.

RESEARCH ARTICLE

OPERATORS USED IN COMPLEX VALUED HARMONIC UNIVALENT AND MULTIVALENT FUNCTION.

Dr .Noohi Khan (AP II).

Amity University Lucknow, Up.

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
Manuscript Info	Abstract	

Manuscript Injo	Abstract
•••••	•••••••••••••••••••••••••••••••••••••••
Manuscript History	To evaluate the effect of implant platform/abutment design/ crown
	material combinations on the stress distribution around implant-
Received: 19 May 2017	supported dental restorations. A literature search was made in three
Final Accepted: 21 June 2017	databases including PubMed, Cochrane and Web of Science. Inclusion
Published: July 2017	criteria were in vitro studies, switched implant platform versus regular
·	implant platform, titanium implants, internal hex connection and stress
	values of bone. Two review authors independently screened the
	articles for inclusion. This was followed by hand searching in the
	reference lists of all eligible studies for additional studies. Results: the
	search resulted in 16 eligible studies concerning the effect of platform
	switching on peri-implant bone stress, however no papers were found
	studying the effect of different implant platform/ abutment design
	/crown material complexes on bone stress. From the included studies,
	platform switching concept can replace conventional platform designs
	to improve implant survival rate, provided it should be used within its
	indications.
	Copy Right, IJAR, 2017,. All rights reserved.

Harmoic Univalent Function:-

A continuous complex valued function f=u+iv defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. Let F and G be analytic in D so that F(0)=G(0)=0,

ReF=Ref=u, ReG=Imf=v by writing (F+iG)/2=h, (F-iG)/2 = g, The function f admits the representation $f = h + \overline{g}$, where h and g are analytic in D. h is called the analytic part of f and g, the co-analytic part of f. Clunie and Sheil-Small [15] observe that $f = h + \overline{g}$ is locally univalent and sense-preserving if and only if $|g'(z)| < |h'(z)|, z \in D$. Further if f can be normalize so that $f(0)=h(0)=f_z(0)-1=0$. The SH denotes the family of all hamonic, complex valued, orientation-preserving normalized univalent functions defined on Δ . Thus the function f in SH admits the representation $f = h + \overline{g}$, where,

(1.1.1)
$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
, and $g(z) = \sum_{n=1}^{\infty} b_n z^n$; $|b_1| < 1$

are analytic functions in Δ .

Corresponding Author:- Dr.Noohi Khan (AP II). Address:- Amity University Lucknow, Up. It follows from the orientation-preserving property that $|b_1| < 1$. Therefore, $(f - \overline{b_1 f})/(1 - |b_1|^2) \in SH$ whenever $f \in SH$. Thus a subclass SH^0 of SH is defined by $SH^0 = \{f \in SH : g'(0) = b_1 = 0\}$.

Note that $S \subset SH^0 \subset SH$. Both families SH and SH^0 are normal families. That is every sequence of functions in SH (or SH^0) has a subsequence that converges locally uniformly in Δ .

It is noted that $SH \equiv S$ if g=0.

Let TH denote the sub class of SH with negative coefficients whose members $f = h + \overline{g}$ where h and g are of the form

(1.1.2)
$$h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n \text{ and } g(z) = \sum_{n=1}^{\infty} |b_n| z^n, |b_1| < 1, z \in \Delta.$$

Complex Valued Harmonoic Multivalent Function:-

Let f be a harmonic function in a Jordan domain D with boundary C. Suppose f is continuous in D and $f(z) \neq 0$ on C. Suppose f has no singular zeros in D, and let m to be sum of the orders of the zeros of f in D. Then $\Delta_c \arg(f(z)) = 2\pi m$, where $\Delta_c \arg(f(z))$ denotes the change in argument of f(z) as z traverses C.

It is also shown that if f is sense-preserving harmonic function near a point z_0 , where $f(z_0) = \omega_0$ and if $f(z) - \omega_0$ has a zero of order m $(m \ge 1)$ at z_0 , then to each sufficiently small $\in > 0$ there corresponds a $\delta > 0$ with the property: "for each $\alpha \in N_{\delta}(\omega_0) = \{\omega : | \omega - \omega_0 | < \delta\}$, the function $f(z) - \alpha$ has exactly m zeros, counted according to multiplicity, in $N_{\epsilon}(z_0)$ ". In particular, f has the open mapping property that is, it carries open sets to open sets.

Let Δ be the open unit disc $\Delta = \{z : |z| < 1\}$ also let $a_k = b_k = 0$ for $0 \le k < m$ and $a_m = 1$. Ahuja and Jahangiri [5], [9] introduce and studied certain subclasses of the family SH(m), $m \ge 1$ of all multivalent harmonic and orientation preserving functions in Δ . A function f in SH(m) can be expressed as $f = h + \overline{g}$, where h and g are of the form

(1.2.1)
$$h(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}$$

 $g(z) = \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}, |b_m| < 1.$

According to above argument, functions in SH(m) are harmonic and sense-preserving in Δ if $J_f > 0$ in Δ . The class SH(1) of harmonic univalent functions was studied in details by Clunie and Sheil Small [15]. It was observed that m-valent mapping need not be orientation-preserving.

Let TH(m) denotes the subclass of SH(m) whose members are of the form

(1.2.2)
$$h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1}$$

and

$$g(z) = \sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1}, |b_m| < 1.$$

Let $SH(m), m \ge 1$ denotes the class of functions $f = h + \overline{g}$ that are m-valent harmonic and orientationpreserving functions in the unit disc $\Delta = \{z : |z| < 1\}$ for which $f(0) = f_z(0) - 1 = 0$. Then f in SH(m) can be expressed as $f = h + \overline{g}$, where h and g are analytic functions of the form

(1.2.3)
$$h(z) = z^{m} + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}, g(z) = \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}, |b_{m}| < 1$$

Note that $SH^0(m) \subseteq SH(m)$ with $b_m = 0$.

Also TH(m) denote the class of functions $f = h + \overline{g}$ so that h and g are of the form :

(1.2.4)
$$h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1}, g(z) = \sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1}, |b_m| < 1$$

Hardmard Product:-

The Hadamard product (or convolution) of two analytic functions $f_1(z)$ and $f_2(z)$ is defined by

$$(f_{1} * f_{2})(z) = (f_{2} * f_{1})(z) = \sum_{n=0}^{\infty} c_{n} d_{n} z^{n}$$

where $f_{1}(z) = \sum_{n=0}^{\infty} c_{n} z^{n}$ and $f_{2}(z) = \sum_{n=0}^{\infty} d_{n} z^{n}, z \in \Delta$

The Pochhammer symbol $(\lambda)_n$ is given by

$$(\lambda)_n := rac{\Gamma(\lambda+n)}{\Gamma(\lambda)} = egin{cases} 1(n=0) \ \lambda(\lambda+1) - -(\lambda+n-1)(n\in \mathbb{N}), \end{cases}$$

Consider a function $\phi_m(a,c;z)$, defined as

(1.3.1)
$$\phi_{m}(a,c;z) = z^{m}F(a,1;c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+m}$$

 $= z^{m} + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} z^{n+m-1}$
 $(a \in R; c \in R \setminus Z_{0}^{-}, Z_{0}^{-} \coloneqq \{0, -1, -2, ...\}; z \in \Delta).$

where F(a,1;c;z) is well known Gauss hypergeometric function.

Linear Operator:-

Corresponding to the function $\phi_m(a,c;z)$ a linear operator $L_m(a,c)$ on the analytic functions of the form (1.1.1) is considered which is defined by means of the following Hadamard product :

(1.4.1)
$$L_m(a,c)h(z) = \phi_m(a,c;z) * h(z)$$
.
The linear operator of the harmonic function $f = h + \overline{g}$, where h and g are given by (1.1.1) is defined as

(1.4.1)
$$L_m(a,c)f(z) = L_m(a,c)h(z) + \overline{L_m(a,c)g(z)}$$

where,

$$L_{m}(a,c)h(z) = z^{m} + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_{n+m-1} z^{n+m-1}$$

and

$$L_{m}(a,c)g(z) = \sum_{n=1}^{\infty} \frac{(a)_{n}}{(c)_{n}} b_{n+m-1} z^{n+m-1}; a \mid b_{m} \mid < c.$$

Salagean Operator:-

For analytic function $h(z) \in S(m)$ Salagean [33] introduced an operator D_m^{\vee} defined as follows:

$$\begin{split} D_m^0 h(z) &= h(z), \ D_m^1 h(z) = D_m(h(z)) = \frac{z}{m} h'(z) \ \text{and} \\ D_m^\nu h(z) &= D_m(D_m^{\nu-1} h(z)) = \frac{z(D_m^{\nu-1} h(z))'}{m} \\ &= z + \sum_{n=2}^\infty \left(\frac{n+m-1}{m}\right)^\nu a_{n+m-1} z^{n+m-1}, \ \nu \in N. \end{split}$$

Whereas, Jahangiri et al. [22] defined the Salagean operator $D_m^v f(z)$ for multivalent harmonic function as follows:

(1.5.1)
$$D_m^{\nu} f(z) = D_m^{\nu} h(z) + (-1)^{\nu} D_m^{\nu} g(z)$$

where,

$$\begin{split} D_{m}^{v}h(z) &= z^{m} + \sum_{n=2}^{\infty} \left(\frac{n+m-1}{m}\right)^{v} a_{n+m-1} z^{n+m-1} \\ D_{m}^{v}g(z) &= \sum_{n=1}^{\infty} \left(\frac{n+m-1}{m}\right)^{v} b_{n+m-1} z^{n+m-1}. \end{split}$$

Referencens:-

- 1. Ahuja, O.P., Jahangiri, J.M., and Silverman, H., Convolutions for special classes of Harmonic Univalent Functions, Appl. Math. Lett, 16(6) (2003), 905-909.
- Ahuja,O.P. and Silverman,H., Extreme Points of families of Univalent Functions with fixed second coefficient. Colloq. Math. 54 (1987), 127-137.
- Ahuja,O.P. and Jahangiri,J.M., Harmonic Univalent Functions with fixed second coefficient, Hakkoido Mathematical Journal, Vol. 31(2002) p-431-439.
- 4. Ahuja,O.P. and Silverman,H., Inequalities associating hypergeometric Functions with planar harmonic mappings, Vol 5, Issue 4, Article 99, 2004.
- Ahuja,O.P. and Jahangiri,J.M., Multivalent Harmonic starlike Functions, Ann. Univ Mariae Curie Sklodowska, Section A, 55 (1) (2001), 1-13.
- 6. Ahuja,O.P. and Jahangiri,J.M., A subclass of Harmonic Univalent Functions, J.Natural geometry, 20, (2001), 45-56.
- Ahuja,O.P. and Jahangiri,J.M., Noshiro Type Harmonic Univalent Functions, Math. Japonica, 56, No. 1(2002), 1-7.
- 8. Ahuja,O.P. and Jahangiri,J.M., Multivalent Harmonic convex Functions, submitted for publication.
- Ahuja,O.P. and Jahangiri,J.M., Errata to "Multivalent Harmonic starlike Functions, Ann. Univ. Mariae Curie-Sklodowska, Vol LV., 1 Sectio A 55 (2001), 1-3, Ann. Univ. Mariae Curie – Sklodowska, Sectio A, 56(1) (2002), 105.
- Al-Amiri,H.S., On a class of close to convex functions with negative coefficients, Mathematica, Tome 31 (45) (1989), No.(1), 1-7.
- 11. Al-Amiri, H.S., On P-close to convex functions of order α , Proc. Amer. Math. Soc. 29 (1971), 103-108.
- 12. Altintas, O. and Ertekin, Y., A New subclass of analytic functions with negative coefficients, current topic in Analytic Function Theory, World Scientific Publishing River Edge, N.J., (1992), 36-47.
- 13. Aouf,M.K., Silverman,H. and Srivastava,H.M., Some subclasses of Multivalent Functions involving a certain linear operator, Advanced studies in contemporary Mathematics, 14(2007), No. 2, pp. 215-232.
- Chichra, P.N., New Subclasses of the class of close-to-convex Functions Proc. Amer. Math. Soc. 62 (1977), 37-43.

- 15. Clunie, J. and Sheil–Small, T., Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9(1984), 3-25.
- 16. Duren, P.L., Hengartner, W. and Laugesen, R.S., The argument principle for Harmonic Functions, Amer. Math. Monthly 103 (1996), No. 5, 411-415.
- 17. Goodman, A.W., On uniformly starlike Functions, J. Math Anal. and Appl. 155(1991) 364-370.
- 18. Goodman, A.W., On Uniformly Convex functions, Ann. Polon. Math. 56(1991) 87-92.
- 19. Guney and Ahuja,O.P., Inequalities involving multipliers for Multivalent Harmonic Functions Journal of Inequalities of Pure and Applied Mathematics, Vol 7 Issue 5, Article 190, 2006.
- 20. Jahangiri, J.M., Harmonic Functions starlike in the unit disc, J. Math. Anal. Appl., 235 (2) (1999), 470-477.
- 21. Jahangiri, J.M., Coefficient bounds and univalence criteria for harmonic functions with negative coefficient, Ann. Univ. Mariae, Curie –Skledowska Sect. A, 52(2) (1998), 57-66.
- 22. Jahangiri, J.M., Murugusundarmoorthy, G. and Vijaya, K., Salagean type Harmonic Univalent Functions, South. J. Pure and Appl. Math., Issue 2(2002), 77-82.
- 23. Kanas, S. and Wisniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336.
- 24. Kim, Y.C., Jahangiri, J.M. and Choi, J.H., Certain convex Harmonic Function, IJMMS(2002) 459-465 (2001).
- 25. Koebe, P., Uberdie Uniformisierung beliebiger analytischer Kurven, Nachr. Akad. Wiss. Gottingen Math. Phys. KI., (1907), 191-210.
- Liu, J.L. and Owa, S., On a class of Multivalent Functions involving certain linear operator, Indian J. Pure-Appl. Math. 33(2002), 1713-1722.
- 27. Noshiro, K., On the theory of Schlicht Functions. J. Fac. Sci. Hakkaido Univ. Ser (1,2), (1934-35), 129-155.
- 28. Robertson, M.S., On the theory of Univalent Functions, Annals of Math. 37 (1936) 374-408.
- 29. Ronning, F., Uniformly convex functions and corresponding class of starlike Functions; Proc. Amer. Math Soc. 118 No. 1(1993) 189-196.
- 30. Rosy, T., Adolph Stephen, B. and Subramanian, K.G., Goodman Ronning type Harmonic Univalent Functions, Kyungpook Math., J., 41(2001), 45-54.
- 31. Ruscheweyh, S. Neighbourhoods of Univalent Functions, Proc. Amer. Math. Soc., 81 (1981), 521-527.
- 32. Saitoh, H., A Linear operator and its applications of first order differential subordinations, Math. Japan 44 (1996) 31-38.
- Salagean,G.S., Subclass of Univalent Functions, Lecture Notes in Math. Springer Verlag 1013(1983), 362-372.
- 34. Seker, B. and Eker, S., On Salagean type Harmonic Multivalent Functions, p. 52-63.
- 35. Sheil-Small, T., Constant for planar harmonic mappings, J. London Math. Soc. 2(42) (1990) 237-248.
- 36. Silverman, H. and Silvia, E.M., Fixed Coefficients for subclasses of starlike functions Houston J. Math. 7(1981), 129-136.
- 37. Silverman, H., Univalent functions with negative coefficients Proc. Amer. Math. Soc. 51 (1975) 109-116.
- 38. Silverman, H., Harmonic Univalent Functions with negative coefficients, J. Math. Anal. Appl., 220(1)(1998), 283-289.
- 39. Silverman, H., and Silvia, E.M., Subclasses of Harmonic Univalent Functions, Newzealand J. Math., 28(2) (1999), 275-284.
- 40. Singh, R. and Singh, S., Starlikeness and convexity of certain integrals. Ann. Univ. Marie Curie-Sklodowska Sect. A, 35(1981),
- 41. P.SHARMA and N.Khan "Multivalent Harmonic functions with a fixed coefficient", International Journal of Mathematics, Science & Engineering Applications (IJMSEA) Vol.3 No. IV (2009), PP-305-316.
- 42. P.SHARMA and N.Khan "Harmonic Multivalent functions involving a Linear Operator", International Journal of Mathematical Analysis, Vol.3, 2009, No.6, 295 308 Hikari Publication.(Scopus indexed journal)
- 43. N.khan "Inequalities of a Generalized class of k-uniformly harmonic univalent functions" Published in IOSR Journal of Mathematics(IOSR-JM)e-ISSN:2278-5728. Volume 11, issue 1, Ver. VI(Jan-feb 2015), www.iosrjournals.org.
- 44. N.Khan "A Class of Multivalent Harmonic Functions involving a Salagean operator published in GJSFR-Global journal of Mathematics, Volume 15-F Issue 2 Version 1.0, in feb 2015.
- 45. N.Khan "A Generalized Class of k-Uniformely harmonic functions based on Salagean operators, published online in SAJM south asian journal of mathematics in march 2015 Vol.5 (2)89-96.ISSN 2251-1512.
- 46. N.Khan "Inequalities on Multivalent harmonic starlike functions involving hypergeometric functions" published in IOSR-JM in may 2016, vol 12, issue 2, ISSN:2319-765X.
- 47. N.Khan Birth of Harmonic functions published in IJIRSET, Issue 7, vol 5, 2016, ISSN -2319-8753