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Multivariate optimization was employed in the synthesis of silver 

nanoparticles (AgNPs) using a greener approach. The flowers, leaves 

and stem bark water extracts of Moringa oleifera were reacted with 

silver nitrate solution to form the silver nanoparticles.  Four factors 

namely; extraction time, extraction volume, reaction time and reaction 

temperature were optimized simultaneously with absorption via 

ultraviolet – visible (UV-VIS) spectrometry used to follow the 

optimization, i.e., the response. The results showed that there were 

some interaction factors and as well as curvature that contributed 

significantly to the response. The silver nanoparticles (AgNPs) showed 

ultraviolet visible (UV-Vis) absorption peaks at 415, 426 and 420 nm 

for AgNPs synthesized from the flowers, leaves and stem bark water 

extracts, respectively. The three different plant parts of Moringa 

oleifera also produced AgNPs of a spherical shape as observed through 

a scanning electron microscope (SEM). The average sizes of AgNPs 

obtained when using the flowers, leaves and stem bark extracts were 

273. 98 nm, 96.72 nm and 95.12 nm, respectively. The stem bark 

extract produced better NPs in terms of uniform dispersity (mono-

dispersed), while the flowers and leaves produced poly-dispersed NPs. 
Copy Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Silver (Ag) is commonly referred to as a noble metal due to its inertness. Its use in nanotechnology has received a 

substantial amount of focus; such as producing silver nanoparticles (AgNPs) for use in various fields such as textile, 

catalysis, sensing, optics, antibacterial activity and data storage [1]. The AgNPs do not naturally occur hence various 

techniques have been developed to synthesise them. These include chemical reduction, photochemical reduction, 

electrochemical reduction, heat evaporation and biological techniques [2]. The latter technique involves the use of 

plant extracts and micro-organisms for synthesis and as such has been deemed a greener approach towards synthesis 

of AgNPs. Greener synthesis of NPs provides advancement over other methods as it is simple, cost effective and 

relatively reproducible and often results in more stable materials [3]. 

 

The use of plants for synthesis of AgNPs, however, is advantageous because it does not require elaborate processes 

such as intracellular synthesis and multiple purification steps or maintenance of microbial cell cultures [4], as is the 

case with micro-organism oriented NPs production. A number of plants have been used for synthesis of NPs. 

Moringa oleifera (MO) is one such plant. The plant is a member of the Moringaceae family, native to India and 

Pakistan, but widely cultivated in the Middle East, Africa and Southern Asia as a multipurpose crop [5]. The bark 
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extract has been shown to possess antifungal, anti-tubercular activity; the extracts of the leaves, seeds and roots have 

been studied for wound healing antihepatotoxic, antifertility, hypotensive and analgesic activity [6]. The seeds have 

also been used for removal of heavy metals in aqueous solutions [7], as well as in flocculation studies [8]. 

 

In the production of AgNPs, however, research that has been put forth has followed the traditional one-variable-at-a-

time (OVAT) approach towards optimization of synthesis of the NPs [9 - 14]. This is where only one variable that 

affects the experimental response is changed, while the others are kept at a constant level [15]. This approach 

however, has some disadvantages: i) interactions between factors are not taken into account; ii) many experiments 

are needed when the number of factors increases; iii) only a small part of the experimental domain is examined; iv) 

the global optimum might not be found; and v) the found optimal conditions might depend on the starting conditions 

[16]. Another disadvantage is the increase in the number of experiments necessary to conduct the research leads to 

an increase of time and expenses as well as increase in consumption of reagents and materials [15]. Hence, the shift 

towards multivariate optimization.  

 

Multivariate optimization occurs in two phases: screening and response optimization. The screening phase is done as 

a prelude to an optimization to make sure that the variables being investigated do indeed significantly contribute to 

the response [17]. It can be carried out through the use of a factorial design or a fractional factorial design. This step 

identifies only those variables that have a major effect on the experimental response, thus eliminating the less 

significant and selecting the significant few. Screening designs are thereby capable of giving the main effects as well 

as the interaction effects [17], of the variables under investigation. The relationship between each variable (X1, X2, 

X3…Xi) and the experimental response (y) is investigated by performing a regression. The mathematical model as 

such will take the form shown by equation 1 [18]. 

 

                                     (1)  

Where y is the response, b is a constant and Xi and Xj are the input variables. The interaction effect is represented by 

the term XiXj  

 

Following the screening phase is the response optimization phase. This stage is commonly referred to as response 

surface methodology (RSM). At this stage all the significant variables are evaluated for their optimum set-points. 

This step is achieved through the use of either a central composite design (CCD) or a Box-Behnken design (BBD).  

A polynomial model describing the relation between the response and considered variables is built, with the model 

usually adopting a second-order polynomial, which caters also for curvature (equation 2) [16]. 

 

                            
        

              (2)  

 

Curvature is accounted for by the terms Xi
2
 and Xj

2
. 

 

Herein we report for the first time, to the best of our knowledge, the use of multivariate optimization methodologies, 

towards synthesis of AgNPs. The multivariate approach offers a fairly simpler and cost-effective route towards 

synthesis because all experimental variables are varied at the same time, spanning over the whole experimental 

domain, resulting in fewer performed experiments [19]. The optimum conditions found with this approach are also 

independent of the starting conditions, as such a more global optimum is found [16]. 

 

Experimental:- 

Materials and methods:- 
Silver nitrate (AgNO3; 99.8%) was purchased from Glassworld, South Africa. Methanol (99.5 % assay) was 

obtained from Rochelle chemicals, South Africa. Moringa oleifera flowers, leaves and stem bark were collected 

from the National Health Laboratory in Gaborone, Botswana. All solutions were prepared using deionized water 

produced from a Millipore water purification system obtained from Germany.  Multivariate optimization was carried 

out using Minitab release 14 statistical software. 

 

Plant extracts preparation and AgNPs synthesis:- 

After collection, the plant materials were washed 3 times with deionized water then allowed to air dry.  To make the 

plant part extract: 1 g of each plant part was extracted with 100 mL deionized water for the stipulated time (see 

Table 1).   
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Factors/variables that were envisaged to affect AgNPs synthesis were identified as plant extraction time, extract 

volume, reaction time and reaction temperature low levels and high levels (i.e., the ranges) are as  shown in Table 1. 

To produce AgNPs, the plant extract was reacted with 1 mM AgNO3 by varying the factors shown in Table 1, 

following the experimental matrix shown in Table 2. 

 

Table 1:-Two-level ½ fraction factorial design data showing the experimental factors and levels used for the 

screening of AgNPs synthesis 

Variable Factor Low level High level 

A Extraction time (minutes) 5 30 

B Extract volume (mL) 2 10 

C Reaction time (minutes) 10 60 

D Reaction Temperature (ºC) 25 85 

 

Optimization of AgNPs synthesis:- 

A 2-level ½ fraction factorial design was set up using the data shown in Table 1 for screening of significant 

variables. Table 2 shows an experimental matrix with the response (in this case, absorbance) for each run for stem 

bark. Similar matrices were produced for the other plant parts. The experimental matrix in each case, was used for 

screening purposes. Two replicates were carried out for each of the plant parts used for synthesis of AgNPs. A 

similar set up was used to create a central composite design (CCD) for optimization of the variables. The 

experimental matrix in this case had a total of 62 runs to be performed (inclusive of the two replicates), of which 

upon analysis produced an optimized figure for each parameter. 

 

Table 2:-The two-level ½ fraction factorial experimental design and yields (in terms of absorbance) for screening of 

factors when using the stem bark extract for AgNPs synthesis 

Run Order  Extraction time 

(minutes)  
Extract 

volume (mL)  
Reaction time 

(minutes)  
Reaction 

temperature (°C)  
Absorbance  

1  30  2  10  85  0.040  

2  5  10  60  25  0.021  

3  5  2  10  25  0.007  

4  5  2  10  25  0.005  

5  5  2  60  85  0.045  

6  30  10  10  25  0.029  

7  5  10  60  25  0.017  

8  30  2  60  25  0.031  

9  30  10  60  85  0.137  

10  5  2  60  85  0.031  

11  30  2  10  85  0.030  

12  30  10  60  85  0.122  

13  30  2  60  25  0.015  

14  30  10  10  25  0.031  

15  5  10  10  85  0.078  

16  5  10  10  85  0.052  

 

UV-Vis analysis:- 

UV-Vis absorption measurements of the synthesized NPs were carried out using a double beamed 

spectrophotometer (Evolution 201; Thermo Scientific, USA). The analysis range was from 250 – 700 nm, with 

ultrapure water used as the blank for each analysis. Absorbance measurements were the primary means used to 

follow the optimization processes. 

 

Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis:- 

A Philips XL 30 ESEM coupled with EDX was used to deduce the size, morphology and elemental composition of 

the nanoparticles (NPs) synthesised from optimized conditions of each factor. Prior to SEM-EDX analysis, the 

synthesised NPs were centrifuged at 4000 rpm for 15 minutes. The supernatant was decanted off then the NPs were 

washed three times with ultrapure water. This was achieved by addition of the ultrapure water to the 10 mL mark of 

the centrifuge tube then vortexing for 2 minutes to re-disperse the NPs. This was followed by centrifuging again at 



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 6(7), 953-962 

956 

 

4000 rpm for 15 minutes. After washing with ultrapure water, the NPs were washed twice with methanol. Washing 

with methanol was done in order to remove the water molecules thereby speed up the process of drying of the NPs 

on the SEM grid. A drop of the NP solution was then placed on an SEM grid, and then allowed to air dry. An E6700 

Polaron range high vacuum evaporator sputter coater (Quorum Technologies, UK) was used to coat the NPs with 

carbon. These were then taken for SEM-EDX analysis, which operated under high vacuum and beam acceleration 

voltage of 20 kV (the recommended operating voltage for material samples).  

 

Results and Discussion:- 
Multivariate optimization:- 

Fractional factorial design:- 

Analysis of the outcome (yield) of the experiments performed when the stem bark extract was used for synthesis are 

shown by Figure 1. A normal probability plot of standardized effects shows the magnitude of the main effects of 

each factor as well as the effects brought about by the interaction of factors, towards the obtained yields. The 

magnitude of each type of effect is represented by its distance from the solid line, as well as the side on which the 

effect lies with respect to the solid line. Negative effects lie to the left while positive effects lie to the right of the 

solid line. The solid line indicates where the points would fall if the effects were zero, while the percentage in the y-

axis signifies the weightage of each factor’s contribution towards the obtained yield. All variables investigated had a 

significant contribution towards the yields obtained after performance of each experiment. Reaction time had the 

greatest contribution as it lay furthest to the right, with a weightage of ~90%; while extraction time contributed the 

least, with a weightage of ~10%. The design also revealed contributory effects of interaction between extraction 

time-extract volume (AB), extraction time-reaction time (AC), as well as extraction time-reaction temperature (AD). 

As such all four variables were used to create a CCD to obtain optimum set points of each variable for each plant 

part. Similar outputs were obtained when the leaves and stem bark extracts were used for synthesis. 
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Figure 1:-Normal probability plot of the standardized effects when using stem bark extract for AgNPs synthesi 

 

The statistical significance of the model applied was evaluated through use of Fisher distribution (F-test) for analysis 

of variance (ANOVA) to validate the linear model at 95% confidence level. Table 3, shows the ANOVA output 

obtained when using the stem bark extract for AgNPs synthesis; both the main effects and interaction effects were 

significant (p-value < 0.05). The regression coefficient, R
2
, was also used to assess the fit of the model to the 

experimental data. The values were found to be 99.58%, 91.74% and 96.62% when using the flower, leaf and stem 

bark extracts respectively. This suggested that the model fit adequately to the experimental data. For a good fit of a 

model, the regression coefficient is suggested to be at least 80% [20].  

 

Table 3:-ANOVA table for the yields obtained from the ½ fractional factorial design for AgNPs synthesis using 

stem bark extract 

Source DF Seq SS Adj SS Adj MS F P 

Main Effects 4 2.859 2.859 0.7147 353.9 0.000 

2-Way Interactions 3 0.9777 0.9777 0.3259 161.4 0.000 

Residual Error 8 0.01615 0.01615 0.002019   
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Pure Error 8 0.01616 0.01616 0.002019   

Total 15 3.853     

 

Central composite design (CCD):- 

For each plant part, the factors that were found to significantly affect the response from the screening phase, were 

used to create a response surface design in order to determine the optimum conditions of each factor. This was 

achieved through the use of a CCD. Figure 2 shows a three dimensional (3D) surface graphs visualizing the 

interaction of the variables and the response given. These types of plots show the response in three dimensions, thus, 

if there are three or more variables, the plot visualization is possible only if one or more variables are set to a 

constant value [15]. The plots show a high response value (absorbance in this case) towards the extremities of each 

factor, adopting a curvilinear shape in accordance with the quadratic model fitted. 

 

 
Figure 2:-Response surface plots of the yield (absorbance) obtained due to interaction of factors when stem bark 

extract was used for AgNPs synthesis. 

 

Table 4 shows the desirable or D values along with the optimum conditions for the variables investigated following 

the use of response optimizer. The response optimizer is a tool that enables identification of the optimum conditions 

of each factor under investigation, to yield a desirable response. This brings in the concept of the desirability 

function (D). Its aim is to find operating conditions that ensure compliance with the criteria of all the involved 

responses and, at the same time, to provide the best value of compromise in the desirable joint response [21]. 

Desirability ranges between 0 (representing an undesirable response) and 1 (a desired or ideal response). For AgNP 

synthesis using the flowers leaves and stem bark extracts, the set conditions gave D values of 1.00, 0.991 and 0.999. 
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This signified that at the set conditions of each factor, their combination would result in obtaining the highest 

response. Hence, these were highly desirable conditions. 

 

Table 4:-Optimum conditions and D value for each variable for each plant part 

Plant part Variable D value 

Extraction 

time (min) 

Extract volume 

(mL) 

Reaction time 

(min) 

Reaction temperature 

(°C) 

Flower 22 10 60 85 1.00 

Leaf 5 10 40 85 0.991 

Stem bark 11 10 60 85 0.999 

 

Table 5 presents the results of the CCD showing the magnitude of each factor, interactions and the quadratic terms, 

which is presented with equation 3 (derived from equation 2, coefficients of which were shown in Table 5), where x1 

is the extraction time, x2 is the extract volume, x3 is the reaction time and x4 is the reaction temperature; y represents 

the response, respectively.  

 

Table 5:-Estimated regression coefficients for the yields obtained when using stem bark extract for AgNPs synthesis 

Term Coef SE Coef T P 

Constant 0.0412 0.00440 9.37 0.000 

Extraction time -0.00191 0.00350 -0.548 0.586 

Extract volume 0.0431 0.00350 12.3 0.000 

Reaction time 0.0309 0.00350 8.83 0.000 

Reaction temperature 0.0676 0.00350 19.3 0.000 

Extraction time*Extraction time -0.00840 0.00921 -0.912 0.366 

Extract volume*Extract volume 0.00410 0.00921 0.445 0.658 

Reaction time*Reaction time -0.00740 0.00921 -0.804 0.426 

Reaction temperature*Reaction temperature 0.0543 0.00921 5.90 0.000 

Extraction time*Extract volume -0.0100 0.00371 -2.71 0.009 

Extraction time*Reaction time 0.00416 0.00371 1.12 0.268 

Extraction time*Reaction temperature 0.000656 0.00371 0.177 0.860 

Extract volume*Reaction time 0.0175 0.00371 4.71 0.000 

Extract volume*Reaction temperature 0.0350 0.00371 9.43 0.000 

Reaction time*Reaction temperature 0.0320 0.00371 8.64 0.000 

S = 0.02098   R-Sq = 94.9%   R-Sq(adj) = 93.4% 

 

  (                                       
        

        
        

           

                                             )  

                                          (3) 

 

However, to assess the significance of the contribution that each effect had on the response, a p-value for each effect 

was used. For this work a p-value of 0.05 was used and any effect that shows a value less than 0.05 shows that it 

significantly affected the response and above 0.05 shows it did not affect the response significantly. Therefore, from 

Table 5, all the main effects except, extraction time (    significantly affected the response; all second order 

interactions terms except extraction time*reaction time (      and extraction time* reaction temperature (      
were significant while for the quadratic term for only the reaction temperature, i.e., reaction temperature*reaction 

temperature (  
 ) was significant. Based on this, the full quadratic model showing only the significant variables is 

shown by in applied to the data obtained from the AgNPs synthesised from the stem bark extract showing only the 

significant terms is represented by equation 4. Similar equations and tables for flowers and leaf extracts were 

obtained. 
 

  (                                
                                     )  

      …………………………………………………………………………………………(4) 

Therefore, time taken to extract the plant material that was reacted with the silver salt to form AgNPs, did not a 

significant effect on the formation of AgNPs. The reaction temperature played a significant role as it contributed to 
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the curvature (a maxima) in the optimization process and the other four interaction terms – these would not have 

been picked using OVAT optimization strategy. 

 

The R
2
 values were found to be 94.9%, 95.4%, 84.9% and for when using the stem bark, flowers, and leaf extracts 

for the synthesis of AgNPs, respectively. This indicated the adequacy of the quadratic model used. The lack-of-fit 

test was also used to further examine the adequacy of the model. The p-value of the LOF test must be less than the 

significance level (α) for there to be an insignificant LOF (Noordin et al., 2004). An insignificant LOF implies that 

the model accounts for the errors brought about by the regressor-response relationship. In this work, α was 0.05. The 

p-value for the LOF was found to be 0.000 for the stem bark extract, 0.001 for the leaves extract and 0.000 for the 

flower extract. 

 

UV-Vis analysis:- 

Particle shape, size and aggregation affect the absorption spectra of NPs [22]. The region of between 400 – 450 nm 

has been shown to be the characteristic region at which silver plasmons resonate [23 - 26], giving strong absorbance 

peaks in that region. Figure 3 shows the absorption spectra of the synthesized AgNPs using the optimized conditions 

from the three plant parts. AgNPs obtained from the flower extract showed the characteristic peak at 415 nm [Figure 

3(a)]; while from the leaves extract the peak was located at 426 nm [Figure 3(b)]; and lastly from the stem bark 

extract the peak was located at 420 nm [Figure 3(c)]. Occurrence of the peaks centered at around 420 nm also 

suggested that the general shape of the NPs obtained was spherical. Small spherical nanoparticles exhibit a single 

surface plasmon band at small wavelengths, whereas large anisotropic particles reveal two or three bands at longer 

wavelengths [27]. A similar observation was made by Sathyavathi et al. [28], Prasad and Elumalai [29], whereby 

AgNPs was synthesized using Moringa oleifera leaf extract using the OVAT approach. Both works [28, 29] showed 

AgNPs that were spherical in shape.  

 

 
Figure 3:-UV-Vis absorption spectra of AgNPs synthesized from (a) flowers (b) leaves and (c) stem bark extracts 

 

Scanning Electron Microscopy (SEM) analysis:- 

The morphological characteristics of the synthesized AgNPs were observed using a SEM. The images obtained 

revealed that the NPs were spherical in shape, as shown by Figure 4. Well defined images, in terms of resolution and 

shape elucidation were obtained at a magnification of 15000x. The average sizes of the AgNPs were found to be 

273. 98 nm, 96.72 nm and 95.12 nm when using the flowers, leaves and stem bark extracts for AgNPs synthesis, 

respectively. Figure 4 also revealed that amongst the three, the stem bark mediated AgNPs were of uniform 

dispersity. The dispersity of the flowers and leaves AgNPs was not uniform, showing varying sizes of the NPs 

obtained. 
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Figure 4:-SEM micrographs of AgNPs obtained when using (a) flowers, (b) leaves and (c) stem bark extracts for 

synthesis 

 

Energy-dispersive X-ray spectroscopy (EDX) analysis:- 

Results obtained from EDX analysis are shown by Figure 5. The spectra show the most prominent peak as the silver 

peak, and thus confirmed the formation of AgNPs. The second prominent peak was that of carbon, which came 

about as a result of the carbon coating that was done to prevent charging of the sample prior to SEM-EDX analysis. 

Figure 5(c) shows another significant peak due to chlorine. This may have been brought about by the plant material, 

eventually ending up being adsorbed onto the surface of the NPs. 

 

 
Figure 5:-EDX spectra of the AgNPs obtained when using (a) flowers, (b) leaves and (c) stem bark extracts for 

AgNPs synthesis 

 

Conclusion:- 
The present work demonstrated the capability of employing multivariate optimization for a greener approach of 

AgNPs synthesis. There were interaction terms and quadratic terms that significantly affected the response – these 

would not have been observed when using one-variable at a time (OVAT) optimization approach. As such a more 

global optimum was obtained and the optimized values synthesized relatively good AgNPs of spherical shape, with 

average sizes of 273. 98 nm, 96.72 nm and 95.12 nm for AgNPs obtained when using the flowers, leaves and stem 

bark extracts, respectively. The stem bark extract produced better NPs in terms of uniform dispersity (mono-

dispersed), while the flowers and leaves produced poly-dispersed NPs.  
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