3 =  𝛼0𝛼5 − 𝛼6 + 𝑑11𝛼4 + 𝑑22𝛼3 − 𝛼7 . 
  𝐵4 = 𝛼5 𝛼2 − 𝛼1 > 0,    with, 

  𝛼0 =  𝑑11 + 𝑑22 < 0   , 𝛼1 = 𝑑11𝑑22 > 0 , 𝛼2 = 𝑑12𝑑21  , 
  𝛼3 = 𝑑13𝑑31 < 0,    𝛼4 = 𝑑23𝑑32 < 0,   𝛼5 = 𝑑34𝑑43 < 0 , 
  𝛼6 = 𝑑12𝑑23𝑑31 ,         𝛼7 = 𝑑13𝑑21𝑑32 < 0. 
Now by using Routh-Hawirtiz criterion equation   10 𝑏   has roots (eigenvalues) with negative real parts if and only 

if𝐵𝑖 > 0, 𝑖 = 1,3,4   𝑎𝑛𝑑   ∆ =  𝐵1𝐵2 − 𝐵3 𝐵3 − 𝐵1
2𝐵4 > 0. 

. 

Clearly 𝐵1 > 0 and 𝐵4 > 0 provided that: 

𝑦∗ >
1

2
                                                                                                                                                                               (10 𝑐 ) 

Straightforward computation shows that:  

∆=  ∝0  ∝2−∝1 +  𝑑11 ∝3+ ∝7 + 𝑑22 ∝4+ ∝6   ∝0∝5− ∝6 +  𝑑11 ∝4− ∝6 + 𝑑22 ∝3− ∝7 . 
 

Now, according to the form of 𝐵3 and signs of the Jacobian elements the last three terms of 𝐵3 are positive, while 

the first one will be positive in addition to the condition ( 10 𝑐 ) the following condition holds:    

𝑤∗ >
𝑢1𝑢4𝑢6 1 − 𝑚 2 2𝑦∗ − 1 𝑦∗2

𝑢9[𝑢1 1 − 𝑚 𝑦∗𝑧∗ + [ 𝑢2 + 𝑢3 𝑦∗ + 𝑢2𝑥∗] 𝑢1 + 𝑥∗ 2]
                                                                            (10 𝑑) 

On the other hand due to the conditions (10 c) and (10 d), all elements of ∆ are positive and the two elements  
 𝑑11 ∝3+ ∝7 , (𝑑11 ∝4− ∝6) will be positive if the following condition holds:    

𝐿1 < 𝑢7 < 𝐿2   ,                                                                                                                                                                  10 𝑒   

where: 

𝐿1 =
𝑢1𝑢6 2𝑦∗ − 1 

𝑢1 1 − 𝑚 𝑧∗ +  𝑢2 + 𝑢3  𝑢1 + 𝑥∗ 2
 ,          𝑎𝑛𝑑       𝐿2 =

𝑢1𝑢6[𝑢1 1 − 𝑚 𝑧∗ +  𝑢2 + 𝑢3  𝑢1 + 𝑥∗ 2]

𝑢2 𝑢1 + 𝑥∗ 4
 . 

Therefore, all the eigenvalues of 𝐽3 have negative real parts under the given conditions and hence 𝐸3 is locally 

asymptotically stable. However, it is unstable otherwise.  

 

The global stability analysis of system  𝟐   
           In this section the global stability analysis for the equilibrium points, which are locally asymptotically stable, 

of system  2  is studied analytically with the help of Lyapunov method as shown in the following theorems.                                                                                                

Theorem   𝟐    : Assume that the vanishing equilibrium point𝐸0 =  0 ,0 ,0 ,0  of system  2  is locally 

asymptotically stable in 𝑅+
4 . Then 𝐸0 is globally asymptotically stable on the region  𝜔0 ⊂ 𝑅+

4  , where𝜔0 =
{(𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑅+

4 ∶ 𝑦 > 1}.  

Proof: Consider the following function: 
𝑉0  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑥 + 𝑦 + 𝑧 + 𝑤, 
Clearly 𝑉0: 𝑅+

4 → 𝑅 is a 𝐶1 positive definite function.  

Now by differentiating  𝑉0 with respect to time t and doing some algebraic manipulation, gives that: 
𝑑𝑉0

𝑑𝑡
= 𝑦 1 − 𝑦 −  1 − 𝑢6 

 1 − 𝑚 𝑥𝑧

𝑢1 + 𝑥
−  𝑢4 − 𝑢7 𝑦𝑧 −  1 − 𝑢9 𝑧𝑤 − 𝑢3𝑥 − 𝑢5𝑦 − 𝑢8𝑧 − 𝑢10𝑤.     

Now, due to the facts that is mentioned in theorem (1), always   𝑢6 < 1, 𝑢9 < 1 and  𝑢7 < 𝑢4 , we get, 
𝑑𝑉0

𝑑𝑡
< 𝑦 1 − 𝑦 − 𝑢3𝑥 − 𝑢5𝑦 − 𝑢8𝑧 − 𝑢10𝑤  . 

Hence  
𝑑𝑉0

𝑑𝑡
< 0 in the region 𝜔0 and then 𝑉0 is strictly Lyapunov function. Thus we obtain that 𝐸0 is a globally 

asymptotically stable in the region𝜔0, and the proof is complete.     

Theorem  𝟑  : Assume that the free predators equilibrium point 𝐸1 =  𝑥  , 𝑦  ,0 ,0  of system  2  is a locally 

asymptotically stable in  𝑅+
4 . Then 𝐸1 is a globally asymptotically stable on the region 𝜔1 ⊂ 𝑅+

4  that satisfies the 

following conditions:    

1

𝑥
−

 𝑦 + 𝑦  

𝑥
+

𝑢2𝑢7

𝑢4𝑢6 𝑦 
≤ 2 

𝑢2𝑢7 𝑦 − 𝑦 2 

𝑢4𝑢6𝑥 𝑦𝑦 
                                                                                                             ( 11 𝑎 ) 

𝑦 2 < 𝑦    11 𝑏   
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𝑥 <  𝑥                                                                                                                                                                              (  11 𝑐 ) 

Proof: Consider the following function 

𝑉1  𝑥 , 𝑦 , 𝑧 , 𝑤  = 𝑐1  𝑥 − 𝑥 − 𝑥 ln
𝑥

𝑥 
 + 𝑐2  𝑦 − 𝑦 − 𝑦 ln

𝑦

𝑦 
 +  𝑐3𝑧 + 𝑐4𝑤,   

where: 𝑐1 , 𝑐2 , 𝑐3 𝑎𝑛𝑑 𝑐4are positive constants to be determined. 

Clearly 𝑉1: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite function. Now by differentiating 𝑉1 with respect to time t and doing 

some algebraic manipulation, gives that: 

𝑑𝑉1

𝑑𝑡
= −𝑐1

 𝑦 − 𝑦 2 

𝑥 𝑥 
 𝑥 − 𝑥  2 − 𝑐2

𝑢2𝑥 

𝑦 𝑦 
 𝑦 − 𝑦  2 +  𝑐1  

1

𝑥
−

 𝑦 + 𝑦  

𝑥
 +

𝑐2𝑢2

𝑦
  𝑥 − 𝑥   𝑦 − 𝑦   

                      − 𝑐1 − 𝑐3𝑢6 
 1 − 𝑚 𝑥 𝑧

𝑢1 + 𝑥
−  𝑐2𝑢4 − 𝑐3𝑢7  1 − 𝑚 𝑦𝑧 +  

𝑐1 1 − 𝑚 𝑥 

𝑢1 + 𝑥
 + 𝑐2𝑢4 1 − 𝑚 𝑦  − 𝑐3𝑢8 𝑧 

                     − 𝑐3 − 𝑐4𝑢9  𝑤 𝑧 − 𝑐4𝑢10𝑤.      

By chosen   𝑐1 =  1  ,     𝑐2 =
𝑢7

𝑢4𝑢6
 ,      𝑐3 =

 1

𝑢6
 ,       𝑐4 =

1

𝑢6𝑢9
   we get:  

𝑑𝑉1

𝑑𝑡
≤ − 

 𝑦 − 𝑦 2 

𝑥 𝑥 
 𝑥 − 𝑥  2 −

𝑢7𝑢2𝑥 

𝑢6𝑢4𝑦 𝑦 
 𝑦 − 𝑦  2          +   

1

𝑥
−

 𝑦 + 𝑦  

𝑥
 +

𝑢7𝑢2

𝑢6𝑢4𝑦
  𝑥 − 𝑥   𝑦 − 𝑦   

                         −  
𝑢8

𝑢6
−

 1 − 𝑚 𝑥 

𝑢1 + 𝑥
 +

𝑢7 1 − 𝑚 𝑦 

𝑢6

  𝑧 −
 𝑢10

𝑢6𝑢9
𝑤. 

 

Now by using the conditions  11 𝑎  ,  11 𝑏   and   11 𝑐   we obtain that: 

𝑑𝑉1

𝑑𝑡
< −  

 𝑦 − 𝑦 2 

𝑥 𝑥 
 𝑥 − 𝑥  −  

𝑢2𝑢7𝑥 

𝑢6𝑢4𝑦 𝑦 
 𝑦 − 𝑦    −  

𝑢8

𝑢6
−

 1 − 𝑚 𝑥 

𝑢1 + 𝑥 
 +

𝑢7 1 − 𝑚 𝑦 

𝑢6

  𝑧 −
 𝑢10

𝑢6𝑢9
𝑤.2 

Clearly, 
𝑑𝑉1

𝑑𝑡
is negative definite on the region 𝜔1  due to the local stability condition  ( 8 𝑒 ) . Hence 𝑉1  is strictly 

Lyapunov function. thus 𝐸1 is a globally asymptotically stable on the region 𝜔1and the proof is complete . 
 

Theorem  𝟒  : Assume that the free top predators' equilibrium point𝐸2 =  𝑥 , 𝑦 , 𝑧  ,0   of system   2   is locally 

asymptotically stable in𝑅+
4 . Then𝐸2 is a globally asymptotically stable on any region  𝜔2 ⊂ 𝑅+

4 that satisfies the 

following conditions: 

𝜇1 ≤ 2 
𝑢1𝑢2𝑢6𝑢7𝑥 

𝑢4(𝑢1 + 𝑥 )  𝑦𝑦 
 𝜇2 − 𝜇3                                                                                                                              ( 12 𝑎 ) 

𝑦 2 < 𝑦    12 𝑏   

𝜇3 < 𝜇2  ,                                                                                                                                                                            12 𝑐   

where: 

       𝜇1 =  
𝑢1𝑢6

𝑢1 + 𝑥 
 

1

𝑥
−

 𝑦 + 𝑦  

𝑥
 +

𝑢2𝑢7

𝑢4𝑦
, 𝜇2 =

 𝑦 − 𝑦 2 

𝑥 𝑥 
 ,       𝜇3 =

 1 − 𝑚 𝑧 

(𝑢1 + 𝑥 )(𝑢1 + 𝑥)
  .     

Proof: Consider the following function: 

      𝑉2  𝑥, 𝑦, 𝑧, 𝑤  = 𝑐1  𝑥 − 𝑥  − 𝑥 𝑙𝑛
𝑥

𝑥 
 +  𝑐2  𝑦 − 𝑦  − 𝑦 𝑙𝑛

𝑦

𝑦 
 + 𝑐3  𝑧 − 𝑧  − 𝑧 𝑙𝑛

𝑧

𝑧 
 + 𝑐4𝑤 , 

where:   𝑐1 , 𝑐2 , 𝑐3 𝑎𝑛𝑑 𝑐4are positive constants to be determined.   

Clearly 𝑉2: 𝑅+
4 → 𝑅 is a 𝐶1 positive definite function. Now by differentiating 𝑉2 with respect to time t and doing 

some algebraic manipulation, gives that:  

𝑑𝑉2

𝑑𝑡
= −𝑐1  

 𝑦 − 𝑦 2 

𝑥 𝑥 
−

 1 − 𝑚 𝑧 

(𝑢1 + 𝑥 )(𝑢1 + 𝑥)
  𝑥 − 𝑥  2 −  𝑐1 −

𝑐3𝑢1𝑢6

𝑢1 + 𝑥 
 
 1 − 𝑚 

(𝑢1 + 𝑥)
(𝑥 − 𝑥 )(𝑧 − 𝑧 ) 

                   +  𝑐1  
1

𝑥
−

 𝑦 + 𝑦  

𝑥
 +

𝑐2𝑢2

𝑦
  𝑥 − 𝑥   𝑦 − 𝑦  − 𝑐2

𝑢2𝑥 

𝑦 𝑦 
 𝑦 − 𝑦  2 

                   − 𝑐2𝑢4 − 𝑐3𝑢7  1 − 𝑚 (𝑦 − 𝑦 )(𝑧 − 𝑧 −  𝑐3 − 𝑐4𝑢9  𝑤 𝑧 −  𝑐4𝑢10 − 𝑐3𝑧  𝑤. 
 

By chosen   𝑐1 =
𝑢1𝑢6

𝑢1 + 𝑥 
  ,     𝑐2 =

𝑢7

𝑢4
 ,      𝑐3 = 1,       𝑐4 =

1

𝑢9
   we get:  
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𝑑𝑉2

𝑑𝑡
≤ −

𝑢1𝑢6

𝑢1 + 𝑥 
 
 𝑦 − 𝑦 2 

𝑥 𝑥 
−

 1 − 𝑚 𝑧 

(𝑢1 + 𝑥 )(𝑢1 + 𝑥)
  𝑥 − 𝑥  2 −

𝑢2𝑢7𝑥 

𝑢4𝑦 𝑦 
 𝑦 − 𝑦  2 

                   +  
𝑢1𝑢6

𝑢1 + 𝑥 
 

1

𝑥
−

 𝑦 + 𝑦  

𝑥
 +

𝑢2𝑢7

𝑢4𝑦
  𝑥 − 𝑥   𝑦 − 𝑦  −  𝑢10 − 𝑢9𝑧  𝑤. 

Now by using the conditions  12 𝑎   and  12 𝑏   we obtain that:    

𝑑𝑉2

𝑑𝑡
< −

𝑢1𝑢6

𝑢1 + 𝑥 
  

 𝑦 − 𝑦 2 

𝑥 𝑥 
− 

 1 − 𝑚 𝑧 

(𝑢1 + 𝑥 )(𝑢1 + 𝑥)
 𝑥 − 𝑥  −  

𝑢2𝑢7𝑥 

𝑢4𝑦 𝑦 
 𝑦 − 𝑦   

2

−  𝑢10 − 𝑢9𝑧  𝑤. 

Clearly, 
𝑑𝑉2

𝑑𝑡
is negative definite on the region 𝜔2 due to the conditions  12 𝑐   and the local stability condition  9 𝑒  . 

Hence 𝑉2 is strictly Lyapunov function. thus 𝐸2 is a globally asymptotically stable on the region 𝜔2and the proof is 

complete . 
 

Theorem  𝟓  : Assume that the positive (coexistence) equilibrium point 𝐸3 𝑥
∗, 𝑦∗, 𝑧∗ , 𝑤∗  of system   2   is locally 

asymptotically stable in the𝑅+
4 . Then𝐸3 is a globally asymptotically stable on any region 𝜔3 ⊂ 𝑅+

4 that satisfies the 

following conditions: 

𝑢1𝑢6

𝑢1 + 𝑥∗
 

1

𝑥
−

 𝑦 + 𝑦∗ 

𝑥
 +

𝑢2𝑢7

𝑢4𝑦
≤ 2 

𝑢1𝑢2𝑢6𝑢7𝑥∗ 𝛽1−𝛽2 

𝑢4(𝑢1 + 𝑥∗)  𝑦𝑦∗
                                                                             ( 13 𝑎 ) 

𝑦∗2 < 𝑦∗  13 𝑏   

 𝑧 <
𝑢10

𝑢9

  13 𝑐   

𝑤∗ < 𝑤                                                                                                                                            ( 13 𝑑 ) 

𝛽2 < 𝛽1  ,        13 𝑒   

where: 

𝛽1 =
 𝑦∗ − 𝑦∗2 

𝑥 𝑥∗
 ,    𝛽1 =

 1 − 𝑚 𝑧∗

(𝑢1 + 𝑥∗)(𝑢1 + 𝑥)
. 

Proof: Consider the following function: 

𝑉3  𝑥, 𝑦, 𝑧,𝑤  = 𝑐1  𝑥 − 𝑥∗  − 𝑥∗ 𝑙𝑛
𝑥

𝑥∗
 + 𝑐2  𝑦 − 𝑦∗  − 𝑦∗ 𝑙𝑛

𝑦

𝑦∗
  + 𝑐3  𝑧 − 𝑧∗  − 𝑧∗ 𝑙𝑛

𝑧

𝑧∗
 

+ 𝑐4  𝑤 − 𝑤∗  − 𝑤∗ 𝑙𝑛
𝑤

𝑤∗
 , 

where: 𝑐1 , 𝑐2 , 𝑐3 𝑎𝑛𝑑 𝑐4 are positive constants to be determined. 

Clearly 𝑉3: 𝑅+
4 → 𝑅 is a 𝐶1positive definite function. Now differentiating by 𝑉3with respect to time t and doing some 

algebraic manipulation, gives that: 

𝑑𝑉3

𝑑𝑡
= −𝑐1  

 𝑦∗ − 𝑦∗2 

𝑥 𝑥∗
−

 1 − 𝑚 𝑧∗

(𝑢1 + 𝑥∗)(𝑢1 + 𝑥)
  𝑥 − 𝑥∗ 2  −

𝑐2𝑢2𝑥
∗

𝑦 𝑦∗
 𝑦 − 𝑦∗ 2 

                    +  𝑐1  
1

𝑥
−

 𝑦 + 𝑦∗ 

𝑥
 +

𝑐2𝑢2

𝑦
  𝑥 − 𝑥∗  𝑦 − 𝑦∗ −  𝑐1 −

𝑐3𝑢1𝑢6

𝑢1 + 𝑥∗
 
 1 − 𝑚 

(𝑢1 + 𝑥)
 𝑥 − 𝑥∗  𝑧 − 𝑧∗  

                    − 𝑐2𝑢4 − 𝑐3𝑢7  1 − 𝑚  𝑦 − 𝑦∗  𝑧 − 𝑧∗ −  𝑐3 − 𝑐4𝑢9  𝑧 − 𝑧∗  𝑤 − 𝑤∗ . 

By choosing 𝑐1 =
𝑢1𝑢6

𝑢1 + 𝑥∗
  ,   𝑐2 =   

𝑢7

𝑢4
,     𝑐3 = 𝑐4 = 1, we get: 

 

𝑑𝑉3

𝑑𝑡
≤ −

𝑢1𝑢6

𝑢1 + 𝑥∗
 
 𝑦∗ − 𝑦∗2 

𝑥 𝑥∗
−

 1 − 𝑚 𝑧∗

(𝑢1 + 𝑥∗)(𝑢1 + 𝑥)
  𝑥 − 𝑥∗ 2 

                     +  
𝑢1𝑢6

𝑢1 + 𝑥∗
 

1

𝑥
−

 𝑦 + 𝑦∗ 

𝑥
 +

𝑢2𝑢7

𝑢4𝑦
  𝑥 − 𝑥∗  𝑦 − 𝑦∗  

                    −
𝑢2𝑢7𝑥

∗

𝑢4𝑦 𝑦∗
 𝑦 − 𝑦∗ 2 −  1 − 𝑢9 (𝑧 − 𝑧∗) 𝑤 − 𝑤∗  

Now by using the conditions   13 𝑎   and  13 𝑏   we obtain that: 
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𝑑𝑉3

𝑑𝑡
< −  

𝑢1𝑢6

𝑢1 + 𝑥∗
(𝛽1 − 𝛽2)  𝑥 − 𝑥∗ −  

𝑢2𝑢7𝑥∗

𝑢4𝑦 𝑦∗
 𝑦 − 𝑦∗  

2

−  1 − 𝑢9  𝑧 − 𝑧∗  𝑤 − 𝑤∗ . 

Clearly, 
𝑑𝑉3

𝑑𝑡
is negative definite ontheregion 𝜔3 due to the conditions  13 𝑐  ,   13 𝑑   ,   13 𝑒  and the fact that is 

mentioned intheorem  1   ,   𝑢9 < 1. 

Hence 𝑉3 is strictly Lyapunov function. Thus 𝐸3 is a globally asymptotically stable on the region 𝜔3and the proof is 

complete . 
 

Numerical analysis of system 𝟐   
In this section, the dynamical behavior of system   2   is studied numerically for different sets of parameters and 

different sets of initial points. The objectives of this study are: first investigate the effect of varying the value of each 

parameter on the dynamical behavior of system   2  and second confirm our obtained analytical results. It is 

observed that, for the following set of hypothetical parameters that satisfies stability conditions of the positive 

equilibrium point, system   2   has a globally asymptotically stable positive equilibrium point as shown in 

Fig.  6.1  . 
 

 
 6.1   

 

 

 

 

𝒖𝟏 = 𝟎. 𝟔  , 𝒖𝟐 = 𝟎.𝟒  , 𝒖𝟑 = 𝟎. 𝟏  , 𝒖𝟒 = 𝟎.𝟓  , 𝒖𝟓 = 𝟎. 𝟏 , 𝒖𝟔 = 𝟎.𝟑 , 
𝒖𝟕 = 𝟎. 𝟑 , 𝒖𝟖 = 𝟎.𝟏 , 𝒖𝟗 = 𝟎. 𝟓  , 𝒖𝟏𝟎 = 𝟎.𝟏  ,   𝒎 = 𝟎. 𝟓. 
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Fig. 𝟔. 𝟏  :-The time series of the solution of system 2  started from the four different initial 

points  0.4 , 0.5 , 0.6 , 0.7  ,  0.1,0.2 , 0.5 , 0.6 ,  0.2 , 0.3 , 0.4, 0.5 , and  0.3 , 0.5, 0.7 , 0.8 , for the data given 

by 6.1   a , the trajectories of x as a function of time,  b  the trajectories of y as a function of time,  c  trajectories 

of z as a function of time,  d  the trajectories of  w as a function of time. 

 

Clearly, Fig.   6.1   shows that system  2   has a globally asymptotically stable as the solution of 

system  2  approaches asymptotically to the positive equilibrium point 𝐸3 =   0.28 , 0.77 , 0.2 , 0.06  starting from 

four different initial points and this is confirming our obtained analytical results.   

 

Now, in order to discuss the effect of the parameters values of system  2  on the dynamical behavior of the system, 

the system is solved numerically for the data given in  6.1  with varying one parameter at each time. 

 

By varying the parameter 𝑢1 which represents the half saturation rate of the mid-predator upon the immature prey 

and keeping the rest of parameters as data given in  6.1    in the range0.01 ≤ 𝑢1 < 2 ,  it is observed that the 

solution of system  2  approaches asymptotically to the positive equilibrium point 𝐸3 .  , as shown in Fig.  6.2   , for 

typical value 𝑢1 = 0.4 . 
 

 
Fig.   𝟔. 𝟐  :-Time series of the solution of system  2   for the data given in 6.1   with u1 = 0.4 , which approaches 

to𝐸3 =  0.28 ,0.75 ,0.2 ,0.07   in the interior of  R+
4  . 

 

Now, varying the growth rate parameter of immature prey 𝑢2 and keeping the rest of parameters values as data given 

in   6.1   , it is observed that for  0.1 ≤ 𝑢2 < 2 the solution of system   2   approaches asymptotically to a positive 

equilibrium point 𝐸3 . 
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On the other hand varying the natural death rate of immature prey parameter 𝑢3 and keeping the rest of parameters 

values as data in  6.1  , it is observed that for0.01 ≤ 𝑢3 < 0.90 the solution of system   2  approaches 

asymptotically to the positive equilibrium point  𝐸3, as shown in Fig.   6.3   𝑎 , for typical value𝑢3 = 0.6  ,  while 

increasing this parameter for0.90 ≤ 𝑢3 < 1  causes extinction in the top-predator and the solution of system  2   
approaches asymptotically to E2 =  𝑥  , 𝑦  , 𝑧  ,0   in the interior of the positive quadrant ofxyz − space, as shown in 

Fig.   6.3   𝑏 , for typical value  𝑢3 = 0.95  . 

 
Fig  𝟔. 𝟑   (𝒂) :-Time series of the solution of system  2   for the data given by 6.1   with u3 = 0.6 , which 

approaches to  𝐸3 =  0.21 ,0.57 ,0.2 ,0.02   in the interior of  R+
4  , 𝑎𝑛𝑑 (𝑏): Time series of the solution of system 

 2   for the data given by 6.1   with u3 = 0.95 , which approaches to 𝐸2 =   0.16 , 0.44 , 0.19 , 0   in the interior of 

the positive quadrant of  xyz − space . 
 

Moreover, varying the parameter r𝑢4 which represents the predation rate of the mid-predator upon the immature 

prey, and keeping the rest of parameters values as data given in  6.1  , it is observed that for 0.01 ≤ 𝑢4 < 1.5the 

solution of system  2  still approaches asymptotically to a positive equilibrium point 𝐸3 . 
 

The effect of varying the mature prey natural death rate parameter 𝑢5 with0.01 ≤ 𝑢5 < 0.41  and keeping the rest 

parameters values as data given in (6.1), it observed that the solution of system   2   approaches asymptotically to a 

positive equilibrium point  𝐸3  , for typical value 𝑢5 = 0.3 as shown in Fig.   6.4   𝑎  , however increasing this 

parameter in the range 0.41 ≤ 𝑢5 < 0.58causes extinction in the top-predatorand the solution of system   2   
approaches asymptotically toE2 =  𝑥  , 𝑦  , 𝑧  ,0   in the interior of the positive quadrant 

of   xyz − 𝑠𝑝𝑎𝑐𝑒, as shown in Fig.   6.4   𝑏, for typical value 𝑢5 = 0.5  , further increasing in the range   0.58 ≤
𝑢5 < 0.8causes extinction in the mid-predator and the solution of system   2   approaches asymptotically to the free 

predators equilibrium pointE1 =  𝑥  , 𝑦  ,0 ,0   in the interior of the positive quadrant of 

 𝑥𝑦 − plane, as shown in Fig.   6.4   𝑐, for typical value 𝑢5 = 0.77, then more increasing of this parameter in the 

range 0.8 ≤ 𝑢5 <   1causes extinction in all species and the solution of system   2   approaches asymptotically to 

the vanishing equilibrium pointE0 =   0 ,0 ,0 ,0  ,as shown in Fig  6.4  𝑑 , for typical value 𝑢5 = 0.9. 
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Fig  𝟔. 𝟒  ( 𝐚 ) :- Time series of the solution of system  2   for the data given by 6.1   with u5 = 0.3 , which 

approaches toE3 =   0.41 , 0.47 , 0.2 , 0.03   in the interior of  R+
4 ,   b  : Time series of the solution of system  2   

for the data given by 6.1   with u5 = 0.5 , which approaches toE2 =   0.37 , 0.28 , 0.09 , 0   in the positive quadrant 

of  xyz − space, ( c ): Time series of the solution of system  2   for the data given by 6.1  with u5 = 0.77 , which 

approaches to E1 =   0.07 , 0.03 , 0 , 0   in the positive quadrant ofxy − plane , ( d ): Time series of the solution of 

system  2   for the data given by 6.1   with u5 = 0.9 , which approaches toE0 =   0 , 0 , 0 , 0  . 
 

The varying of the parameter𝑢6which represents the conversion rate from the mature prey to the mid-predator, and 

keeping the rest of parameters values as data given in  6.1  , it is observed that for0.01 ≤ 𝑢6 < 1the solution of 

system  2   still approaches asymptotically to a positive equilibrium point 𝐸3 . 
 

For varying the conversion rate parameter from the mature prey to the mid-predator  𝑢7, with  0.01 ≤ 𝑢7 < 0.15  the 

solution of system   2   approaches asymptotically to the positive free predators equilibrium point  E1 =  𝑥  , 𝑦  ,0 ,0   
in the interior of the positive quadrant of 𝑥𝑦 − plane, as shown in Fig.  6.5  𝑎 , for typical value 𝑢7 = 0.1 , while 

for 𝑢7 = 0.15 the solution of system   2   approaches asymptotically toE2 =  𝑥  , 𝑦  , 𝑧  ,0   in the interior of the 

positive quadrant of xyz − 𝑠𝑝𝑎𝑐𝑒, as shown in Fig.  6.5  𝑏  , which means revival of the mid-predator population, 

then increasing this parameter in the range  0.15 ≤ 𝑢7 < 0.21  leads revival of the top-predator and a small periodic 

attractor appears, as shown in Fig.  6.5  𝑐  , for typical value 𝑢7 = 0.16 for more increasing in the range               

0.21 ≤ 𝑢7 < 0.5 the solution of system   2   approaches asymptotically to a positive equilibrium point𝐸3  ,for typical 

value 𝑢7 = 0.22 , as shown in Fig.  6.5  𝑑 .  
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Fig  𝟔. 𝟓  :- ( a )Time series of the solution of system  2   for the data  given by 6.1   with different values of u7, ( 

a ): E1 =  0.21 ,0.87 ,0 ,0  is  a asymptotically stable with u7 = 0.1, ( b ): E2 =   0.32 , 0.63 , 0.4 , 0  is a 

asymptotically stable with u7 = 0.15 , ( c ): periodic attractor withu7 = 0.16, ( d ): E3 =
  0.28 , 0.77 , 0.19 , 0.03  is a asymptotically stable with u7 = 0.22.       

 

The varying of the mid-predator natural death rate parameter 𝑢8, it is observed that for 0.01 ≤ 𝑢8 < 0.16 the 

solution of system  2   approaches asymptotically to the positive equilibrium pointE3, further increasing of this 

parameter with𝑢8 = 0.16 which causes extinction in the top-predator and the solution of system  2   approaches 

asymptotically to E2 =  𝑥  , 𝑦  , 𝑧  ,0   in the interior of the positive quadrant of  xyz − space,as shown in 

Fig.  6.6   𝑎 , for typical value𝑢8 = 0.16  . While for 0.16 < 𝑢8 < 1 causes the extinction of the mid –predator the 

solution of system   2   approaches asymptotically E1 =  𝑥  , 𝑦  ,0 ,0  in the interior of the positive quadrant of 

 xy − plane,as shown in Fig.   6.6   𝑏 , for typical value  𝑢8 = 0.25  . 
 

 
Fig  𝟔. 𝟔   (𝐚 ):- Time series of the solution of system  2   for the data given by 6.1   with u8 = 0.16 , which 

approaches to  E2 =  0.30 ,0.73 ,0.26 ,0   in the interior of the positive quadrant of  xyz − space , ( b ) : Time series 

of the solution of system  2   for the data given by 6.1   with u8 = 0.25 , which approaches to 

E1 =   0.21 , 0.87 , 0 , 0    in the interior of the positive quadrant of  xy − plane . 
 

On the other hand, the varying of predation rate parameter of the top-predator upon the mid-predator, for0.01 ≤
𝑢9 < 0.15 the solution of system   2  approaches asymptotically toE2 =  𝑥  , 𝑦  , 𝑧  ,0   in the interior of the positive 

quadrant of xyz − 𝑠𝑝𝑎𝑐𝑒, as shown in Fig.  6.7  𝑎  , for typical value 𝑢9 = 0.1, while for 0.15 ≤ 𝑢9 < 1 the top-

predator population revives and the solution of system   2  approaches asymptotically to a positive equilibrium 

point  𝐸3, as shown in Fig.  6.7  𝑏  , for typical value 𝑢9 = 0.5. 
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Fig  𝟔. 𝟕  :- ( 𝐚 ) Time series of the solution of system  2   for the data given by 6.1   with u9 = 0.1 , which 

approaches to  E2 =  0.25,0.36 ,0.7 ,0   in the interior of the positive quadrant ofxyz − space ,  ( b ):Time series of 

the solution of system  2   for thedatagivenin 6.1  withu9 = 0.5 , whichapproachesto E3 =  0.28 ,0.77 ,0.2 ,0.06   
in the interior of  R+

4  . 
 

Moreover, increasing the natural death rate of top-predator parameter 𝑢10 in the range 0.1 ≤ 𝑢10 < 0.35, the 

solution of system   2   approaches asymptotically to a positive equilibrium point  𝐸3, as shown in Fig.  6.8  𝑎 , for 

typical value 𝑢10 = 0.3, while the increasing of this parameter for   0.35 ≤ 𝑢10 < 1 causes extinction of the top-

predator population and the solution of system   2   approaches asymptotically toE2 =  𝑥  , 𝑦  , 𝑧  ,0   in the interior of 

the positive quadrant of xyz − 𝑠𝑝𝑎𝑐𝑒, as shown in Fig.  6.8  𝑏 , for typical value 𝑢10 = 0.5 .  
 

 
Fig.  𝟔. 𝟖  :-( a ): Time series of the solution of system  2   for the data givenby 6.1  with u10 = 0.3 , which 

approaches to E3 =  0.29 ,0.47 ,0.6 ,0.02  in the interior of  R+
4  . ( b ): Time series of the solution of system  2   for 

the data given by 6.1   with u10 = 0.5 , which approaches to  E2 =  0.25,0.36 ,0.7 ,0   in the interior of the positive 

quadrant of   xyz − space. 
 

Finally, varying the number of prey inside the refuge parameter 𝑚 and keeping the rest of parameters values as data 

given in  6.1  , it is observed that for0.01 ≤ 𝑚 < 0.63the solution of system  2  approaches asymptotically to the 

positive equilibrium point𝐸3, as shown in Fig.  6.9  𝑎, for typical value𝑚 = 0.5, while increasing this parameter in 

the range 0.63 ≤ 𝑚 < 0.69 leads that the solution of system   2   approaches asymptotically to a periodic dynamics 

in Int. 𝑅+
4 , as shown in Fig.  6.9 𝑏, for typical value 𝑚 = 0.67, more increasing of this parameter in the range 

0.69 ≤  m < 0.71  causes extinction of the top-predator population and the solution of system  2   approaches 

asymptotically to the free top-predator equilibrium point E2 =  𝑥  , 𝑦  , 𝑧  ,0  in the interior of the positive quadrant of 

xyz − space.as shown in Fig.  6.9  𝑐 , for typical value 𝑚 = 0.7 .and for  0.71 ≤ 𝑚 < 1the solution of system (2) 
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approaches asymptotically to the free predators' equilibrium point E1 =  𝑥  , 𝑦  ,0 ,0    in the interior of the positive 

quadrant of  xy − plane, as shown in Fig.  6.9 𝑑 ,  for typical value 𝑚 = 0.9 . 
 

 

 
Fig  𝟔. 𝟗  : − Time series of the solution of system  2   for the data given by 6.1   with different values of m,  ( a ): 

E3 =  0.28 ,0.77 ,0.02 ,0.06   is  a asymptotically stable with m = 0.5 , ( b ): A small periodic attractor with 

m = 0.67, ( c):E2 =  0.22 ,0.86 ,0.02 ,0   is a asymptotically stable with m = 0.7 , (d):E1 =   0.21 , 0.87 , 0 , 0   is 

a asymptotically stable with m = 0.9.       

 

Conclusions and discussion:- 
In this chapter, we proposed and analyzed an ecological model that described the dynamical behavior of the food 

chain real system. The model included four non-linear autonomous differential equations that describe the dynamics 

of four different population, namely first immature prey (𝑋1), mature prey (𝑋2), mid-predator (𝑌1) and (𝑌2) which 

is represent the top predator. The boundedness of system (2) has been discussed. The existence conditions of all 

possible equilibrium points are obtain. The local as well as global stability analyses of these points are carried out. 

Finally, numerical simulation is used to specific the control set of parameters that affect the dynamics of the system 

and confirm our obtained analytical results. Therefore system (2) has been solved numerically for different sets of 

initial points and different sets of parameters starting with the hypothetical set of data given by Eq. (6.1) and the 

following observations are obtained. 

 

1-System ( 2 ) has two types of attractor in Int. 𝑅+
4  either a stable point or a periodic attractor. 

2-For the set hypothetical parameters value given in Eq. (6.1), the system (2) approaches asymptotically to globally 

stable positive point𝐸3 =   0.28 , 0.77 , 0.2 , 0.06  . Further, with varying one parameter each time, it is observed 
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that varying the parameter values, 𝑢𝑖  ,𝑖 = 1,2,4 𝑎𝑛𝑑 6 do not have any effect on the dynamical behavior of system( 2 

) and the solution of the system still approaches to positive equilibrium point 𝐸3 =  𝑥∗, 𝑦∗, 𝑧∗ , 𝑤∗ . 
3-As the natural death rate of immature prey 𝑢3 increasing to 0.89 keeping the rest of parameters as in Eq. (6.1), the 

solution of system (2) approaches to positive equilibrium point𝐸3. However if  0.90 ≤ 𝑢3 < 1, then the top predator 

will face extinction then the trajectory transferred from positive equilibrium point to the equilibrium point𝐸2 =
 𝑥  , 𝑦  , 𝑧  ,0  , thus, the𝑢3 = 0.9 parameter is a bifurcation point. 

 

4- As the natural death rate of mature prey 𝑢5 increasing to 0.40 keeping the rest of parameters as in Eq. (6.1), the 

solution of system (2)  approaches to positive equilibrium E3,  however if  0.41 ≤ 𝑢5 < 0.58, then the top predator 

will face extinction then the trajectory transferred from positive equilibrium point to the equilibrium point𝐸2 =
 𝑥  , 𝑦  , 𝑧  ,0  , further increasing in the range0.58 ≤ 𝑢5 < 0.8causes the mid-predator faced extinction in andthen the 

trajectory transferred from the free top predator equilibrium point 𝐸2 =  𝑥  , 𝑦  , 𝑧  ,0  , to the free predators 

equilibrium point E1 =  𝑥  , 𝑦  ,0 ,0  , then more increasing of this parameter in the range0.8 ≤ 𝑢5 <  1causes 

extinction in all species and then the trajectory transferred from equilibrium point E1 =  𝑥  , 𝑦  ,0 ,0  ,to the vanishing 

equilibrium point E0 =   0 ,0 ,0 ,0   , thus, the𝑢5 parameter when 𝑢5 = 0.41 , 𝑢5 = 0.58  and 𝑢5 = 0.8 is a 

bifurcation point.  

 

5- As theparameter  𝑢7 which represents the conversion rate from the mature prey to the mid-predator decreasing to 

0.15 keeping the rest of parameters as in Eq.(6.1), the solution of system ( 2 ) approaches to the positive free 

predators equilibrium point E1 =  𝑥  , 𝑦  ,0 ,0  , while for the 𝑢7 = 0.15, then the trajectory transferred from  the free 

predators equilibrium point E1 =  𝑥  , 𝑦  ,0 ,0   to E2 =  𝑥  , 𝑦  , 𝑧  ,0  , which means revival of the mid-predator 

population, then increasing this parameter in the range  0.15 ≤ 𝑢7 < 0.21  leads revival of the top-predator and the 

trajectory approaches asymptotically to a periodic dynamics in Int. 𝑅+
4  , for more increasing in the range0.21 ≤

𝑢7 < 0.5,the trajectory will transferred asymptotically from a periodic dynamics in Int. 𝑅+
4  and then approaches 

asymptotically stable to a positive equilibrium point 𝐸3 𝑥
∗, 𝑦∗, 𝑧∗ , 𝑤∗ , thus, the parameter 𝑢7 when 𝑢7 = 0.15 

and 𝑢7 = 0.21 is a bifurcation point. 

 

6-As the natural death rate of the mid predator 𝑢8 increasing to 0.15 keeping the rest of parameters as in Eq.(6.1), 

the solution of system ( 2 ) approaches to the positive equilibrium point 𝐸3 ,   further increasing in the range0.16 ≤
𝑢8 < 0.18  causes the top-predator faced extinction and the trajectory transferred from the positive equilibrium point 

𝐸3to the free top predator equilibrium pointE2 =  𝑥  , 𝑦  , 𝑧  ,0   , but for 0.18 ≤ 𝑢8 < 1 causes the mid –predator 

faced extinction and the trajectory transferred from E2 =  𝑥  , 𝑦  , 𝑧  ,0  to E1 =  𝑥  , 𝑦  ,0 ,0  , thus, the parameter𝑢8 

when  𝑢8 =0.16  and 𝑢8 =0.18  is a bifurcation point.           

 

7-As the predation rate parameter of the top-predator upon the mid-predator 𝑢9 increasing to 0.14 keeping the rest of 

parameters as in Eq.(6.1), the solution of system ( 2 ) approaches the free top predator equilibrium pointE2 =
 𝑥  , 𝑦  , 𝑧  ,0  , while for 0.15 ≤ 𝑢9 < 1 the top-predator population  revives  and then the trajectory transferred from 

the pointE2 =  𝑥  , 𝑦  , 𝑧  ,0   to the positive equilibrium point  𝐸3, thus, the parameter𝑢9 = 0.15  is a bifurcation point.                                                  

 

8- As the natural death rateof the top-predator  parameter 𝑢10increasing in the range 0.1 ≤ 𝑢10 < 0.35 keeping the 

rest of parameters as in Eq. (6.1) the solutionof system   2  approaches asymptotically to a positive equilibrium 

point  𝐸3, while increasing this parameter in the range 0.35 ≤ 𝑢10 < 1 causes extinction of the top-predator 

population and then the trajectory transferred from positive equilibrium point to E2 =  𝑥  , 𝑦  , 𝑧  ,0  , thus, the 

parameter 𝑢10 = 0.35is a bifurcation point. 

 

9- As the number of prey inside the refuge parameter 𝑚 varying in the range 0.01 ≤ 𝑚 < 0.63 and keeping the rest 

of parameters values as data given in Eq.  6.1  , the solution of system ( 2 ) approachesasymptotically to the positive 

equilibrium point𝐸3, while increasing this parameter in the range 0.63 ≤ 𝑚 < 0.69leads that the trajectory 

approaches asymptotically to a periodic dynamics in Int. 𝑅+
4 , while increasing this parameter for0.69 ≤  m < 0.71   

causes extinction of the top-predator population and restore the stability andthen the trajectory transferred 

asymptotically from a periodic dynamics in Int. 𝑅+
4  to the stablefree top-predator equilibrium pointE2 =

 𝑥  , 𝑦  , 𝑧  ,0  ,  then more increasing of this parameter for 0.71 ≤ 𝑚 causes extinction of the mid-predator population 

and the trajectory transferred from E2 =  𝑥  , 𝑦  , 𝑧  ,0  , to E1 =  𝑥  , 𝑦  ,0 ,0  ,thus, the𝑚 parameter when  𝑚 = 0.63 , 𝑚 

= 0.69 and 𝑚 = 0.71 is a bifurcation point.   
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