

RESEARCH ARTICLE

MINERAL TRIOXIDE AGGREGATE VERSUS CALCIUM HYDROXIDE IN INDIRECT PULP TREATMENT OF PERMANENT TEETH: A SYSTEMATIC REVIEW.

Marwa Aly¹, Dalia Moheb¹, Osama Elshahawy¹, Ahmed Abd- elsamad² and Mervat Rashed¹.

- Pediatric Dentistry and Dental public health, Faculty of Oral and Dental Medicine, Cairo University –Egypt.
 Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University –Egypt.
- 2. Oral Radiology, Faculty of Oral and Dental Medicine, Cano Oniversity –Egypt.

Manuscript Info

Abstract

Manuscript History

Received: 28 May 2017 Final Accepted: 30 June 2017 Published: July 2017

Key words:-

Indirect pulp treatment, Mineral Trioxide Aggregate and Calcium Hydroxide **Background:** Different materials were used in the treatment of deeply decayed vital teeth. For many years, the gold standard for indirect pulp capping procedures was Calcium hydroxide. Nevertheless, the disadvantages reported with its use has led to its replacement with other materials such as mineral trioxide aggregate.

Objective: The purpose of this systematic review is to compare the effectiveness of mineral trioxide aggregate (MTA) and calcium hydroxide (CH) in indirect pulp treatment of permanent teeth.

Methods: Detailed search on PubMed, Web of science, Cochrane Library, Google and Ebsco databases was performed. Studies meeting the criteria for inclusion were accepted, and necessary information was independently extracted by 2 authors by means of a standardized form. Evaluation was done for the success rate and dentin bridge formation.

Results: The inclusion criteria were met in three studies that were processed for data extraction and qualitative assessment.

Conclusions: Due to presence of high risk of bias in the included studies, there is no conclusive evidence on the superiority of one material over the other.

Copy Right, IJAR, 2017,. All rights reserved.

Background:-

The conventional procedure for indirect pulp treatment comprises the application of a bacteriostatic/bactericidal agent, such as calcium hydroxide, over the remaining dentin caries to encourage remineralization and pulp protection (Falster et al., 2002). However, several weaknesses were documented with the use of calcium hydroxide material as: the presence of tunnels in dentin barrier, excessive dentin formation obliterating the pulp chamber, absence of adhesion and solubility in oral fluids (Accorinte et al., 2008). New materials have evolved recently as alternatives to CH because of its fore mentioned disadvantages. MTA became a widespread alternative for CH (Camilleri 2008).

.....

This systematic review aimed to compare the effectiveness of mineral trioxide aggregate (MTA) and calcium hydroxide (CH) in indirect pulp treatment of permanent teeth.

Corresponding Author:- Marwa Aly.

Address:- Pediatric Dentistry and Dental public health, Faculty of Oral and Dental Medicine, Cairo University –Egypt.

Materials and Methods:-

Identifying the review Question:-

Firstly, a PICO structure (Patient, Intervention, Comparators, Outcome) was used for the development of the research question as follows:

Patient / Population: Permanent teeth with deep caries. Intervention: Indirect pulp treatment using Mineral trioxide aggregate Control/ Comparator: Indirect pulp treatment using Calcium hydroxide. Outcome measures: success rate and dentin bridge formation.

Research Question:-

In deeply decayed permanent teeth, will indirect pulp treatment using CH in comparison to indirect pulp treatment using MTA differ in terms of success rate and dentin bridge formation?

Search Strategy:-

In the present study, PubMed, Web of science, the Cochrane Library, Google and Ebsco were used as the electronic databases. The following key words were used: indirect pulp capping, indirect pulp cap, indirect pulp therapy, indirect pulp treatment, MTA, mineral trioxide aggregate, calcium hydroxide and Ca(OH)2. Additional search methods included a manual review of the reference lists of relevant studies. **Figure 1. Flow diagram for the search results.**

Inclusion Criteria:-

- 1. Randomized controlled trials (RCTs),
- 2. Indirect pulp treatment on permanent teeth,
- 3. Studies comparing mineral trioxide aggregate and calcium hydroxide,
- 4. The success rate and or dentin bridge formation were recorded.

Data Extraction:-

Studies that fulfilled the inclusion criteria were processed for data extraction. Two authors independently extracted the necessary information. The following information were extracted from each study: year of publication, country of origin, study design, informed consent obtained, ethical approval, funding, setting, aim of the study, participants age, numbers and gender, inclusion and exclusion criteria, details of material, methods, restoration, duration of follow up, principal and secondary outcome measures, methods of assessing outcome measures and studies results.

Methodological Quality Appraisal:-

Assessment of the quality of included studies was performed using the Cochrane Collaboration's tool for assessing risk of bias.

Results:-

Results Characteristics of Included Studies:-

From 62 potentially relevant studies, only 3 studies were eligible (Leye Benoist et al. 2012, Petrou et al. 2014 and Sultana et al. 2016). Two studies reported the success rate (Leye Benoist et al. 2012 and Petrou et al. 2014). The success rate was higher for MTA compared to CH in both studies as follows: (MTA 94.5 %, CH 86.9 %, p = 0.72) and (89.6% with MTA, and 73% with CH, P = 0.63). Also, two studies (Leye Benoist et al. 2012 and Sultana et al. 2016) reported the dentin bridge formation. Leye Benoist et al .2012 showed that at 6 months, there was an increase of 0.235 mm with MTA and of 0.221 mm with CH. No statistically significant difference was found in the dentine thickness between the two groups. While, Sultana et al. 2016 showed that at 12 months' observation period, 24 teeth (96%) of MTA and 19 teeth (76%) of CH with reparative dentin formation.

Figure 1:- Flow diagram for the search results.

Results of Methodological Quality Assessment:-

The three studies were assessed using the Cochrane Collaboration's tool for assessing risk of bias. Table 4, shows the findings for each risk of bias in each study. All studies revealed randomization, but they failed to define means for random sequence generation and did not sufficiently define allocation concealment. Blinding of the participants and personnel was mentioned in only one study that MTA and CH could be distinguished by the operator and so a double-blind clinical trial was not possible. Regarding the assessments of the outcomes in two studies, there was blinding of the assessor and detection bias was considered low risk. A description of withdrawals and dropouts was given in two studies, other sources of bias were not found in the three studies.

Reference		Details of Study						
	Count ry of origin	Year of publicati on	Study design	Inform ed consent obtaine	Ethical approval	Funding	Setting	Aim of study
Petrou et al. 2014	Germ any	2014	prospecti ve in vivo clinical trial with three parallel treatment s arms	d? yes	The study was approved by the ethical committe e Universit y of Greifswal d/German y	Not mention ed	The dental clinic of Greifswa ld Universit y and in a private practice.	To compare the clinical and microbiological outcomes of mineral trioxide aggregate (MTA), medical Portland cement, and calcium hydroxide on the dentin–pulp complex of permanent and primary teeth treated with two-step IPT.
Leye Benoist et al. 2012	Seneg al	2012	single- blind clinical trial	yes	The study had been approved by the ethics commissi on of the institution	The study was not finance d by any compan y or manufa cturer and has no commer cial aim.	The faculty clinic of the Departm ent of Dentistry , Universit y Cheikh Anta Diop, Dakar, Senegal.	To assess the effectiveness of mineral trioxide aggregate (MTA) used as an indirect pulp-capping material in human molar and premolar teeth.
Sultana et al. 2016	Bangl adesh	2016	prospecti ve comparat ive study.	yes	The proposed study protocol was approved by the Ethical Review Committee , BSMMU	Not mention ed	The Departme nt of Conservat ive Dentistry and Endodonti cs, Faculty of Dentistry, BSMMU	To assess the clinical and radiological outcomes of MTA and calcium hydroxide as indirect pulp capping agents in deep carious lesions of permanent teeth

Table 2:- Data Extraction of the Included Studies (participants and intervention).

	Participants						Interventions					
	Numbe r	Age:	Ge nd er	Inclusion and exclusion criteria		Group ing	Details of material		Met hods	Final rest	Durati on of Follo w up	
Petrou	Eighty-	17.2	-	(a) deep ca	ries lesio	on	Three	(a)	Aqueous	Parti	Glass	6 m
et al.	six	year	51	with abs	ence	of	groups	susper	nsion of	al	ionomer	

2014	teeth	s ±13. 8	% M ale ; - 49 % Fe m ale	radiolucencies at the periapical regions (b) Absence of pulp exposure, fistula, swelling of periodontal tissues, abnormal tooth mobility, and history of spontaneous pain;(c) Healthy appearance of adjacent gingiva;(d) Normal tooth color;(e) Positive vitality. Whereas non- restorable teeth or without functional use were excluded from the study.	: (a) calciu m hydro xide (b) medic al Portla nd cemen t (c) pure White MTA	calcium hydroxide (Greifswald University Pharmacy, Germany); (b) medical Portland cement (Holcim 103, White Portland Cement CEM) (c) pure White MTA (Ledermix® MTA, Riemser)	carie s remo val on 2 visit s, 6 mont hs inter val	resin- enforced zinc oxide eugenol followed by Compome r and amalgam	
Leye Benois t et al. 2012	60 paired perman ent teeth (30 in each group)	16– 34 year s	- 34 M ale - 26 Fe m ale	Active deep carious lesion on either the occlusal or proximal surface with reversible pulp inflammation. Teeth with periodontal lesions, internal or external root resorptions, and patients with systemic medical conditions, were excluded from the study.	Two groups : (a) calciu m hydro xide (b) MTA	MTA (ProRoot; Dentsply / Tulsa Dental, Tulsa, OK, USA) and calcium hydroxide material (Dycal_Ivory, Dentsply Caulk, Dentsply, L.D. Caulk, Milford, DE, USA)	One visit	Glass ionomer cement placed during the 6-month evaluation period . The final restoration was either amalgam or composite	6 m
Sultan a et al. 2016	Fifty perman ent teeth from 43 patients	16- 30 year s		Permanent teeth having a deep carious lesion closer to but not involving the pulp, having reversible pulp status based on the clinical sign, symptom, and radiograph and could be restorable.	Two groups : (a) calciu m hydro xide (b) MTA	Calcium hydroxide powder (Deepti Dental Product, India) mixed with normal saline MTA (Proroot, Dentsply, Tulsa Dental, USA) powder mixed with sterile water in a 3:1 ratio.	One visit	The base of the cavity was filled with FujiIX glass ionomer cement and restored by composite restoration (Giomer)	12 m

Reference		outcome	Results
	Principal and	Methods of assessing outcome	
	secondary	measures	
	outcome		
	measures		
Petrou et	The success rate	-The color of the dentin either:	The success rate (MTA 94.5 %, Portland
al. 2014	-Clinical (color,	light yellow, yellow, light brown,	cement 90.5 %, CH 86.9 %, χ2-test p =0.72).
	humidity, and	dark brown, or black.	
	consistency of	-The consistency of the dentin	
	dentin)	either: very soft, soft medium	
	-Microbiological	hard or hard	
	(Lactobacilli/Mu	- The existence of	
	tans Strep.	humidity(wet/dry)	
•	counts)		
Leye	The success rate	-Maintenance of pulp vitality	At 3 months, the clinical success rates of MTA
al 2012	and the thickness	with a normal response to thermal	and calcium hydroxide were 95% and 75% ,
al. 2012	formed donting	of spontaneous pain	respectively ($P = 0.02$). At 6 months, the success rate was 80.6% with MTA and
	Iornieu dentine	Dentine bridge formation and no	remained steady at 73% with calcium
		furcation radiolucency	hydroxide ($P = 0.63$)
		periodontal ligament space	The mean initial residual dentine thickness
		widening, internal or external root	was 0.23 mm, and increased by 0.121 mm
		resorptions.	with MTA and by0.136 mm with calcium
		F	hydroxide at 3 months. At 6 months, there was
			an increase of 0.235 mm with MTA and of
			0.221 mm with calcium hydroxide
Sultana et	Postoperative	Pain assessment was performed	In all observation periods, MTA showed more
al. 2016	pain, the vitality	according to VAS	capable of reducing pain and maintain pulp
	of the pulp and	(Visual Analogue Scale) system.	vitality which was statistically significant than
	formation of	Pulp vitality was assessed by	that of calcium hydroxide.
	reparative dentin	vitality test.	At12 months observation period, 24 teeth
		Reparative dentin formation was	(96%) of MTA and
		assessed by means of intraoral	19 teeth76%) of calcium hydroxide showed
		periapical radiograph (IOAP).	reparative dentin
		Reparative dentin formation was	(formation.
		observed (present/absent) from	
		the radiograph.	

 Table 3:- Data Extraction of the Included Studies (outcomes and results)

Table 4:- Assessment of the quality of included studies

	Random sequence generation*	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment.	Incomplete outcome data	Selective reporting
Leye Benoist et al. 2012	High risk	High risk	Participants: unclear Operator: Low risk	Clinical assessor: unclear Rad. Assessor: Low risk	Low risk	Unclear
Petrou et al. 2014	Unclear	Unclear	Unclear	Unclear	High risk	High risk
Sultana et al. 2016	Unclear	Unclear	Unclear	Low risk	Unclear	Unclear

Interpretation:-

The available studies showed a higher success rate for MTA compared to CH. Also, more dentin bridge formation was shown with MTA. Regarding the quality of the investigated studies (Table 4), a high risk of bias was found.

Conclusions:-

Due to presence of high risk of bias in the included studies, there is no conclusive evidence on the superiority of one material over the other.

Further, high quality and long span clinical trials for indirect pulp treatment materials are still required to assess the most effective material owing to the high risk of bias and the short-term follow-up in the available studies.

References:-

- 1. Accorinte, M.D.L.R. et al., 2008. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. *Journal of endodontics*, 34(1), pp.1–6.
- 2. Camilleri, J., 2008. Characterization of hydration products of mineral trioxide aggregate. *International Endodontic Journal*, 41(5), pp.408–417.
- 3. Falster, C. a et al., 2002. Indirect pulp treatment: in vivo outcomes of an adhesive resin system vs calcium hydroxide for protection of the dentin-pulp complex. *Pediatric dentistry*, 24(3), pp.241–8.
- 4. Leye Benoist, F. et al., 2012. Evaluation of mineral trioxide aggregate (MTA) versus calcium hydroxide cement (Dycal(®)) in the formation of a dentine bridge: a randomised controlled trial. *International dental journal*, 62(1), pp.33–9.
- 5. Petrou, M.A. et al., 2014. A randomized clinical trial on the use of medical Portland cement, MTA and calcium hydroxide in indirect pulp treatment. *Clinical oral investigations*.
- 6. Sultana, R., Hossain, M. & Alam, S., 2016. Evaluation of clinical and radiological outcomes of mineral trioxide aggregate and calcium hydroxide as indirect pulp capping agents in the treatment of deep carious lesion of permanent teeth. , pp.1–9.