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Introduction:- 

Gait is one of the few biometric features that can be measured remotely without physical contact and proximal 

sensing, which makes it useful in surveillance applications. Such applications play a decisive role in monitoring high 

security areas including banks, airports, military bases and railway stations. In the real world, there are various 

factors, significantly affecting human gait including clothes, shoes, carrying objects, walking surfaces, walking 

speeds and observed views. A large number of gait recognition methods have been published recently, which can be 

roughly divided into two categories, model-based methods include “A new view-invariant feature for cross-view 

gait recognition” and appearance-based method include “Recognizing gaits across views through correlated motion 

co-clustering”. These methods require a preprocessing of foreground/background segmentation (FG/BG) on a gait 

video, in order to extract shape contours, silhouettes, skeletons, or body joints for further gait analysis. The model-

based methods generally aim to model kinematics of human joints in order to measure physical gait parameters such 

as trajectories, limb lengths and angular speeds. The appearance-based methods typically analyze gait sequences 

without explicit modeling of human body structure. These methods have shown their effectiveness on human gait 

recognition under fixed view. However, they lack a proper methodology to address the problem of view change. 

 

Recently, the research of gait recognition under view change falls into three categories. Methods in the first category 

[1]-[3] are to construct 3D gait information through a system of multiple calibrated cameras. Then, 2D gait 

information from any required view is reconstructed from 3D gait information. However, the methods in this 

category are only suitable for a fully controlled and cooperative multi camera environment such as a biometric 

tunnel which is costly and complicated.  Methods in the second category [4]-[6] are to extract gait feature which is 

invariant to view change. It is difficult to seek the view-invariant gait feature because the view-dependent 

information is embedded complexity in gait. The different methods in this category may be developed from 

completely different perspectives. 
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Methods in the third category [7]-[10] rely on learning mapping/projection relationship of gaits across views. The 

relationship obtained through training will normalize gait features from different views into shared/associated 

subspaces(s) before gait similarity is measured. The method for Gait Recognition considered in this paper are tested 

with CASIA A (normal), CASIA B database (normal), USF database (normal) and Virginia University dataset 

(Abnormal Cerebral Palsy).  

 

Methods for Gait Recognition:- 
2.1 View-Invariant Gait Recognition:-  
A Gait recognition method “A New View-Invariant Feature for Cross-View Gait Recognition” [11] is studied. In 

figure 1, figure 1a and figure 1b given below rectangles represent inputs/outputs, while ellipses represent processing 

steps. Given a probe gait and a galley gait recorded from different views, they are individually processed through the 

process of view-normalization and feature extraction. Then, their similarity is measured under a common canonical 

view.  

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           Figure 1:- Framework of view-invariant gait recognition. 
 

A gait silhouette can be extracted from each frame in a video gait sequence [12]. However, some extracted 

silhouettes are incomplete. Mathematical morphological operations [13] are used for holes remedy and noise 

elimination. Since gait is a periodic action, it is analyzed within complete walking cycle(s). The method is adopted 

[9] to estimate gait period of each gait sequence. In the view-normalization process, Gait Texture Image (GTI) is 

extracted from a sequence of gait silhouettes within a complete walking cycle. It will be the input of low-rank 

texture optimization. Transform Invariant Low-rank Textures (TILT) is applied [14] on GTI to seek a convex 

optimization that enables robust recovery of low-rank textures based on domain transformation despite gross sparse 

errors. In this way, TILT will transform GTI from any view into a common canonical view  where the low-rank 

textures are optimized. Another key component of TILT is sparse error matrix. It is used to eliminate errors/noises 

caused by corruption, occlusion, or shadow on gait image which may interfere the process of low-rank optimization. 

The recovered domain transformation is then re-applied to transform each corresponding gait silhouette into the 

canonical view. The sequence of view-normalized gait silhouettes will be further used in gait recognition procedure. 
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Figure 1a:- View-invariant gait recognition framework of view-normalization. The numbers present the orders of 

the processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure 1b:- View-Invariant gait recognition of gait feature extraction. 

 

As mentioned in the introduction above, to address the challenge remaining from the view-normalization, a scheme 

of Procrustes Shape Analysis (PSA) is applied [15] for gait feature extraction and similarity measurement. The 

preprocesses of shape boundary extraction and shape resampling are applied on each view-normalized gait 

silhouette to generate the resampled shape boundary which will be described using Pairwise Shape Configuration 

(PSC) [4]. PSC describes a shape using a first-order derivative (i.e., tangent) of the shape boundary. In PSA, 

Procrustes Mean Shape (PMS) is extracted from a set of PSCs in complete walking cycle(s) as a view-invariant gait 

feature. PMS is an average shape configuration computed from a given set of shape configurations (i.e., PSCs) by 

minimizing a sum of Euclidean distances between PMS and each configuration in the set. Then, the similarity 

between two PMSs of any two gaits from any two views is measured based on Procrustes Distance (PD) under the 

common canonical view. 

Shape re-sampling 
process 

Shape 
description 

Re-sampled 
Gait shape boundaries 

Gait shape boundaries 

Gait feature 
extraction 

Procrustes Mean Shape 
(PMS) 

 

Pairwise Shape Configurations 
(PSCs) 

 

A sequence of the normalized  
 silhouettes under the canonical view 

Shape boundary 
extraction 

Gait period 
analysis 

Silhouette 
view-normalization 

The sequence of gait silhouettes 
from complete walking cycle(s) 

A gallery sequence of the 
normalized 

silhouettes under the canonical 
view 

Gait texture 
extraction 

Low-rank 
texture 

optimization 

Gait Texture Image (GTI) 

 

Domain transformation 

 

A sequence of gait 
 silhouettes from a certain view 

1 

2 

3 

4 

5 

6 

7 

7 

8 



ISSN: 2320-5407                                                                                Int. J. Adv. Res. 5(10), 1851-1864 

1854 

 

The View-Invariant Gait Recognition method  is  compared with  other seven existing methods in the second 

category including Gait Energy Image [18], View rectification [5], Centroid Shape Configuration (CSC) + 

Procrustes Shape Analysis [15], Pairwise Shape Configuration + Procrustes Shape Analysis [4] + Transform 

Invariant Low-rank Textures + Gait Energy Image, Transform Invariant Low-rank Textures + Centroid Shape 

Configuration + Procrustes Shape Analysis and  Transform Invariant Low-rank Textures + Pairwise Shape 

Configuration + Procrustes Shape Analysis. The better performance of the View-Invariant Gait Recognition is given 

below in Table 1. 

 

Table 1:- Performance of View-Invariant Gait recognition (%) in the second category 

 

The View-Invariant Gait Recognition method  is  compared with other four existing methods in the third category 

including Fourier Transform – Singular Value Decomposition [19], Gait Energy Image – Singular Value 

Decomposition [9], Gait flow Image + Canonical Correlation Analysis [7] and Gait Energy Image + Support Vector 

Regression [8]. The better performance of the View-Invariant Gait Recognition is given below in Table 2. 
 

Table 2:- Performance of View-Invariant Gait recognition (%) in the third category 

 

 The View-Invariant Gait Recognition method is compared with other eight existing methods in the experiment A of 

the USF gait database including Baseline [12], population Hidden Markov Model [20], Gait Energy Image [18], 

Motion Silhouette Contour Template + Static Silhouette Templates [21], Hidden Markov Model [22], Eigen feature 

Probe view (θp) 54
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 98 79 69 54 59 

Probe view (θp) 72
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 79 98 97 81 57 

Probe view (θp) 90
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 69 97 98 93 56 

Probe view (θp) 108
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 49 82 94 97 80 

Probe view (θp) 126
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 63 55 56 80 98 

Probe view (θp) 54
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 98 77 68 54 56 

Probe view (θp) 72
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 79 98 96 81 54 

Probe view (θp) 90
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 70 97 98 93 55 

Probe view (θp) 108
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 47 80 95 97 78 

Probe view (θp) 126
0
 

Gallery view (θg) 54
0
 72

0
 90

0
 108

0
 126

0
 

Recognition rate (%) 58 53 55 77 98 



ISSN: 2320-5407                                                                                Int. J. Adv. Res. 5(10), 1851-1864 

1855 

 

[23], Pose Energy Image + Linear Discriminant Analysis [24] and Compact Feature Extraction Transforms [25]. 

The better performance of the View-Invariant Gait Recognition is given below in Table 3. 
  

Table 3:- Performance of View-Invariant Gait recognition (%) in the experiment A of the USF Gait Database. In 

Experiment A, Probe and Gallery Gaits are recorded from different cameras L and R, respectively. The camera’s 

lines of sight are verged at approximately 30 
 

 
2.2 Cross View Gait Recognition:- 

A Gait recognition method “Recognizing Gaits across views through Correlated Motion Co-Clustering” [16] is 

studied. In figure 2 given below rectangles represent inputs/outputs, while ellipses represent processing steps. Given 

a training dataset containing individual gaits from two different views, our frame work contains three main steps in 

the training process, namely gait partitioning model using bipartite graph multipartitioning, Correlation optimization 

using Canonical Correlation Analysis (CCA) and view normalization using linear approximation. 
 

The first step is to learn gait partitioning model for cross view gait recognition. A bipartite graph is used to model 

correlations between gaits from two different views, then apply bipartite graph multipartitioning to co-cluster gaits 

across the two views into multiple groups each of which contains one segment of gait from one view and another 

segment of gait from another view. Inside each group, it can assure that these two segments are most correlated and 

have most similar gait information but from different views. 

                                             

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 
 

Figure 2:- Framework for cross-view gait recognition. 
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correlation is maximized. Such subspaces are called CCA subspaces. The final step is to learn a linear 

approximation model to linearly transform the corresponding segments of gaits from the two CCA subspaces into 

the same CCA subspace. 
 

In the testing phase, probe and gallery gaits are co-clustered into segments using the relevant (i.e., regarding their 

views) trained gait partitioning model. Then, the correlation optimization model (i.e., CCA projection matrices) and 

the linear approximation model which have been obtained in the training process, are applied on the gait segments to 

project them onto a common CCA subspace where the similarity measurement can be carried out properly. 

 

 The Cross-View Gait Recognition method  is  compared with other six existing methods including Baseline [12], 

View rectification [5], Gait Energy Image – Canonical Correlation Analysis [7], Gait Energy Image – Singular 

Value Decomposition [9], Gait Energy Image – Support Vector Regression [8] and Fourier Transform – Singular 

Value Decomposition [19]. The better performance of the Cross-View Gait Recognition is given below in Table 4. 
 

Table 4:- Performance of Cross-View Gait Recognition (%) 
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The Multi-View To One-View Gait Recognition method  is  compared with other three existing methods including: 

Gait Energy Image – Singular Value Decomposition [9], Gait Energy Image – Support Vector Regression [8] and 

Fourier Transform – Singular Value Decomposition [19]. The better performance of the Cross-View Gait 

Recognition is given below in Table 5. 
 

Table 5:- Performance of Multi-View to One–View  Gait Recognition (%) 
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The Cross-View Gait Recognition method is compared with other eight existing methods in the experiment A of the 

USF gait database including Gait Energy Image [18], Motion Silhouette Contour Template + Static Silhouette 
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Templates [21], Population Hidden Markov Model [20], Pose Energy Image + Linear Discriminant Analysis [24], 

University of South Florida [12],  Hidden Markov Model [22] and Compact Feature Extraction Transforms [25]. 

The better performance of the View-Invariant Gait Recognition is given below in Table 6. 

 

Table 6:- Performance of Cross-View Gait Recognition (%) in Clustered Outdoor Environment using the 

experiment A of the USF Gait Database 

 

The Cross-View Gait Recognition  method  is  compared with other three existing methods including Gait Energy 

Image – Canonical Correlation Analysis [7], Gait Energy Image – Support Vector Regression [8] and Gait Energy 

Image – Singular Value Decomposition [9].  The better performance of the Cross-View Authentication is given 

below in Table 7. 
 
Table 7:- The Performance (%) of Cross-View Gait Authentication method θp denotes Probe view. θg denotes 

Gallery view 

 
2.3 Recognizing Gaits on Spatio-Temporal Feature Domain:-  

A Gait recognition method “Recognizing Gaits on Spatio-Temporal Feature Domain” to extracts and recognizes gait 

feature from a raw video sequence on a spatio-temporal feature domain without any pre-processing on the video [17]  

is studied. In figure 3 given below rectangles represent inputs/outputs, while ellipses represent processing steps. 

 

Given a Probe gait and a Gallery gait dataset, gait recognition is to find the best matched identity of the probe gait 

against the other gaits in the gallery dataset.  First, Spatio-Temporal Interest Points (STIPs) are detected from a gait 

video individually. STIPs provide compact and abstract representations of patterns in each gait video, which are 

local structures in spatio-temporal domain where image values have significant local variations in both space and 

time. These variations are linked to significant movements of human gait patterns in a video. Therefore, STIP is an 

interest point of a dominant walking pattern, which is used to represent characteristics of each individual gait.  

 

 Second, Histogram of Image Gradient (HOG) and Histogram of Optical flow (HOF) are used to compute a 

descriptor of each STIP. They are applied on a 3D video patch (i.e. width * height * time) in a neighborhood of each 

detected STIP. A concatenation of HOG and HOF features are then used as a STIP descriptor. It will describe 

walking patterns around the interest point in space and time.   

 

Third, Bag-of-Words (BoW) is used to extract a gait feature by applying on the detected STIP descriptors in each 

gait video. Then the simple but widely adopted Euclidean distance is used to measure the dissimilarity between any 

two gait features, and Nearest Neighbor is used as a classification method. It can be seen that, this method is also 

does not rely on any foreground/background segmentation. This method is more robust to partial occlusions caused 

by many real-world factors such as carrying a bag and varying a cloth type. 

 

The Gait Recognition method on Spatio – Temporal Feature Domain is  compared with baseline [26] method in the 

Experiment set A. The better performance of the Gait Recognition method on Spatio – Temporal Feature Domain is 

given below in Table 8. 
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Figure 3:- Framework of gait recognition on a spatio-temporal feature domain. 
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The Gait Recognition method on Spatio – Temporal Feature Domain is  compared with baseline [26] method in the 

Experiment set B. The better performance of the Gait Recognition method on Spatio – Temporal Feature Domain is 

given below in Table 9. 

 
Table 9:- Performance of Gait Recognition (%) on Spatio - Temporal Feature Domain on the Experiment    Set B 
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The Gait Recognition method on Spatio – Temporal Feature Domain is  compared with baseline [26]  method in the 

Experiment set C. The better performance of the Gait Recognition method on Spatio – Temporal Feature Domain is 

given below in Table 10. 

 
Table 10:- Performance of Gait Recognition (%) on Spatio - Temporal Feature Domain on the Experiment    Set C 
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Component and Discriminant Analysis [28], Right Fore + Feature Subset Selection [29], Right Fore + Subset 

Selection + Component and Discriminant Analysis [29],   Right Fore + Subset Selection + Multiple Discriminant 

Analysis [29], Mj + ACDA [30], Left Fore + AVG [31], Left Fore + Dynamic Time Warping  [31], Left Fore + 

oHidden Markov Model [31], Left Fore + iHidden Markov Model [31], Gait Enery Image + Principal Component 

Analysis + Linear Discriminant Analysis[32], Gait Pal and Pal Entropy [33] and Gait Entropy Image.   The better 

performance of the Gait Recognition method on Spatio – Temporal Feature Domain is given below in Table 11. 
 
Table 11:- Performance of Gait Recognition (%) on Spatio -Temporal Feature Domain under changes of Clothing 

and Carrying Condition 

 

2.4 Gait Recognition System using Modified Independent Component Analysis:- 

A Gait recognition method Modified Independent Component Analysis (MICA) is studied. The MICA method 

based Gait Recognition System consists of three main phases i) Human detection and tracking ii) Feature extraction 

and iii) Feature selection and Training or Recognition using MICA. Initially, the moving objects (human) are 

segmented and tracked in each frame of the given video sequence (tracking). The second phase extracts the binary 

silhouette from each frame and maps the 2D silhouette image into a 1D normalized distance signal (feature 

extraction). The shape changes during the movement are transformed into a sequence of 1D signal, deriving the 

temporal changes of gait pattern. On these 1D signals, MICA is performed to compute the salient independent 

components of gait features during the training phase. Based on the similarity between the reference patterns and the 

test sample in the parametric eigenspace, the gait recognition is achieved. The algorithm of MICA is detailed in the 

figure 4 given below. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 

                    Figure 4:- Block diagram of Gait Recognition System using MICA. 
 

Probe - Gallery nm-nm bg-bg cl-cl bg-nm cl-nm bg-cl Average 

Recognition rate (%) 95.4 73.0 70.6 60.9 52.0 29.8 63.6 
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A Gait recognition method “On the Analysis and Application of Gait Recognition System” is compared with other 

two existing methods including Principal Component Analysis and Independent Component Analysis. The better 

performance of the Gait Recognition system method MICA is given below in Table 12. 
 

Table 12:- Performance of Gait Recognition system MICA 

A Gait recognition method MICA is compared with other five existing algorithms including: Silhouette Template 

matching Based [35], Self-Similarity Based [36], Baseline based [37], Silhouette Analysis-Based Recognition [38] 

and  Model Based approach [39]. The better performance of the Gait Recognition system method on MICA is given 

below in Table 13 
 

Table 13:- Performance of Gait Recognition system MICA 

 

2.5 Gait Recognition System using Extreme Learning Machine:-  
A Gait recognition method Extreme Learning Machine (ELM) is studied. The execution of Gait classifier using 

ELM is as follows. First, the salient gait features are extracted with suitable pre-processing. The extracted features 

are subjected to ranking and normalization using Principal Component Analysis and t-test methodologies prior to 

classification. The ELM is utilized as gait classifier considering its high accuracy rate with reduced computational 

complexity and time. The salient features of ELM classifier are prevailing the limitation of over fitting of samples 

during training phase and the problem of local minima as the case with many Artificial Neural Network (ANN) 

based learning methods, learning with minimal hidden nodes using a simple and compact network structure, 

converging faster with less training time. The ELM works well with greater accuracy in classification and detection 

of abnormal gait. The algorithm of ELM is detailed in figure 5 given below. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                

                                                 Figure 5:- Block Diagram for Gait Classification using ELM. 
 

A Gait recognition method ELM is compared with Support Vector Machine. The better performance of the Gait 

Recognition system method ELM is given below in Table 14. 

Data set False Acceptance Rate (%) False Rejection Rate (%) 

Angle view MICA MICA 

0o , Left 1.2769 2.8986 

0o , Left 1.6571 2.3930 

45o , Left 2.0124 1.9124 

45o , Left 1.8139 1.4234 

90o , Left 1.0235 1.5615 

90o , Left 2.8766 2.906 

Algorithm Top 5% Top 10% 

MICA 98.97 100 
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Gait Images 

 

Salient Gait 
Features 

 

Statistical Based Feature 
Selection 

 

ELM Classifier 

 
Feature Normalization 

 

Normal 

 
Abnormal 

 

Gait Feature 
Extraction 
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Table 14:- Performance of Gait Recognition system ELM with Various Normalization Technique 

 

A Gait recognition method ELM is compared with Support Vector Machine. The better performance of the Gait 

Recognition system method on ELM is given below in Table 15. 
 

Table 15:- Performance of Gait Recognition system ELM with Total Training Time 

 

Conclusion:- 

In this paper we analyzed five advance methods for human gait recognition. They are View-Invariant Gait 

Recognition method, Cross View Gait Recognition method, Recognizing Gaits on Spatio-Temporal Domain 

method, Gait Recognition System using Modified Independent Component Analysis method and Gait Recognition 

System using Extreme Learning Machine method. The View-Invariant Gait Recognition method produces the 

recognition rate of 98%. It extracts (preprocessing) gait silhouette  from each frame in  video gait sequence. The 

angles of probe view and gallery view are same or different. It considers only normal walking cycle. The Cross 

View Gait Recognition method produces the recognition rate of 91%. The Gait Energy Image is constructed 

(preprocessing) by sequence of aligned gait images in a window of complete walking cycle(s). The angles of probe 

view and Gallery view are different. The Gait Recognition System using Modified Independent Component 

Analysis method produces the recognition rate of 98.97%. It extracts foreground human subject (preprocessing) 

from the original image frames. It considers only normal walking cycle. The angles are only 0
o
, 45

o
and 90

o
 in probe 

view and gallery view. The Gait Recognition System using Extreme Learning Machine method produces the 

recognition rate of 97.56%.  

 

There is a gait feature extraction process from the video of the walking subject. It considers both normal and 

abnormal gait sequences with subject age, leg length, cadence (steps), stride length. The Recognizing Gaits on 

Spatio-Temporal Domain method produces the recognition rate of 63.6%. It constructs a new  gait feature directly 

from a raw video without  a preprocessing of foreground-background segmentation. The angle of probe view and 

gallery view are same or different caused by carrying bag and clothing. 
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