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With the rapid development of capture devices such as smart phone and 

tablets, there is a big trend towards online handwritten signature 

applications being used as behavioral biometrics. Online handwritten 

signature encounters difficulty in the verification process because an 

individual rarely signs exactly the same signature sample whenever 

he/she signs, which is referred to as intra-user variability. This paper 

presents a new technique for handwritten signature verification. The 

operation starts by normalizing the signatures samples to similar 

lengths of enrolled and authenticated samples without affecting to the 

signature shape. And then, Principal Component Analysis (PCA) is 

exploited for features' extraction and Support Vector Machine is 

utilized as classification operation. The experiment has been conducted 

on a SIGMA database on 200 users that comprises more than 6000 

online handwritten signature samples, the result demonstrated 96%as 

successful recognition rate.  
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Introduction:- 
Biometric system is deemed as pattern-recognition system that recognizes a user based on features extracted from 

behavioral or physiological descriptions that belongs to that user [1].  Two main modes of a biometric system are 

available nowadays [2]. First one is the identification Mode, which means matching the target biometric data with 

all the data available in the system, or meaning of this question ―Who are you?‖. The second mode of biometric 

system is the Verification Mode, which is meant by this question: ―Are you who you claim to be?‖. Here, the target 

biometric data is matched with the specific reference in the system to authenticate its identity [3]. 

 

Handwritten signature normally logically is comprises of the first and last name of someone. This type of signature 

is referred to as a paraph [4]. Signature can be defined as  a behavioral type of biometrics that  has a high legal value 

for document authentication. Moreover, it acts as a non-invasive and non-intrusive authentication process for the 

majority of the users, It is one of the most accepted biometrics, since most individuals have their own signatures that 

could be used as their own token [5]. The obstacle, which undermines the use of this type of biometric, is having 

property of the high intra-user variability. This property happens because individuals cannot originate a signature 

that is exactly the same as one of the previous versions. Another thing is that handwritten signature can be forged 

without using specialized hardware. Therefore, skilled forged signatures must be considered in the testing. Two 

types of Signature authentication named static or dynamic verification. The static is referred to as offline signature 
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verification that performs user verification using scanned signature images. About dynamic verification is referred to 

as online signature verification system (such as this paper work) where signature samples are captured digitally 

usually by using digitized pen and graphical tablets. Here, a richer amount of information is captured, which often 

includes signals as a time series of ][tx and ][ty coordinates with pen pressure ][tp . Anyhow, achieving high correct 

matching accuracy in signature verification is not trivial task due to the high intra-user variability, which will 

increase the False Reject Rate (FRR).  

 

This paper is organized as follows. Section II is dedicated for literature review related to signature verification. In 

section III, the signature verification methodology is proposed. In Section IV, the experiment and implementation 

are described and finally, in Section V, the conclusion is presented with future work. 

 

Literature Review:- 
As it has been noticed in the literature, online handwritten signature verification consists of four phases: data input, 

pre-processing (such as using signature length normalization in this paper), feature extraction and classification [6]. 

Usually, online signature samples are input by using tablets or Personal Digital Assistant (PDA) to capture the 

signature data. In preprocessing phase, some techniques that are adapted from signal processing algorithm are used. 

The advantage of pre-processing is to improve the input data in order to get a better recognition rate. types of 

preprocessing techniques are filtering, noise smoothing reduction, signature re-sampling. Such as online handwritten 

signature recognition by length normalization using Up-Sampling and Down-Sampling is proposed in [7], here 

normalization is based on interpolation operation for those samples which are less than set threshold length and 

down-sampling for those signature samples for more than threshold. It is essential to mention that proposed 

signature verification is depended on this normalization as in [7]. 

 

In the feature extraction phase, two types of features can be used, which are function features and parameter 

features. In function features the signature is characterized as a time series signals [7], for instance, horizontal signal 

x[t] and vertical signal y[t] for positions, velocity signal, acceleration signal, pen pressure signal, and pen inclination 

signal. For the second type parameter features, the signature is a form of element vector that consists of a statistical 

and mathematical computation based on the acquired signature data, for instance  signature time duration, number of 

pen up / pen down ,pen down ration, MAX/ MIN of positions, speed, and acceleration [8]. Generally, function 

features have better performance in compared to parameter features. In terms of the last phase, the classifier is used 

to differentiate based on extracted feature and then make a decision. 

 

Normally, signature verification can be implemented using statistical or template matching approaches.  In the case 

of template matching techniques, a queried sample is matched against templates of authentic / forgery signatures [8]. 

In this case, the most common approach used is the Dynamic Time Warping (DTW) technique [9]. In the case of 

statistical approaches, distance-based classifiers can be used to perform signature verification. For instance, 

Artificial Neural Networks (ANNs) are highly used for signature verification, because of their capabilities in 

learning and generalizing as in [10].  Hidden Markov Models (HMMs) is also used  for online signature verification 

as in[11], Support Vector Machine (SVM)  [8], Bayesian decision method [12]. 

 

Signature Verification Methodology:- 
In this research, the dataset as online signature sample consists of time series signals of horizontal ][tx and vertical ][ty

coordinates, with pen pressure ][tp  sampled at time t. the operation starts by doing normalization operation to the all 

signature samples according to the down-sampling and up-sampling operation to make all the signature samples as a 

similar length, the complete work is detailed in [7]. In this experiment, the length is chosen to be 256 trajectories as 

the average length of the SIGMA database [13] samples. the is applied to the  length  into our system for 

normalization and then verification. The second stage is feature extraction which is using Principal Component 

Analysis (PCA) features and thirdly, Support Vector Machine as a classifier. The operation of online signature 

verification is depicted as a diagram in Figure1. The verification operation starts by reading the ][tx , ][ty  and ][tp

signals, which are the horizontal trajectories, vertical trajectories and pen pressure respectively, where Nt ....2,1 , 

and N is the desired signature length, which is set to 256. Extracted the features, which is implemented using PCA, 

are stored in the database as a reference model to be used in the prospective matching with anyone who wants to 

verify the signature sample.  
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Figure 1:-  Proposed Signature verification as biometric system. 

 

In the authentication process, the queried identity signature will be read by the system. The same processes that have 

happened during the enrollment operation should also be applied to the queried signature sample. Figure 1 shows the 

main diagram of the proposed verification system. The signature verification system consists of two separate 

processes which are feature extraction by using Principal Components Analysis (PCA) and classification by using 

Support Vector Machine (SVM) as detailed in the following sub-sections. 

 

Feature Extraction (PCA):- 

Feature extraction operation is used to transform the signature signals from its original domain to another domain to 

increase the variance and reduce the correlation among individuals. In this research Principal Component Analysis 

(PCA) is used to improve the recognition rate [14]. PCA has ability to transform a data set (signatures in this case) 

from correlated domain to another domain that is highly uncorrelated among the original data set [14]. In other 

words, PCA has ability to do variance maximizing between genuine and forged signature samples. In this paper, 

PCA is run on three columns of the input online signature and the results of the PCA operation are also three 

columns, the first column corresponds to the first Eigen vector component that belongs to the highest Eigen value. 

The second column is the second highest Eigen value and the third column is the lowest Eigen value. The length of 

each column is 256 features, which is the length of the signature after normalization. The proposed feature vector is 

comprised by combining the three component vectors of PCA into a single vector to represent a signature sample 

feature vector. After that, feature selection operation from PCA output is arranged as this procedure: the selection is 

implemented on each component vector by dividing the vector (256) into 8 segments (seg_xx); each segment size is 

32 features. The selection is done by taking the 1st (seg_11), 4th (seg_14) and 8th (seg_18) segments among the 8 

segments from the first component vector. The same goes for the second and third columns. Finally, the length of 

each signature represented vector is 300 features. 

 

Classification (SVM):- 

SVM is very beneficial for tow classes, which classifies data by finding the best hyper-plane that separates all data 

points of one class from those of the other class. The best hyper-plane for an SVM means the one with the largest 

margin between the two classes. Margin means the maximal width of the slab parallel to the hyper-plane that has no 

interior data points. In the Figure 2, the support vectors are the data points that are closest to the separating hyper-

plane, these points that are on the boundary of the slab. Figure 2 illustrates these definition, with ―+‖  label 

indicating data point of type 1 and  ―–―  labels indicating data points of type -1 [15]. 
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Figure 2:- SVM diagram explained hyper-plane. 

 

Once the length of signature represented vector is ready, it will be stored in the data base for the future reference 

model to be used for SVM training dataset. Besides that, these signature vectors are matched later on against queried 

signature vectors, which have undergone the same operations as in the enrollment phase. The task of Support Vector 

Machine (SVM) is used to match between the stored and queried signature sample vector, in order to make a 

decision whether the signature is guanine or forge. The specification of SVM system, which has been implemented 

in this paper, are as follows: the kernel function of the used SVM, which is used to map the training dataset into 

kernel space, is linear type which is also named dot product, as well as the method of finding the separating hyper-

plane is least squares method.  

 

Experiment and Result:-  
The implementation of the experiment is done on a SIGMA database which has more than 6000 online handwritten 

signature samples to test the verification accuracy of the proposed method. The steps of the experiment are as 

follows: 

1. The training matrix is built by using signatures from the SIGMA database [13], the. The training matrix is 

comprised of signatures from 200 individuals. Each individual has 10 genuine and 10 forged samples (five of 

them are random forged and the other five are skilled forged samples). Each signature sample is represented by 

300 features. Therefore, the training matrix size is ]20300[   (300 features for each sample with 20 samples for 

each individual). Training is run by SVM for the signatures of each individual. 

2. The result produced by SVM is done by extracting the False Accept Rate (FAR) and the False Reject Rate (FRR) 

for each user separately. The testing matrix is built as the same as to the way of the training matrix that was built. 

3. A label 1  in the training target (destination) of SVM is assigned to the first 10  signature samples of the trained 

matrix indicating to genuine for the first 10 samples, while 1  is assigned to the second 10  signature samples of 

the training matrix to mark and train the SVM that the second 10  are forged samples. 

4. FRR is computed by evaluating the result scores of the first 10 samples. If any sign of the first 10 samples is less 

than the threshold (set to 0), False Rejection (FR) counter will be increased by one )1(  FRFR , because 

they are supposed to be as accepted (signs are larger than threshold) but they are wrongly rejected by the 

verifying system. Also, if the results of the second 10 samples have labels more than the threshold, they are 

deemed as False Accept (FA) and the counter will be incremented by one )1(  FAFA . The FAR and FRR are 

computed as in (1) and (2) respectively: 

%100
10


FA

FAR                                                                      (1) 

%100
10


FR

FRR                                                                     (2) 

5. The accuracy of each individual has been computed using (3): 

2

%%
%100%

FRRFAR
Accuracy


                                                       (3) 

 

6. An average of the 200 individuals’ accuracy is computed by using (4) so as to take into consideration all 

individuals in the SIGMA database:  
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About the result of the experiment, Table 1 lists FAR, FRR and average error. 

 

 Table 1: Verification accuracies as an error rate (FAR and FRR) 

Threshold FRR% FAR% Average Error% 

0 2.5% 1.5% 2% 

 

The table lists the average errors in terms of zero threshold, which is the borderline between FAR and FRR. As 

shown in table 1, in the case of 0 threshold, the average error rate is 2% resulted from the FRR is 2.5% and FAR as 

1.5%. In other words, the performance as a successful rate is 98% of 200 users of SIGMA database by using PCA 

and SVM system.  

 

Conclusion:- 
Intra-user variability is the major obstacle of the online handwritten signature verification as the same user cannot 

sign the same signature of the previous signature. In this paper, an acceptable recognition rate has been achieved as 

98% as a result of the experiment that has been conducted on a SIGMA database for online handwritten signature 

which comprises more than 6000 signature samples. In this paper the verification operation is kicked off by doing 

normalization of the signature length as 256 trajectory points for the three time series signals x[t], y[t] and p[t]. 

Then, feature extraction operation is done by using principal components analysis (PCA) , as well as feature 

selection is done for preparing the feature vector to be input to the SVM classifier. 
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