

RESEARCH ARTICLE

GEOMORPHOLOGY & NEOTECTONICS OF QUATERNARY DEPOSITSNARMADA VALLEY CENTRAL INDIA.

Dr. A. A. Khan.

.....

Ex. Director, Geological Survey of India, Director, Rajeev Gandhi Proudyogiki Mahavidyalaya, Bhopal-462042, India M.P.

..... Manuscript Info

Manuscript History

Received: 25 February 2017 Final Accepted: 28 March 2017 Published: April 2017

Key words:-Radiotherapy, Collagenase gene, cancer and Swiss mice.

Abstract

Narmada River originates at Amarkantak at an elevation of about 1057m above m.s.l. It descendeds from the mountainous tract traversing over a distance of 1280km across the middle of the Indian sub-continent to join the Gulf of Cambay, near Baroda in Gujrat state. The area of study around Homonid locality Hathnora forms the part of central sector of Narmada, it is bound by Vindhyachal in the north and Satpura range to the south; the area in between these two upland is found to be ideal locus of sedimentation as witnessed by the presence of Quaternary landscape and multicyclic sequence of Quaternary terraces in the valley. The general elevation of Narmada and 65.00 to 95.00 m in upper Narmada valley above the sea level. The general gradient of this plain in this stretch is about 1m /km towards west.

The Narmada conspicuously has straight course is controlled by ENE_WSW to E_W lineament, is bounded by Vindhyan in the north and Satpura in the south it is exposed the repeated post erisional and depositional activities and subjected to anisotropic and asymmetric tectonic dislocation which has culminated diversified units and region which further undergone to process of tectonic evolution and chiseling of terrain by dynamic erosional and depositional activity resulting in and reshaping the terrain into various morphogenetic units and land form elements, re-configuration of drainage, topography, physiographic, erosional platform, planation surfaces, denudation ridges, structural units linear valleys, strike hills, valley gapes, escarpments and river terraces. The cumulative dynamics of structural deform, rinsing and sinking platform of Narmada has also manifested concealed cyclic mechanism of tectonics, seiesmicity, neosiesmic events and in surface manifestation. In addition the valley gapes and valley trenches provided ideal sites and platform for accumulation&sedimentation.

The Narmada Rift valley formed a linear trench in the middle of Indian subcontinent was an ideal elongated depression for accumulation of sediments. The rift trench is intruded by the dolerite and other mafic and siliceous dykes and sills along lineaments in different phases of tectonic deformation. The Quaternary sedimentation incepting from glacial activity, followed by fluvio-glacial, lacustrine and fluvial phase within the rinsing and sinking environment, block, faulting, uplifting, isolated domal up- lift, Neogene rifting, Quaternary sedimentation, riftbound Pliocene–Pleistocene rifting and volcanic activity specifically during glacial and fluvio-glacial phases are major component of the Quaternary period and tectonic processes of the Narmada Rift System which forms the base of quaternary deposits.

The Quaternary landscape of Narmada comprises (NT-1 to NT-3) and their correlation with rest of Narmada Rift Valley between Jabalpur-Harda and Harda - Bharuch suggest that it has evolved mainly due to tectonic activity along the SONATA LINEAMENT in a compressive stress regime. The sediments comprising these were deposited in a slowly subsiding basin during early Pleistocene middle Pleistocene and the Late Pleistocene. The Holocene period is marked by inversion, which had earlier suffered subsidence. The inversion of the basin is due to a significant increase in compressive stresses along the NSF during the Early Holocene, resulting in differential uplift of the lower Narmada valley. The continuation of the compressive stress regime due to ongoing northward movement of the Indian plate indicates that the NSF is a major candidate for future intraplate seismicity in the regionKhan et.al (1991) Khan et.al (1985) (Khan2016).

The Quaternary events of the Narmada portys three prominent terraces and two sub terraces which are designated NT1 to NT3 and sub terraces NT2-A is NT2-B, NT2 B, besides NT2-C, NT3-A & NT3-B besides NT-0 in the valley. They have been designed NT_0 to NT3, (280 to 400 m), NT_0 being the low level terrace above the present-day course of the river, NT₁-the younger terrace both of cyclic ad o cyclic nature. The NT₃ terrace occurs as elongated strip and isolated caps and lenses along the margin of valley flanks has divergent relative disposition. These land forms indicate vigorous and abrupt incision of valley floor due to relatively & repaid uplift of watershed area during Upper Pleistocene time. The NT1to NT₂ is the major depositional terrace and have both convergent & divergent mutual disposition with other terrace. These terraces further downstream have matched equivalents along the valley flanks, whereas in the up stream section the matched equivalents are rare. The conspicuous divergent relation of these terraces the valley reveals successive uplift of catchments area and consequential incision of valley floor and adjustment of base level of Narmada during Upper Pleistocene time.

The Quaternary river terraces of Narmada (NT1to NT3) entrapped in tectonic zone with rock cut terraces and scars are significant imprints of euestatic change / climatic changes in the valley during the sedimentation. The alluvial fan in between Tilakwarda and Rajpipla within the loop of Narmada Chamyal (2002) is mono illustration of morphogenetic process associated with neotectonic event. The disposition of Quaternary blanket, fan deposit and other quaternary land forms are controlled and restricted by SONATA LINEAMENT towards north. It appears to be older quaternary deposits of Narmada which has moved from basement and has been pasted along SONATA LINEAMENT.

The Indian Plate is currently moving northeast at 5 cm/yr (2 in/yr), against the Eurasian Plate is at the rate of only 2 cm/yr (0.8 in/yr) is causing the Eurasian Plate to deform, and the Indian Plate to compress leading to tectonic activity along major fault zones. In tectonically

active areas sedimentary basins undergo phases of both crustal extension and contraction leading to basin inversion and hence display features typical of subsidence and uplift. Geomorphic attributes and deformation in late Quaternary sediments are the indicators of active tectonic activity in any sedimentary basin. The geomorphic evolution in such reactivated basins is primarily due to complex interaction between sedimentation processes and tectonics. The peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north. Much of this N-S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. A part of these compressive stresses is accumulated along the Narmada-Son Fault (NSF), a major E-W trending crustal discontinuity in the central part of Indian plate. The Quaternary tectonic activity recorded in the Narmada valley possibly, has wider ramifications when viewed in the larger perspective of the Indian plate. This suggests a renewed phase of extreme compression of the Indian plate, which led to tectonic insecurity and may causes tumores and eatrhquake in peninsular India.Khan (2016). The analysis of imprints and signatures of Neotectoisam & data base of available models of neotectonic deformation of the Indian plate indicate that peninsular India has been undergoing high compressive stresses due to the seafloor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north (Subramanya, 1996). The study of neotectonic activity of Khandwa Sukta faults and Barwani faults Khan (2017) in the middle segment of valley, study and analysis of quaternary terraces of Tapti and their imprints of neoseismic events (TT-1 to TT-3) Khan (1984) in the confluence area of Tapti and Waghour further document and authenticate that these N-S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. A part of these compressive stresses are accumulated along the NSF, a major E-W-trending crustal discontinuity in the central part of the Indian plate. The perceptible tectonic activity of significant magnitude during the Early Holocene has been reported from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate respectively.

Copy Right, IJAR, 2017,. All rights reserved.

Introduction:-

The Narmada river originates from the Amarkantak plateau of Satpura Ranges in Rewa at an elevation of about 1057 m (220 40' -810 45') flows westerly course for about 1284 kms length across the middle of Indian subcontinent before entering Gulf of Cambay in the Arabian sea near Baroda in Gujarat state. It enters the fertile alluvial plain and passes through the gorge of about 19 kms long consisting of Marble rocks near Jabalpur.It then takes westerly turn through the alluvial tract, situated between the Satpura and Vindhyan hills. The river course of Narmada conspicuously straight and is controlled by ENE_WSW to E_W lineament, is bounded by Vindhyan in the north and Satpura in the south, valley has maximum width of about 32 kms.

The principal tributaries of Narmada River are Sher and Sakkar in Narsingpur, the Tawa and Ganjal in Hoshangabad, and Gaur in Jabalpur- Harda section and in lower Narmada. Madhumati,Orsang Unch Heran, Aswan, Man are major rivers which constitute minor basins which are tectonically segmented & ecologically integrated as in built part of main rift System. These rivers originate from the Satpura hills to the south of the trunk channel. The only

important tributary on the north is Hiran River, which emanates from the The Vindhyan hills in Jabalpur district. Most of these tributaries have short and precipitous course after they debouch from the hills.

The Quaternary flats of Narmada basin covers an area of abut 12950 sq. km starting from west of Jabalpur $(23^{0}07^{0}790530)$ to east of Harda $(22^{0} 29^{\circ}; 76^{0} 58^{\circ})$ for a distance of about 320 km. It is found to be ideal locus of Quaternary sedimentation in Central India as witness by multi-cyclic sequence of Quaternary terraces in the valley. The general elevation of Narmada alluvial plain varies between 265.7 and 274.3 m above the sea level. The general gradient of this plain in this stretch is about 1m /Km towards West.

The Narmada River flows ENE to WSW in the study area. The rock types exposed along the valley margins are Mahakoshals, Granites, Vindyans, Gondwanas, Lametas and Deccan Traps. In the western part of the valley, Vindyans and Deccan traps constitute the northern valley margin whereas Mahakosals, Gondwanas and Deccan traps make the southern valley margin. Vindhyans are not seen along the southern margin and Gondwanas do not outcrop along the northern valley margin. General outline of the northern valley margin is irregular, whereas southern valley margin is straight valley wall segments. Slope profile of the southern margin comprises a cliff and steep debris slope which terminates downwards into a piedmont.

The valley flanks of Narmada are occupied by piedmont belt runs all along and parallel to the southern valley wall in segments and slope profile of the northern valley wall comprises a cliff, a sleep debris slope and extended pediment with thin cover of alluvium. These are charterised by small isolated rocky mounts, butte, mesa and relict rock sheets within the alluvial area along the northern margin, where as southern flank by alluvial fans, colluvium deposits, rock debri and cones. In the eastern segment of the Narmada valley, the northern margin is straight and the southern is irregular in outline. The various rock types rock types exposed along the northern margin are Mahakoshals and Vindhyans, whereas along the southern margin Mahakoshals, Gondwanas, Lametas and Deccan trap. Obsequent slopes of shale and sandstone of the Vindhvans make impressive scraps defining the northern valley wall and the resequent slopes make table lands gently sloping away from the valley. The various slope profile of the northern valley margin depict, scarp, cliff, debris slope and pediments which are covered by the flood plain of the Hiran River. The pediment further decends in the valley form pediplain and ultimately to alluvial plain Pediments of the profile between valley wall segments and coalesce to form wide pediplain. The straight valley margins of Narmada are associated with the faults separating the Vindhayan basin in the north from the Gondwana basin in the south. These margins are paired and cyclic nature and irregular are appered to be controlled by faults. The configuration of subsequent drainage and geomorphic land form elements indicates that the southern margin fault has the Quaternary component

The river course of Narmada conspicuously straight and is controlled by ENE_WSW to E_W lineament, is bounded by Vindhyan in the north and Satpura in the south it is exposed the repeated post erisional and depositional activities and subjected to anisotropic and asymmetric tectonic dislocation which has culminated diversified morphogenetic units and region which further undergone to process of tectonic evolution and chiseling of terrain by dynamic erosional and depositional activity resulting in and shaping the terrain into various morphogenetic units and land form element, configuration of drainage, topography, physiographic , erosional platform, planation surfaces, denudation ridges, structural units linear valleys, strike hills, valley gapes, escarpments and river terraces. The cumulative dynamics of structural deform, rinsing and sinking platform of Narmada has also manifested concealed cyclic mechanism of tectonics geothermic & hydrological activity, seiesmicity, neosiesmic events and in surface manifestation. In addition the valley gapes and valley trenches provided ideal sites for sedimentation for formation of quaternary platform, pediment, pediplain, peniplain and river terraces.

The synoptic & regional study of the Narmada basin by LANDSAT IRS, MSS data on 1:25000 and 1:50000 between Jabalpur – Hoshangabad –Harda- Bharouch section of area bounded by lattitude 22° 15 and 23° 30 and longitude 74° 00 and 80° 30 in Narmada valley has led to recognition of twelve landform units belonging to three genetic classes, viz, denudational, extrusive and fluvial. A three stage, geomorphic model is proposed to explain the origin and evolution of the landscape during post Vindhyan time; (i) in the first stage, and orogenic crustal movements had lead to development of linear ENE-WSW rift systems initiating deposition of Gondwana sediments in an intra-cratonic basin south of the Vindhyan plateau; (ii) in the second stage,endogenic tectono-magmatic processes terminated the sedimentation cycle and resulted in formation of extensive lava plateaus over the Vindhyan and Gondwana landscape, the lavas, were extruded through extensive ENE-WSW trending feeder dykes; (iii) The third stage was characterized by post-Deccan Trap cymetogenic uplift along the Satpura axis, vigorous erosion

sculpturing and entrenchment of the Narmada drainage basin with ENE aligned trunk channel culminating in the formation of the Narmada alluvial valley through multiple cycles of erosion and deposition during the Quaternary.

Based on study of altitudinal classes (1) The landscape is characterized by flat topography containing erosional surfaces, rivers and valley flats at an elevation of less than 400m altitude above MSL the (2) Prominent plateaus, plains and prominent sharp crested high hills between 500 and 650m altitude,; (4) High hills with prominent peaks and upper level plateau between 650 and 900m altitude. The ground slope is towards north from the Satpura hill range and towards south from the Vindhyan escarpment. The slope of the valley is towards west. The regional slope of the Vindhyan and the Gondwana plateaus as well as that of the Deccan lava plateau is towards north.

The Narmada Basin and its morphogenetic ecology of basin depicts dendritic and sub-parallel drainage in the central part of valley. The fault and fracture controlled trellis, parallel and sub rectangular drainage is common in the both northern and southern plateau and upland areas. The tributaries joining the Narmada River from the south show considerable meandering with development of flood plains mostly in their lower reaches near the confluence where as the tributaries from the north, however, do not show conspicuous meandering pattern. The morphomeric analysis and regional digonestics of disposition of relief platatues and geomorphic land forms and elements indicate that southern area has been suffrered sequential and cyclic subsidence and up lift where as norther margin was comparatively more stable. It is also evident by association of paleo-channel, cut of meanders, meander scrolls, strend lines, cut scars and terraces on southern bank of Narmada.

The principal tributaries of Narmada River are Sher Sakkar Dudhi inTawa and Ganjal in, Hiran& Gaur. The Man, Karjan, Madhumati, Heran and Orsang, Amravati Narmada valley originate from the Satpura and Vidhyan hills from south and north of the trunk channel the most of these tributaries have short and precipitous course after they debouch from the hills developed on the the pediment and pediplain surface of the Vindhyan plateau are influence by structural set up are being controlloed by faults. The northern tributaries make an acute angle with the trunk river, where as the southern tributaries maintain near perpendicular relation both with the higher order and trunk stream. The major morphographic elements are plateau; scarp, ridges and valleys show a marked parallelism and are aligned along ENE-WSW. The different levels of the plateau with high escarpment are also aligned in the same direction. The tributaries in most cases are transverse to the main geologic structure in the area. The tributaries originating from the Satpura carry more sediment and water discharge and show meandering and braided forms. The trunk valley starts widening around Narsimgpur and further broadens near Hoshangabad and beyond. The change of the Narmada river course near Jabalpur from nearly N-S to E-W direction is controlled by fractures having NE-SW trends.(Plate No_1 &_ 2)

Previous Work:-

The Narmada valley received adequate attention of earth scientist after recovery of Human skull from Quaternary deposits of Hathnora sonakia (1984) accordingly Quaternary deposits and its geomorphological aspects have been studied in detailed in last three decade and data base of various aspects has been updated (Khan 1984, Khan & Benarjee 1984, Khan & Rahate 1990-91-90 Khan & Sonakia 1992, Khan & et al 1991, Rahate & Khan 1985, Khan et al. 1991, Khan 1991, Khan et al. 1992, Yadav & Khan 1996. The Narmada valley embodied almost complete sequaence of Quaternary deposits in time span from the lower Pleistocene to Holocene (Khan & Sonakia (1992). Khan (1912), Khan (2012), Khan et.al (2013) Khan et.al (2014), Khan (2015), Khan et.al (2015) Khan .etal. (2015) .The results of sedimentological studies Khan (2015), in recent years, Quatenary tectonics & sedimentation, geomorphphic evolution have also been attempted of Narmada Valley Khan et.al (1916), Khan et.al (1916). The study of geomorphology of Quaternary column and area of Hominid locality Hathnora has further supplemented data on evolution of the area Khan et.al (1916) in central sector of Narmada. The sediment statistics and sedimentology of in vertical coloumn (320), revealed the presence of complete sequence of quaternary sediments in Narmada rock basin which comprise of sediments of viz glacial, fluvio-glacial ad fluvial domain wheras the boulder conglomerate which has vielded human skull which is of fluvio-glacial origin Khan & Sonakia (1991) Khan et.al (2016) Khan et.al (1991) Khan & Maria (1912) bio-stratigraphy aspects and correlated sediment of Quaternary columns of hominid locality on unified Quaternary Platform Khan et.al (2012) focusing on hominid localities of China which have thrown new light on the age of the Narmada Homo erectus.

Present work:-

The present work is telefocus on study the varios aspsects of geomorphology and geomorphic veolution, Quaternary tectonics and sedimentation of Narmada valley in Jabalpur _ Bharouch Section with special reference to Hominid locality Hathnora and occurrence fossil man. The Narmada valley embodies two prominent Quaternary landscape viz in Jabalpur_Harda section in central Sector and Gurudeshwar_Bharouch Section in lower sector which were found to be ideal locus of sediment accumulation and Quaternary sedimentation as witnessed by multicyclic sequence of Quaternary terraces in the valley. The study of Quaternary landscape revealed that it has been posed to the repeated post erosional & depositional activities and subjected to anisotropic and asymmetric tectonic dislocation which has culminated diversified dented manifestation, it is further undergone to process of tectonic evolution and chiseling of rift valley by dynamic erosional and depositional activity resulting in reshaping of the terrain into various multi morphogenetic illustration. The delineation and reorganization of different units and land form element, sequential and renewed configuration of drainage, topography, physiography, plantation surfaces, denudation ridges, structural linear valleys, strike hills, valley gapes, escarpments and river terraces revealed that area has uudergone multicylic erosion and deposition unfrequential change tectonic set up in recent past.

The cumulative and cyclic deviation of concealed dynamics and structural deformation of unstable platform of Narmada further added with hidden cyclic mechanism of tectonics, geothermic, seismicity has chiseled surface and subsurface both of quaternary & pre-quaternary landscape in to present composit expression which defines evolution of basin by imprints of neotectonisam identified by various signatures on landscape profile in the valley.

In present paper the quaternary & pre-quaternary landscape its architech expression tectonics & noetectonics subsidence and uplift of fault bound blocks, platform of sedimentation, morphotectonics, impact of tectonics, channel morphology and river terraces have been studied and correlated with erosional cycles & geomorphic events in Narmada valley (Plate No_3.)

Geology:-

The Narmada basin is occupied by different of geological formations. The geological succession of these rocks is incorporated in Table No RGT-1

Age	Group	Rock formation
Recent Quaternary	Alluvial Plains (Older and Newer Alluvium)	Unconsolidated sand, silt, clay.
Eocene Cretaceous	Deccan Trap Bagh and Lameta beds	Basalt Sandstone, Cherty Limestone
CretaceousPaleozoic	Gondwana Super Group : Jabalpur, Mahadeva	Boulder beds Sandstone, Shale, Clay, Limestone, CoalSeams
	Vindhyan Super Group : Bhander, Rewa, Kaimur, Semri.	Shale, Sandstone, Limestone
Pre Cambrian (Proterozoic)	Bijawar Group	porphyrtic granite , Quartz veain, and basic dykes
	Mahakoshal Group	Gneisses, phyllites, Chert and mete basics
Archaeans		Quartzites, Granites, Phyllites, Schists

Table No RGT-1

Quaternary Geology:-

The Narmada Rift valley formed a linear trench in the middle of Indian subcontinent was an ideal depression for accumulation of sediments. The rift trench is intruded by the dolerite and other mafic and siliceous dykes and sills along lineaments in different phases of tectonic deformation. The Quaternary sedimentation incepting from glacial activity, followed by fluvial-glacial, lacustrine and fluvial phase within the rinsing and sinking environment, block faulting and segmental and linear displacement. The instability of turmoil sedimentation platform, dislocation, uplifting and isolated domal up- lift, Neogene rifting, sedimentation and rift-bound Pliocene–Pleistocene rifting and volcanic activity specifically during glacial and fluvial-glacial phase are major component of the Quaternary period and tectonic processes of the Narmada Rift System which form the base of quaternary deposits. The rift system and basin platform provided a unique setting for dynamic ecosystems that were characterized by rift-related subsidence and coeval sedimentation created an ideal ecologyand loci of Quaternary sedimentation and environment

for the accumulation of sediments. The disposition of quaternary deposits, drainage configuration basin boundary and geotectonic of the area revealed that rifts was formed after widespread Quaternary sedimentation occurred and voluminous sediments in the rift basins were accumulated by glacial activity, it is also witnessed by present disposition of quaternary blankets of SONATA LINEAMENT ZONE. (Plate No_1)

The Narmada valley consists of sediments of three domain viz glacial, fluvio-glacial and sediment of paleo-domain of Narmada.

The glacial and fluvio-glacial deposits of Narmada unconformable overly the Vindhyan and the basaltic Deccan Trap rocks. The sediments consist of a Hetero-heterogeneous assemblage of sub-angular to angular, sub-rounded, unsorted, stratifiedrock fragments ranging from boulders to small pebbles, predominantly of quartzite, gneiss, sandstone, basalt, jasper, chart, gneiss, sandstone, basalt, chart, altered feldspar, ferruginous nodules, in a matrix of very coarse to very fine-sand, silt and clay. These clastics are highly angular, generally poorly sorted and isotropically imprecated. Fine sediments comprise of reddish grayish and greenish sand with appreciable amount of mica flaks, altered feldspar, brick-red and buff silt, greenish-brown silt and clay, and greenish, reddish and dark maroon hard and plastic clay. These fine sediments contain fairly good amount of ferruginous material, quartz, mica flakes and altered feldspar grain. Through these sediments are similar in composition to the other deposits of Narmada Valley, exhibit entirely different sedimentary pattern, sediment characters and mineral composition. These rock clastics are largely angular, very poorly sorted and demonstrate isotropic imbrications pattern in the valley. The sediments of glacial domain of Narmada occur between and average elevation of about 20-265 m above m.s.l. and were deposited in glacial environments during Pleistocene time. These deposits are concealed under boulder conglomerate in the valley.

The Fluvio-glacial deposits are represented by conglomerate bed that constituted the fossiliferous horizon of Narmada is sandwiched between older Alluvium and the glacio-fluvial bounder bed. This conglomerate bed is a very persistent marked horizon indicating a distance phase of sedimentation in the Narmada Valley. The boulder conglomerate predominantly consists of sub-rounded to well rounded boulder, cobble and pebble of quartzite, gneiss, sandstone, basalt, agate, jasper, chert, chalcedony tightly cemented in a matrix of sand and silt. The finer sediments include different grade of sand and silt, brown and maroon in color often laminated and cross laminated. The boulder conglomerate is fossil and skull cap of early man *Homo erectus* (Sonakia, 1984)

The boulder conglomerate consists of three sub-litho units; each sub-unit characterized by distinct rock fragment shape, size, lithological abundance and allied sediment characters. The sub-units are composed of variable assemblage of quartzite, gneiss, basalt, sandstone, agate, jasper, chalcedony, chart, sand and silt (Khan1992) These sub-litho units display fancies variation in the valley and upper units grades into gritty sandstone upstream of Hathnora.

The Fluvial sediments of paleo-domain of Narmada conformably overlie the boulder conglomerate and represent the flood-plain fluvial facies of the Narmada. The sediments of the fancies predominantly consist of clay silt and sand, discontinuous nodules and plates. The beds are horizontal, exhibit upward fining sequence typical of fluviatile deposits .This domain may be divided divided into three formations based on lithology, sediment assemblage, shape and size of rock clastics, relative disposition and diagnostic sedimentary characteristics. These formations are, viz. (i) Shohagpur, (ii) Shahganj, and (iii) Hoshangabad Formations respectively. These formations represent the sediments the complete sequence of Narmada deposited in channel and flood plain environments during Upper Pleistocene times. It consists of sediments of paleo-domain of Narmada. It is represented by a thick sequence of clay, silt-sand and rock gravels. The unit is divisible into three sub litho unit. The basal sub-unit is chiefly red and brownish sand, silt, clay containing appreciable amount of cal matrix. The average measured thickness of this sub-unit is about 6.25m. The middle sub-unit consists of yellow and brownish silt, clay with subordinate sand and occasional rock gravel lenses. The average measured thickness of this sub-unit is about 3.25m.

The sediments of fluvial domain of Narmada identified between an elevations of 268 to 350 m above m.s.l. and were deposited in channel and flood plain environments during upper Pleistocene lime The sequence of Quaternary events and the history of sedimentation of Narmada indicate that the upper 70m top 90m of the Narmada alluvium was deposited in a single aggradations episode with minor pauses when dissection of the alluvium produced two terraces (NT₃-NT₂). The sediments of this aggradations episode constitute three lithostratigraphy units viz. Boulder

conglomerate, Sohagpur and Shahganj formation. The sediments of the alluvial phase are underlain by a boulder bed of glaciao-fluvial origin. Thus, the fossiliferous boulder conglomerate, the basal unit of alluvium marks a disconformity between the lower glacial-boulder layer and upper fluvial sediments. The fossiliferous basal boulder conglomerate is being of middle Pleistocene age (Khan 1992)

The sediments of present domain of Narmada is represented by sediments of active flood plain, point bar and sand bar facies of present domain and consist of unconsolidated imbricated, stratified, polygonal sorted rock-gravel supported by very coarse to very fine-sand and is named as Janwasa formation, after the village Janwasa where is it best developed. The measured thickness in the valley is about 5m. (Table QGMT_1)

Narmada Basin (21 24_74 83) & Indian plate:-

The Indian Plate is currently moving northeast at 5 cm/yr (2 in/yr), while the Eurasian Plate is moving northeast at only 2 cm/yr (0.8 in/yr). This is causing the Eurasian Plate to deform, and the Indian Plate to compress leading to tectonic activity along major fault zones. In tectonically active areas sedimentary basins undergo phases of both crustal extension and contraction leading to basin inversion and hence display features typical of subsidence and uplift. Geomorphic attributes and deformation in late Quaternary sediments are the indicators of active tectonic activity in any sedimentary basin. The geomorphic evolution in such reactivated basins is primarily due to complex interaction between sedimentation processes and tectonics. The peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north. Much of this N-S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. A part of these compressive stresses are accumulated along the Narmada-Son Fault (NSF), a major E-W trending crustal discontinuity in the central part of the Indian plate. The complete account of Quaternary lithostratigraphy has been up dated in the Narmada valley (Khan 1984, Khan & Benarjee 1984, Khan & Rahate 1990-91-90 Khan & Sonakia 1992, Khan & et al 1991, Rahate & Khan 1985, Khan et al. 1991, Khan 1991, Khan et al. 1992, Yaday & Khan 1996. The Narmada valley embodied almost whole of the Quaternary deposits time span from the lower Pleistocene to Holocene (Khan & Sonakia 1992).Khan & Sonakia (1991) Quartz grain morphology sediment column, Khan (2013) in Quartz grain morphology of pale- sole, , Khan (2013) Heavy mineral assemblage Khan (2016) tephrastratigraphy, Khan et.al (1991) Khan & Maria (1912) magnetostratigraphy, and bio-stratigraphy and correlation of sediment columns intra valley wise, inter valley wise and on unified Quaternary Platform Khan et.al (2012) focusing on hominid localities of China. These deposits have thrown new light on the age of the Narmada Homo erectus. The discoveries of volcanic ash beds Khan(1991) and palaeomagnetic reversal in these deposits for the first time for peninsular India are breakthroughs in fixing the chronologic position of the skull. The data aquired on the age of the Narmada Homo erectus are also available by additional finds of fossil mammals and a detailed taxonomic study along with a thorough review of some families of mammals. The Homo erectus skull was discovered embedded in a conglomerate bed within the Quaternary alluvial deposits of the Narmada Valley. Several biostratigraphic classifications have been suggested for Quaternary deposits of Narmada. The conglomerate bed designated as Hathnora Formation it has a 19 m thickness at its type section and a 50 m compiled thickness. It is sandwiched between two formations, the older one Boulder bed of glacial origin showing Matuyama reversed polarity chron³ (0.73 Ma) and the younger one of fluvial origin with tephra layer equivalent to Toba ash^{4, 5} of 74,000 yrs BP. Some upper layers of these Narmada Valley alluvial deposits have also been proved to be older than 25,000 yrs BP by ¹⁴C dating which represents youngest deposits of present domain of Narmada.

The Quaternary blanket occurs in the central part of valley in Jabalpur –Harda section and in Gurudeshwar – Bharouche section in lower of valley; where as in the other part in Harda –Mandleshwar section only thin and isolated caps and strips of quaternary sediments are noticed on rock cut terraces and rock benches of country rocks. In Mandleshwar-Barwani, Dhadgaon- Tilakwarda the quaternary deposits are shallow to moderate in thickness and thin out to wards east. The isolated loci of accumulation and sedimentation along the entire length of 1300 kms of Narmada area controlled by the tectonics and structural frame work and sinking and uplift of fault bounded blocks and lineaments. It is well illustrated by neoseismic signatures and imprints on quaternary deposits and landscapes in the valley. The critical analysis of landscape profile evolution of drainage, quaternary terraces, river morphology and analysis of bore hole data of basement configuration of rock and quaternary deposits revealed that Jabalpur-Harda section valley segment suffered mega dislocation and down through of about 1150 m as compared to the adjoining blocks and created and has formed open rock basin and platform of quaternary sedimentation. This section display complete record of quaternary deposits of glacial, fluvio- glacial and fluvial sediments in increasing antiquity from the base. The study of bore data of ETO, CGWB, and GSI indicates and average thickness of quaternary deposits of about 435 m. The quaternary deposits bear well preserved imprints of neotectonisam indicating that the Sonata lineament zone seismically is active and has direct bearing on quaternary landscape of rift valley. The Harda –Mandleshwar section predominenently portrays the sequence of cyclic and noncyclical rock cut terraces and rock cut platform and benches which are time equivalent to the quaternary terraces of central and lower Narmada valley Khan et.al (2014). In Mandleshwar-Barwani the quaternary sediment are of moderate to shallow in thickness which are incised along with the country rock by cyclic structural dislocation and tectonic activity along ENE WSW lineament fabrics and dynamic incision of stream. It is well documented in quaternary terraces and composite erosional terraces; rock cut terraces caped by quaternary sediments, river profile and channel morphology the chronology of tectonic and neotectonic signaturesand collectively with the configuration of morphogenetic expression of the section revealed that it is uplifted block. The Gurudeshwar-Bharouche embodies the thickest quaternary deposits which represent complete sequence from the base glacial fluvio-galcial fluvial, lacustrine and mud deposits and it was a mega depression on western extimity Narmada rift valley where mega sedimentation phase had occurred..

The study of Narmada river terraces along the length of 1300 kms in between Jabalpur- Bharuch their correlation, relative disposition, their elevation and slope their critical and crucial sediment sequence in type area, drainage net work and its configuration, neo-seismic data imprints and signatures of modules of neo- deformation by compressive force, in relation to the movement of the Indian plate indicates that peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north. The study of Quaternary tectonics activity of Khandwa Sukta faults and Barwani faults Khan (2017) in the middle segment of valley, analysis of quaternary terraces of Tapti and their imprints of isoseismic events Khan (1984) in the confluence area of Tapti and Waghour, further authenticate the record that these N–S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. The manifestation of this Phenomenon a part of these compressive stress is recorded along the NSF, a major E–W-trending crustal discontinuity in the central part of the Indian plate; further activities of significant magnitude are recorded from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate during the Early Holocene respectively.

The presence of thick boulder bed in Harda inliers area, such as at Chandgarh and north east of Barwaha, boulder bed in confluence area of Tapti and waghur around Khadgaon in Tapti valley Khan et.al (1984) supports this assumption.

The Narmada rift system provided a unique setting for dynamic ecosystems that were characterized by rift up lift and subsidence which has created ideal loci of Quaternary sedimentation and environment for the accumulation of sediments, volcanic fabrics sediments, burial, digenesis, and preservation of organic remains. The rifts formed after widespread Quaternary sedimentation occurred and voluminous sediments in the rift basins accumulated by glacial activity consequential upon the lowering of temperature and climatic changes in water shed region. The Miocene -Pliocene–Pleistocene lake deposit of Katni on the eastern rift shoulder was created by faulting, topographic control or isostatic depression within the rift system.

The area studied tectonically encompasses two crustal provinces of Central India Shield, namely, the Northern Crustal Province (NCP) and the Southern Crustal Province (SCP (Acharyya and Roy, 1998; Roy, 1988). The two provinces are separated by a crustal level shear zone, referred as Central Indian Suture (CIS Jain et al. 1995). The southern part of the NCP, containing the Satpura and son Narmada (SONA) valley geographic domain, is known as Central Indian Tectonic Zone (CITZ; Radhakrishna and the CITZ are marked by Narmada North Fault (NNF) in the north and CIS in the south (Acharyya, 1999). The Narmada valley gape is ideal loci of Quaternary sedimentation which persevere Glacial, Fluvio- glacial and fluvial deposit of pleistocene to Holocene times. The ENE-WSW trending Narmada Quaternary basin, Bound by longitude 77°E and 80°E is located on Narmada crustal block extending in the east over Mahakoshal Greenstone belt; the block is characterized by relatively thickened crust with Moho at depths of 39-42 km (Conard at 12km depth, Kaila,1988), ascribed to subcrustal underplating. The study of tectonic set up of Narmada valley, surface manifestation and geo-physical data shows that the Son-Narmada and Tapti lineament together represent an interpolate rift with a central (Satpura Block) horst bounded on either side by grabens: the Narmada graben on the north and the Tapti graben to the south (Mishra et al, 1999).

The Quaternary events of the Narmada portys three prominent terraces and two sub terraces which are designated NT1 to NT3 and sub terraces NT2-A is NT2-B, NT2 B, besides NT2-C, NT3-A & NT3-B besides NT-0 in

increasing order of antiquity. The terraces are described in detail separately. These are both erosional and depositional terraces and confined at an elevation of, between 280m to 310-315. The NT1 is being the youngest terrace and NT3- B it is being the oldest terrace identified in the valley Khan et.al (1984), Khan etal (1985), Khan etal. (1991) Khan et.al (1992) Khan et.al (2016). The realative disposition of these teraces is shown in the (Table No $_2$ to $_8$).

In Narmada Rift system taking as single ecological unit for Quaternary sedimentation & tectonics and presence of the Katni Formation in central sector with angiosperm flora suggests that sedimentation continued during Mio-Pliocene in localized lakes. The relative disposition of such lakes and subsequent deformation and structural dislocation on oscillating valley platform clubbed with rifting and faulting during Quaternary period has shifted the site of the lakes towards the present alluvium-covered area between Harda -Jabalpur, Garudeshwar and Bharuch as presumed: where as the present study of various aspects of Quaternary blanket in SONATA LINEAMENT ZONE reveled that quaternary sedimentation was a sequential and continuous process in rift valley system (Table No -3)from Mio-Pliocene Pleistocene time, has deposited complete sequence of glacial, fluvio-glacial lacustrine fluvial and tidal deposits with changing environments and climate in time & space. The present disposition of quaternary blankets in Son Narmada basin is due to post deposition Quaternary tectonics which is solely responsible for sedimentation, dislocation, faulting and shifting of different blocks and distorting ecology in rift system. The occurrence of Boulder bed and Boulder Conglomerate in Son Narmada Tapti and Purna with similar rock assemblages and suites of rock fabrics, heavy mineral assemblages, and quartz grain morphology in critical and crucial sections across the SONATA LINEAMENT ZONE strongly support tearing and rifting of quaternary blanket during late Pleistocene time. The presence of thick boulder bed in Harda inliers area, such as at Chandgarh and north east of Barwaha, boulder bed in confluence are of Tapti and waghur around Khadgaon in Tapti valley Khan et.al (1984) supports this assumption.

The Narmada Tapti and Son Valley with ENE-WSW trends form a conspicuous physiographic element and their disposition is supposed to be controlled by lineament tectonics. The Narmada-Son lineament is considered to be an active tectonic element (West, 1962) right from the Precambrian time. The Quaternary blanket in Narmada valley provides evidences of significant changes in channel kinetics of Paleo domain and present day domain of Narmada related with eustatic & sea-level fluctuation. The Quaternary deposits contained in the western asymmetric trench consist of sediments of various domains viz glacial, fluvio-glacial, fluvial, lacustrine and tidal flats later influenced by incursion of marine transgression and regression on tectonically active platform. It is evidenced by bore hole data and subsurface statistical analysis of sediments, quartz grain morphology of sediments, pale sole geometry and configuration of quaternary deposits in western segments of Narmada rift valley and SONATA TECTONIC ZONE.

The Narmada–Son Fault (NSF) divides the Indian plate into two halves and has a long tectonic history dating back to the Archaean times (Ravishankar, 1991). The NSF trends in ENE-WSW direction and is laterally traceable for more than 1000 km. It demarcates the Peninsular India into two geologically distinct provinces: the Vindhyan-Bundelkhand province to the north and the Deccan province to the south. Ravishankar (1991) regards the Narmada-Son Fault as a part of the composite tectonically controlled zone in the middle of the Indian plate and termed it as the SONATA zone (abbreviated form of Son-Narmada-Tapti Lineament zone). The Narmada and Tapti Rivers all throughout their course follow these tectonic trends. Other synonyms used in literature to describe this zone include Narmada-Son Lineament (Choubey, 1971), Central Indian Shear (CIS) (Jain et al., 1995) and Central Indian Tectonic Zone (CITZ) (Radhakrishna and Ramakrishnan, 1988; Acharyya and Roy, 2000). Geophysical studies in the central part of this zone reveal this to be a zone of intense deep-seated faulting (Reddy et al., 1995). The zone witnessed large-scale tectonothermal events associated with large granitic intrusions around 2.5-2.2 and 1.5-0.9 Ga (Acharyya and Roy, 2000). It was again reactivated during the Deccan volcanic eruption during Late Cretaceous-Palaeocene (Agarwal et al., 1995). Profuse occurrences of E-W-trending dykes suggest that the zone formed the main centre of eruptive activity (Bhattacharji et al., 1996). The entire zone is presently characterized by high gravity anomalies, high-temperature gradient and heat flow and anomalous geothermal regime (Ravishankar, 1991) suggesting that the zone is thermo mechanically and seismically vulnerable in the framework of contemporary tectonism (Bhattacharji et al., 1996). The westward extension of this zone into the lower Narmada valley exhibits a less complex structural setting. Data on the NSF in this part is mainly the result of extensive geophysical surveys for commercial exploitation of petroleum reserves in the subsurface. In the lower Narmada basin, it is expressed as a single deep-seated fault (NSF) confirmed by the Deep Seismic Sounding studies (Kaila et al., 1981). Seismic reflection studies have firmly established that the NSF is a normal fault in the subsurface and becomes markedly reverse near the surface (Roy, 1990). Reactivation of the fault in Late Cretaceous led to the formation of a

depositional basin in which marine Bagh beds were deposited (Biswas, 1987). The NSF remained tectonically active since then with continuous subsidence of the northern block, designated as the Broach block, which accommodated 6–7-km thick Cenozoic sediments (Biswas, 1987). The total displacement along the NSF exceeds 1 km within the Cenozoic section (Roy, 1990). However, the movements along this fault have not been unidirectional throughout. The general tendency of the basin to subside has been punctuated by phases of structural and tectonic inversion (Roy, 1990). The N–S-directed compressive stresses during the Early Quaternary, folded the Tertiary sediments into a broad syncline, the Broach syncline, in the rapidly subsiding northern block (Roy, 1990). The Broach syncline extends from the NSF to the Mahi River in the north. The E–W trending axis of this syncline lies to the north of the Narmada River. Corresponding anticlinal structures are found in the Tertiary rocks exposed in the southern up thrown block (Fig. 2A and B). Historical and instrumental records indicate that the compressive stresses still continue to accumulate along the NSFdue to continued northward movement of the Indian plate. This is evidenced by the fault solution studies of the earthquakes at Broach (23 March 1970) and Jabalpur (22 May 1997), which suggest a thrusting movement (Gupta et al., 1972, 1997; Chandra, 1977; Acharyya et al., 1998). However, the underlying cause of the seismicity in the NSF zone is not yet understood (Quittmeyer and Jacob, 1979).

The Quaternary landscape of Narmada comprises (NT-1 to NT-3) and their correlation with rest of Narmada Rift Valley between Jabalpur-Harda and Harda - Bharuch suggest that it has evolved mainly due to tectonic activity along the SONATA LINEAMENT in a compressive stress regime. The sediments comprising these were deposited in a slowly subsiding basin during early Pleistocene middle Pleistocene and the Late Pleistocene. The Holocene period is marked by inversion, which had earlier suffered subsidence. The inversion of the basin is due to a significant increase in compressive stresses along the NSF during the Early Holocene, resulting in differential uplift of the lower Narmada valley. The continuation of the compressive stress regime due to ongoing northward movement of the Indian plate indicates that the NSF is a major candidate for future intraplate seismicity in the region.Khan et.al (1991) Khanet.al (1985) (Khan 2016)

The area is under stress du to movement of India plate to wards north north east and vertical adjustment of different blocks in the Sonata lineament zone. There appear there **is** significant increase in compressive stresses accumulating on an intracrustal fault like the NSF can transform a previously subsiding basin into an uplifting one. The NSF has been characterized by a compressive stress regime throughout the Quaternary and variations in the degree of compression relative to the rates of plate movement are responsible for the late Pleistocene subsidence and the Holocene tectonic inversion in the Narmada it is witnessed by manifestation on drainage net work imprints of neotectonisam and shifting and tilt in terraces of Narmada and its tributaries. Khan et.al (2015), Khan et.al (2015) Khan et.al (2017) (Plate No_1,2,3,11,12)

Geomorphology:-

Jabalpur_Hoshangabad Section:-

The Narmada Rift System consists of symmetrical basins that have been evolved in different stages of tectonisam. The 100 -120 km-wide ad 1300 km long rift bounded by Satpura in south and Vindhyan in north constitutes conspicuous ENE-WSW to E-W rift basin zone is filled with Pliocene–Pleistocene sediments, whereas some of them contain Miocene sedimentary deposits. Most of the sedimentary sequences contain faunal and floral remains including hominid species.

The Narmada Rift valley formed a linear trench in the middle of Indian subcontinent wish was ideal loci for accumulation of sediments .The rift trench is intruded by the dolerite and other mafic and siliceous dykes and sills along lineaments in different phases of tectonic deformation. The Quaternary sedimentation incepting from glacial activity, followed by fluvio-glacial, lacustrine and fluvial phase on unstable and turmoil platform, sedimentation and rift-bound Pliocene–Pleistocene rifting and volcanic activity specifically during glacial and fluvio-glacial phase are major component of the Quaternary period and tectonic processes of the Narmada Rift System.The land scape chiseled to stepped sequence of terraces NT0, NT1, NT2 A, NTB, NT2C, NT3A NT3B. The Narmada Rift System, bounded by adjacent plateaus rising 300–700 m above the rift floor, consists of number symmetrical and symmetrical faulted blocks, escarpment, rock cut terraces, rock floors and segments of micro half grabben. Although rift-related basins started to form during the late Oligocene to early Miocene times, the Narmada Rifts were fully defined by middle to late Miocene time.

The Quaternary blanket which has been cut in to terraces NTo to NT3 which are confined between an average elevation of 120 to 400 m which represent sedimentation of paleo domain of Narmada on the surface beside concealled strata. Based on sedimentlogical characters, depositional environments, and erosional processes and their correlation with depositional erosional activity revealed that it comprised of sediments of four domains viz glacial, fluvio-glacial fluvial and tidal flats. The lower most units (Boulder bed) is or glacial origin, the boulder conglomerate of glacio-fluvial (Khan el. al 1991) and fluvial terraces are of fluvial paleo- domain of Narmada and tidal flats. The exposed blanket of quaternary blanket has been chiselled to to terraces (NT_o-NT₃). Sohagpur Shahganj Hoshangabad in central sector and Rajpipla, Tilakwarda and Bharuch in lower sector of Narmada which are correlated precisely and designated as (NT₀-NT₃). The Boulder conglomerate geomorphologically is exposed at the base in scarpment of NT2 but geologically is assigned an independent formational status but based on distinct lithology and fossil assemblage. This forms low level erosional & relicts platforms along the course of Narmada. The sequence of Quaternary events and the history of sedimentation of Narmada indicate that the upper 130 of the Narmada alluvium was deposited in two distinct aggradations episode with a distinct and well defined breaks in geomorphology & in sedimentation in rift system. The dissection of the quaternary blanket resulted two terraces (NT_3-NT_2) , after break in sedimentation which is a persistent break all through out the valley both in alluvial fill area and hard rock terrain. The Sohagpur Shahgani, Hoshangabad formations in the central sector are correlated with the sediments of this aggradations episode & lithostratigraphy units of Rajpipla, Tilakwarda and Bharuch formation. The sediments of the alluvial phase are underlain by a boulder bed of glacio-fluvial origin. Thus, the fossiliferous boulder conglomerate, the basal unit of alluvium marks a disconformity between the lower glacial-boulder layer and upper fluvial sediments. The fossiliferous basal boulder conglomerate is being of middle Pleistocene age (Khan 1992).

The Quaternary blanket of Narmada in Jabalpur_Harda section has formed three terraces, besides its presented-day flood-plains, in the valley. These are designed (NT₀ to NT3), NT₀ being the lowest terrace above the present-day course of the river, NT₁, NT2 both are of cyclic and non cyclic nature. The NT₃ terrace occurs as elongated strip and isolated caps and lenses along the margin of valley flanks has divergent relative disposition. These land forms indicate vigorous and abrupt incision of valley floor due to relatively & repaid uplift of watershed area during Upper Pleistocene time. The (NT1-NT2₎ are the major depositional terrace and have both convergent & divergent mutual disposition with other terrace. These terraces further downstream have matched equivalents along the valley flank, whereas in the up stream section the matched equivalents are rare. The conspicuous divergent relation of these terraces the valley reveals successive uplift of catchments area and consequential incision of valley floor and adjustment of base level of Narmada during Upper Pleistocene time. The other land form elements of fluvial domain associated are point bar, sand bar, braided channel, meander scroll and cut of meander and paleo- channel. These terraces NT1 to NT3 of western sector are time equivalent to the three terraces of central Narmada and represents three sequential Quaternary events in SNONATA LINEAMENT ZONE in Central India Khan (1982) Khan (1984) Khan (1992) Khan et.al (2014).

The study of river terraces (NT-1, NT-2A, NT-2B, NT2C, NT3A, NT3B, NT3C,) along the entire length of 1280 kms of Narmada Rift Valley between Jabalpur-Harda and Harda - Bharuch , their correlation disposition, sediment sequence comprehensive sedimentological columns in type area, drainage net work, Neo-seismic data of imprints and signatures of Neotectoisam & data base analysis of available models of neotectonic deformation of the Indian plate indicate that peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north (Subramanya, 1996). The study of neotectonic activity of Khandwa Sukta faults and Barwani faults Khan (in press) in the middle segment of valley , study ad analysis of quaternary terraces of Tapti and their imprints of neoseismic events (TT-1 to TT-3) Khan (1984) in the confluence area of Tapti and Waghour further document and authenticate that these N–S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. A part of these compressive stresses are accumulated along the NSF, a major E–W-trending crustal discontinuity in the central part of the Indian plate. The perceptible tectonic activity of significant magnitude during the Early Holocene has been reported from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate respectively.

The present Quaternary landscape of ther Narmada valley which comprises of glacial deposit, fluvio glacial deposit and river terraces (NT-1 to NT-3) and their correlation with rest of Narmada Rift valley between Jabalpur-Harda and Harda – Bharuch, with the terraces of type area suggest that it has evolved mainly due to tectonic activity along the SONATA LINEAMENT in a compressive stress regime. The sediments comprising

these were deposits in a slowly subsiding basin during early Pleistocene middle Pleistocene and the Late Pleistocene. The Holocene period is marked by inversion, which had earlier suffered subsidence. The inversion of the basin is due to a significant increase in compressive stresses along the NSF during the Early Holocene, resulting in differential uplift of the lower Narmada valley. The continuation of the compressive stress regime due to ongoing northward movement of the Indian plate which is illustrated by imprints of noeotectonisam indicates that the NSF is a major candidate for future intraplate seismicity in the region.

The occurrence and relative disposition of terraces (NT-1 to NT-3), and rock cut terraces in Narmada indicate dominance of vertical incision of former valley floor by reactivation of lineament and fault repeatedly throughout the history of sedimentation. The terrace disposition, their interrelation, relative pairing revealed constant decrease of stream kinetics and energy condition of channel towards late Holocene time. (Table QGT_99,100) The disposition of landform and their relation with channel suggests that Holocene flood-plain processes and fluvial regime in the Narmada Rift Valley changed in response to decreasing rates of floodplain sediment accumulation and decelerating sea-level rise and that avulsion played a major role in flood-plain formation during the Holocene transgression.

The Narmada has major three terraces NT0to NT3, (280 to 400 m), besides its presented-day flood-plains in the valley. They have been designed NT_0 being the low level terrace above the present-day course of the river, NT_1 -the younger terrace both of cyclic ad o cyclic nature. The NT_3 terrace occurs as elongated strip and isolated caps and lenses along the margin of valley flanks has divergent relative disposition. These land forms indicate vigorous and abrupt incision of valley floor due to relatively & repaid uplift of watershed area during Upper Pleistocene time. The NT1to NT_2 are the major depositional terrace and have both convergent & divergent mutual disposition with other terrace. These are both erosional and depositional in nature and are separated by linear and curvilinear scarp and represent former valley floor. These terraces further downstream have matched The Quaternary in the central sector of Narmada display the stepped fluvial terraces breakig the monotony of topography, which from the prominent Quaternary landscape flanking Narmada valley, which indicating the former levels of flood-plain or valley floor. These land forms have been formed by combined action of erosional and depositional process of stream, the up warping in the hard ward ends and consequent climatic change in the post-Pleistocene time. equivalents along the valley flank, whereas in the up stream section the matched equivalents area and consequential incision of valley floor and adjustment of base level of Narmada during Upper Pleistocene time.

The Quaternary landscape in Jabalpur –Harda Section in upper Narmada and is represented by prominent stepped sequence of river terraces (NT1 to NT3) of fluvial origin. These terraces are both erosional and depositional in nature and are separated by linear and curvilinear scarp and represent former valley floor. The other land form elements of fluvial domain associated are point bar, sand bar, braided channel, meander scroll and cut of meander and paleo-channel. The Fluvial terraces identified are designated in Upper & Lower Narmada NT1 to NT3 are time equivalent to each other and corresponds and represents Quaternary event Khan (1982) (1984) (1992) Khan et.al (2014). The terraces (NT1 to NT3) of Jabalpur _ Harda section section of Narmada valley are time equivalent to the three terraces (NT1 to NT3) of Gurudeshwar _ Bharuch section central sector of Narmada and Khan (1982) (1984) (1992) Khan et.al (2014).

The study of river terraces (NT-1, NT-2A, NT-2B, NT2C, NT3A, NT3B, NT3C,) along the entire length of 1280 kms of Narmada Rift Valley between Jabalpur-Harda and Harda - Bharuch , their correlation disposition, sediment sequence comprehensive sedimentological columns in type area, drainage net work, Neo-seismic data of imprints and signatures of Neotectoisam & data base analysis of available models of neotectonic deformation of the Indian plate indicate that peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north (Subramanya, 1996). The study of neotectonic activity of Khandwa Sukta faults and Barwani faults Khan (2017) in the middle segment of valley , study ad analysis of quaternary terraces of Tapti and their imprints of neoseismic events (TT-1 to TT-3) Khan (1984) in the confluence area of Tapti and Waghour further document and authenticate that these N–S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. A part of these compressive stresses are accumulated along the NSF, a major E–W-trending crustal discontinuity in the central part of the Indian plate. The perceptible tectonic activity of significant magnitude during the Early Holocene has been reported from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate respectively.

The present Quaternary landscape of the Narmada valley which comprises of glacial deposit, fluvio glacial deposit and river terraces (NT-1 to NT-3) and their correlation with rest of Narmada Rift valley between Jabalpur-Harda and Harda – Bharuch, with the terraces of type area suggest that it has evolved mainly due to tectonic activity along the SONATA LINEAMENT in a compressive stress regime. The sediments comprising these were deposits in a slowly subsiding basin during early Pleistocene middle Pleistocene and the Late Pleistocene. The Holocene period is marked by inversion, which had earlier suffered subsidence. The inversion of the basin is due to a significant increase in compressive stresses along the NSF during the Early Holocene, resulting in differential uplift of the lower Narmada valley. The continuation of the compressive stress regime due to ongoing northward movement of the Indian plate which is illustrated by imprints of noeotectonisam indicates that the NSF is a major candidate for future intraplate seismicity in the region.

The occurrence and relative disposition of terraces (NT-1 to NT-3), and rock cut terraces in Narmada indicate dominance of vertical incision of former valley floor by reactivation of lineament and fault repeatedly throughout the history of sedimentation. The terrace disposition, their interrelation, relative pairing revealed constant decrease of stream kinetics and energy condition of channel towards late Holocene time. (Table QGT_ 99,100) The disposition of landform and their relation with channel suggests that Holocene flood-plain processes and fluvial regime in the Lower Narmada Rift Valley changed in response to decreasing rates of floodplain sediment accumulation and decelerating sea-level rise and that avulsion played a major role in flood-plain formation during the Holocene transgression.

The geomorphology and digonestic elements of Narmada valley in (Table No QGMT_3 to 19). The principal tributaries of Narmada River are Sher Sakkar Dudhi inTawa and Ganjal in, Hiran& Gaur. The Man, Karjan, Madhumati, Heran and Orsang, Amravati Narmada valley originate from the Satpura and Vidhyan hills from south and north of the trunk channel the most of these tributaries have short and precipitous course after they debouch from the hills. The area of sub basin of these tributaries is occupied by thick Quaternary sedimentsareclassified as older and younger alluvium on the basis of lithology sedimentological characters environments of sedimentation geological breaks. The banket of quaternary sediments of Sher Sakkar Dudhi inTawa and Ganjal, Hiran& Gaur.in Narmada valleyis chiseled in to two terraces besides present day flood plain. These terraces are designated as ST1 to ST2; SHT1 to SHT2, TT1 to TT2, and DT1 to DT2 resoectively. The landsacpe is entrenched and cut accross deep in quaternary blanket in to steeped sequence of terraces. These terraces are time equvalent to each other and have developed simultanoiosly during the same events. The incised blanket exposes lateral sedquence of quaternary sediment which depict hidden strata, unseen relict exposures of older deposits and signatures and imprints of neotectonisam.

Sher sub- basin (Latitude 23 30 longitutde 79 30):-

Sher is a major tributary of Narmada it has formed a sequence of two terrace around confluence with Narmada which are both of erosional and depositional nature. It drains from the southern satpura upland. The older fluvial surfaces (designated as ST_{-0} and ST_{-1}) which are erosional in nature and have angular relationship with oldest terraces of Narmada. These terraces are easily discernible in the aerial photographs and satellite imagery. The terraces of Sher are multicyclic depositional terraces and depict characteristic of cut-and-fill features and cyclic sedimentation. These terraces are both paired, and non paired in the area under study. They are divergent in their relative disposition indicating increase rate of upper reaches and shortening interval of successive rejuvenation of the stream during the Holocene. The detailed description of salient feature of terraces has been presented in. (Table No.QGMT-89)

Shakkar sub- basin. (Latitude 23 30 longitutde 79 30):-

The Shakkar is another major tributary of Narmada it has catchments in southern upland of Satpura and Gondwana it forms straight stream pattern and mingles its course controlled by lineament. In the area it has formed two major fluvial terraces, besides its present-day flood-plain; designated SHT- 1_1 to SHT-2.

The terraces SHT-1₁ to SHT-2.are both erosional depositional in nature. These terraces depicted sedimentary feature such as lamination, cross-lamination, cut and-fill feature and have undergone polycyclic sedimentation during the aggradations phase. These terraces display pairing and cyclic in nature. The terraces are generally divergent in their relative disposition indicating repaid rate of uplift of catchments area and shortening interval of successive rejuvenation of stream in different phase of sedimentation. The salient feature of the terraces of Tons valley is presented in table. (Table No.QGMT-90)

Dudhi sub- basin. (Latitude 23 30 longitutde 78 30):-

It is tributary of Narmada is rises from Deccan upland in the south and mingle with Narmada south west of Udaipur. It descends from straight sinuous to meandering pattern and has Chisselled in to two terraces designated DT_1 to DT_2 besides present flood plain. (Table No.QGGT-91)

Tawa sub- basin. (Latitude 23 45 longitutde 77 45:-

Tawa is a tributary of Narmada it raises from Gowanda and Deccan upland in Satpura mountain ranges on the southern flank of Narmada it has developed two terraces around Hoshangabad which are designated as TT_1 to TT_2 . The active channel of Tawa has developed river braids point bar sand bars, channel ban of different size and dimension around the confluence with Narmada at Hoshangabad. (Table No.QGMGT-92)

Hiran sub- basin. (Latitude 23 15 longitutde 80 00):-

Hiranis a tributary of Narmada it raises from Vindhyan mountain ranges on the northern of Narmada it has developed two terraces around Jabalpur which are designated as HT_1 to HT_2 . The active channel of Hiran has developed river braids point bar sand bars, channel bar of different size and dimension. A strip of active flood plain is developed along the river channel. (Table No QGMT_9 to_12 Plate No_1,2,3, 4 to_8, 11,12)

Geomorphology of Hathnora Section:-

The Narmada in Central sector along its tributaries has chiseled a trigger shaped basin between the Vindhyachal range in north and the Satpura in the south. The gape between these two physiographic highs is filled by thick pile of Quaternary sediments which constitute complete quaternary sequence, forms the valley flats of Narmada and represents the oldest Quaternary deposit of peninsular India.

The Quaternary blanket forms conspicuous landscape of river terraces in central segment of valley between representing the former level of valley floor of Narmada controlled by ENE –WSW to E-W lineament. The Narmada has formed three regional terraces besides its flood plain (NT0). These are polycyclic depositional terraces and are designated as NT1, NT2 and NT3 in increasing order of antiquity from the present course of river. These terraces are separated by linear or curvilinear scarp facing the river and designated and named as. Janwasa Surface :(NT0) Hoshangabad: (NT1) The Sahaganj surface (NT2) Sohagpur Surface (NT3) in increasing antiquity .

The NT1 is the youngest lowest terrace forming present flood plain of the Narmada and is marked by a scarp. It is restricted within the meandering loop of Narmada; is a depositional terrace and has convergent relation with older terraces and is of cyclic nature. The NT2 is a regional terrace occupying the central part of valley, separated by conspicuous scarps from NT3 and NT1 Terrace. It is an erosional terrace and forms the main alluvial plains of the Narmada. It is a cyclic terrace and has paired equivalents and exhibits divergent relationship, with NT3 and present day course of Narmada it is noticed along the outer flanks of the valley, resting either on the Vindhayan or Deccan basaltic rocks. The relative disposition of older terraces NT2 and NT3, their cyclic nature, and divergent relationship amongst each other and with the present course of river in the valley indicate high energy condition of Narmada during the formation of these terraces, perhaps due to climatic/tectonic changes in waterland of Narmada during Pleistocene time. The non-cyclic nature of NT1 and its convergent relation with NT2 and NT3 and present day course of Narmada indicates climatic changes towards the later history of sedimentation. The over all disposition of these terraces in the valley, their relative convergent and divergent relation and their relation to the present day course of river, indicates constant decrease in the rate of uplift in water shed and consequent decrease in energy condition of Narmada towards later Quaternary time.

The geomorphology and digonestic elements of Narmada valley in Table No QGMT_13 to 15)

Janwasa Surface :(NT0):-

It is the youngest surface of the Narmada in the area. It is noticed above the present day flood plain of Narmada at an average elevation of about 280 m above the m.s.l. This surface is characterized by lack of drainage, gentle slope and scanty vegetation. The geomorphic features associated with this surface are strand lines, meander scroll, and active flood plain. It is observed around Hoshangabad, Shahganj, Hathnora and Upstream of Sardarnagar.

Hoshangabad: (NT1):-

It is older than Narmada surface and named after Hoshangabad $(22 \ 15 - 77 \ 43)$ town where it is best developed. The surface forms the morpho-stratigraphic unit and is identified at an average elevation of about 295 m, above m.s.l. around Hoshangabad, Sahaganj, Hathnora, Narayanpur, Dheri and Ramnagar. It is crescent shaped and is characteristically restricted within the meander of Narmada exhibiting diagonally disposed paired equivalents in the valley. It represents the sediments of palaeo-domain of Narmada predominantly consisting of sand, silt and rock gravel. The top soil mostly comprised of light yellow and grey clay silt of about 1.20 m. The depth of weathering varies from 0.35 to 1.50 m. and average depth is 1.15 m. The streams which drain this surface are mostly impersistent and partly of internal nature. These streams are generally sub-parallel to parallel and sub-dendritic in nature and appear to have been controlled by concealed fracture planes. The various erosional pattern identified in this surface are rill erosion and gulley erosion.

The Sahaganj surface (NT2):-

It is older than Hoshangabad surface, is identified at an average elevation of 310 m. above m.s.l. named after Sahaganj (22 51-77 47) the prominent village situated on this surface. It is a vast Quaternary surface and forms the central Narmada plain. It is separated from Hoshangabad surface (NT1) by conspicuous scarp along Narmada exposing thick sequence of Quaternary sediments in the bluff section. The bluff scarp of Narmada which persistently extends from Jabalpur to Harda along Narmada indicates sharp incision of valley floor by river which appears to be related with the reactivation of E-W trending lineament suggesting significant tectonic event in the Narmada valley in Quaternary time. The heights of sharp edge scarp vary from 11 to 20 m., the average height is about 16 m. which increases upstream.

The Sahahganj surface is separated from Sohagpur surface by a curvilinear scarp rising to the average height of about 18 m. Though the scarp is quite prominent and forms the stepped sequence of terraces in the valley, at places it is distorted by erosional processes, creep and mass wasting activities along the scarp faces. The development of linear convex slopes along the scarp due to accumulation of mass wasting debris is the prominent feature.

This surface is deeply incised by network of small gullies and has developed small linear tracts of ravines north of Narayanpur, north east of Sardarnagar on the northern bank, around Dhansi and north of Balgaon on the southern bank of Naramada. It displays typical undulating bad land topography with micro scarps of average height of 3.25 m. The prominent topographic breaks and undulations on this surface are noticed along subsequent and insequent stream rising from Vindhyachal in north and Satpura in south and draining in the valley. The extensive land dissection and intensive gullying on this surface is noticed along Narmada in Narayanpur, Hoshangabad, section around Sardarnagar, Hathnora, Sukkawara, east and south east of Sahahganj.

This surface forms the conspicuous landscape (NT2) of Narmada and represents the former level of valley floor. It consists of sediments of palaeo-domains of Narmada predominantly comprising of yellow, grey and reddish brown silt, clay sand and rock gravel. These sediments are capped by black cotton soil. The soil thickness varies from 1.35 m to 2.90 m. and average thickness is about 2.25 m. The weathered zone mostly follows the profile and an average depth of this zone is about 2.80 m. This surface is drained by sup-parallel to parallel streams which appears to have been controlled by concealed fractures and lineaments. The prominent streams draining this surface are Chandani Nadi, Dobi Nadi, Katkasari Nadi, Nanawara Nadi and Palkamti Nadi. The various erosional patterns in this surface are soil erosion, deep gully erosion and accelerated headward erosion.

The geomorphic features associated with this surface is a cut off meander identified around Tamcharu (22 47 30-77 53 10) on the southern bank of Narmada. The linear length of cut off meander is about 11 kilometers, width varies from 250 m to 750 m and average width is 575 m. It is marked by a scarp which rises to the height of about 10 m. The slope is 2-5 towards north. It represents the paleo-course of Narmada and is locally known as "Budhi Narmada". The relative disposition of this cut off meander, slope elements and its relation to present course of Narmada indicate sudden shift of Narmada towards north consequent upon the reactivation in the energy system of channel in recent past.

Sohagpur Surface (NT3):-

It is oldest Quaternary surface (NT3) of the Narmada identified at an elevation of about 325 m. above m.s.l. and named after Sohagpur ($22 \ 15 - 77 \ 59$) the main town situated on this surface. It occupies large area in the south and south eastern corner of the area. It extends from Sohagpur in the east to the Rajpura in the west on the south bank

and from Makalbara in the east to Kewalajhir in the west on northern bank of Narmada. It occurs at about 40 m. above the present day channel of Narmada and has gentle slope towards the west.

It represents the sediments of flood plain facies of paleo-domains of Narmada consisting of yellow red and brownish silt, clay containing fairly good amount of calcareous concretion and ferruginous matrix. It is capped by black cotton soil measuring about 3.25 m. The depth of weathering follows the soil profile with an average depth of about 3.50 m. It is drained by Rain Nadi, Tangas Nadi and Palakmati Nadi which are sub-parallel to parallel and are influenced by concealed fracture and lineament. The various erosion pattern noted on this surface are rill erosion, gully erosion and headword erosion.

The geomorphology and digonestic elements of Narmada valley in (Table No QGMT_3 to 15 Plate No_6,11,12)

Geomorphology of Hoshangabad-Nasrullahgunj-Harda Section:-

The Narmada Tawa, Ganjal and other tributaries in lower central sector has sculpture elongated basin at the the stress point of Vindhyan strike in the north and faulted block of Satpura in the south which forms faulted a linear depression in the valley which forms ideal place for quaternary sedimentation. The gape between these two physiographic highs is filled by thick pile of Ouaternary sediments which constitute complete quaternary landscape sequence of terraces of Narmada which represents the complete column of t Quaternary deposit of peninsular India. The Quaternary blanket breaking the physiographic monotony forms the stepped sequence of former floor of Narmada between 260 to 400 m above m.s.l. controlled by composite fabrics of ENE -WSW to E-W lineament. In this section Narmada has formed three regional terraces besides its flood plain. These are polycyclic depositional terraces and are designated as

NT-1 NT-2A, NT-2B, NT-2C and NT3 in increasing order of antiquity from the present course of river. These terraces are separated by linear or curvilinear scarp facing the river. The diagnostic and salient features of terraces are incorporated in the

I abic I		aligraphy of Quaternary ia	nuseaape
Terrace	Elevation above MSL	Nature of its Origin	Morphostatigraphy
NTo	260-280 m	Depositional	Light grey to dark grey sand and silt
NT_{1}		Erosional /	Light grey to dark grey sand and silt
	280-300- m	Depositional	with rock pebbles and and silt
NT_2A	300-320 m	Depositional	Grey & brown sand and silt.
NT_2B	320-340m	Depositional	Yellow brownish clay with silt Erosional
NT_2C	340-360 m	Depositional	Yellow brownish clay with silt with
		-	Dark brown oxidized clay silt
NT_3A	360-380 m	Depositional	Dark brown, dark yellow clay silt
		-	Brownish red clay and silt with
			Calc-matrix. Erosional/
NT_3B	400 m	Depositional	Dark brown, dark yellow clay silt
		L L	Brownish red clay and silt with Calc-matrix

Table No OGMT 21.-Morphostratigraphy of Quaternary landscaape

Pre-Quaternary Surfaces:-

In this section four prominent Pre-Ouaternary surfaces are developed on Vindhyan in the north Deccan Trap upland (55 N/5, 9, 13) in south of Narmada between 400 to 500 m. These are essentially erosional surfaces and were formed by regional peneplanation of the area. These surfaces are described in decreasing antiquity in the valley.

Palanspani Surface:-

The Palaspani is pre-Quaternary surface and is identified on Vindhyan up land in the north western extremity of the area at an elevation of about 400 m, above the m.s.l. and named after village Palaspani (22° 49" 30 '- 77 ° 17" 30') which located in the Central part of this surface. This surface is thum in shaped, characterized by its distinct elevation and separated by a curvilinear scarp facing towards valley side.

This surface is covered by light yellow pinkish and brownish soil consisting of pre-dominently clay and slit with small rock granules of quartzite and sand stone. The depth of weathering in this surface varies from 0.30 m to 0.65

m and average depth is about 46.50 m. This surface is very low drainage density and is drained by every few streams let of sub-parallel to parallel nature. The various erosional pattern associated with this surface are mainly rill gully accelerated head word erosion.

Amirganj Surface:-

The Amirganj surface is developed in northwestern part in Vindhyan group of rock, consisting of Quartzite, sand stone and shale at an elevation of about 380 m. above the m.s.l. and named after Amirganj village (224930 - 7719 30) situated in the north eastern corner of the surface. It is younger than Palaspani surface and older than Bardha surface and separated by curvilinear scarp. The angularity in the scarp, with steep slopes point to structural control on erosional processes around this surface.

This surface is covered by light pinkish, gray light yellow and browns soil consisting of pre-dominantly clay and silt. The thickness of soil varies from 0.45 m to 2.20 m and average depth is about 1.65 m. The soil thickness increases south ward. The depth of weathering almost conincide with the soil profile, on the surface, except around Bhenosa (22 50 00 -77 18 00) where depth of weathering of order 4.25 is observed along the joint / fracture planes, which contain potable quality of ground water. The scarp of this surface has restricted the development of drainage on the steeply sloping Vindhyan cliff to east of Amirganj, south of Patalai and west of Gheti and drained by few streamlets which have very selectively cut across the scarp by accelerated headword erosion along the joint fracture / planes.

Bardha Surface:-

The Bardha surface has occupied northern part of area on Vindhyans at an elevation of about 340 m above the m.s.l. and named after Bardha (22 49 30 - 77 25 30) a prominent village in the west of this surface. It is younger than the Amirganj surface and older than the Chakaldi surface and separated by both linear and curvilinear scarp. The scarp angularity of these scarps and association of rings west of Nimwalkhera along the scarp face separating it from Chikalda surface suggest the pronounced structural control on the erosional process in the area. This surface is dotted by inselberg and butte the prominent educational elements depicting similarities in lithology, disposition height of peaks at various levels topographic breaks and slope elements thereby, suggesting polycyclic educational history of Vindhayan in the area.

It is covered by light pinkish, light brown to deep brown and grayish soil consisting of clay and silt as chief constituents. The thickness of soil range from 0.80 m to 2.35 m. and average thickness is 1.85 ms. The depth of weathered zone varies from 1.25 m. to 3.25 m. and average depth is 1.95 m. The depth of this zone increases toward south. The drainage developed on this surface is mostly sub-parallel to parallel in nature and seem to have been controlled by NLW trending set of fractures/Lineaments, as most of stream cut across the scarp of this surface along the angular / acute points.

Chakaldi Surface:-

t is a pediment surface and has occupied the large area between Vindhayan in the north and Nasrullahganj surface in the south at an elevation of about 320 m. above the m.s.l. and named after Chakaldi town (22 47 30- 77 22 30) located in the central part of this surface is in between 5- 8 towards south.

It is covered by light yellow, light brown, grey and deep yellow soil consisting of clay, silt and small rock fragments of quartzite, sand stone and basalt. The thickness of soil in this surface varies from 1.25 m. to 3.35 m., the average thickness is 2.55 m. The northern fringe of this surface along the Vindhyan hill ranges at place covered by colluvium which contain angular to highly angular rock fragments of quartzite sand stone and basalt. The prominent colluvium deposit is noticed west of Lanchar (22 47 00 – 77 16 00) The depth of weathering in the area of this surface varies from 2.75 m. to 4.55 m. and average depth is 3.85 m. It increase south ward. The depth of weathering at Lanchar (22 47 00 – 77 16 00) is 3.25 mts. At Katra (26 46 30 – 37 19 30) is 3.60 mts. At Chikalda (22 47 30 - 77 22 30) is 4.30 mts. At Kheri (22 48 30 - 77 24 30) is 2.45 mts. The depth of weathering increases towards south. The weathered zone of this surface contain appreciable amount of ground water is mostly tapped by large diameter open dug wells. It is drained by Kolar, Ambar and their tributaries, which are mostly sub-parallel to parallel in nature and appear to have been controlled by net work of NLS, NW-SE and NE-SW trending fractures and Lineaments which are cancelled under recent deposit of this area.

Nasrullahganj Surface:-

The Nasrullahganj surface (NT3) is oldest alluvial surface of Narmada identified at an elevation of about 300 m. above the m.s.l. and named after Nasrullahganj the main town in the area. This surfaces has occupied wide area between Salkampan (22 44 00 - 77 24 30) in the east and Chitgaon (22 44 00 - 77 15 00) in the West of Chikaldi (22 47 30 - 77 22 30) in the north and Mardanpur (22 38 00 - 77 27 00) in the south on northern bank, and Shilariya (22 31 30 - 77 28 30) in the east and Hathnapur (22 35 30 - 77 29 30) in the North and Taraniya (22 30 30 - 22 27 30) in the south on the south bank of Narmada. It occurs as both continuous and disconnected patches which are generally long in shape having both divergent and convergent disposition, with respect to present day channel of Narmada (Terrace deposits) and comprises of to sub-rounded to well round boulder, cobble, pebble of quartzite, basalt, oneiss, sand stone, Augate, chert and Jasper with vary coarse to fine sand silt and clay. It is separated from Shivpur surface by erosional scrap which at places sub-dued by post depositional activity and human influence.

It consist of highly matured grey to black light brown to deep brown and reddish and deeply oxidized soil predominantly consist of clay with silt and sand. The thickness of soil varies from 1.85 m. to 4.35 m and average thickness is 3.75 m. It increases southward. The depth of weathering in this surface show variable thickness it varies from 3.32 m. to 6.35 m and average depth is 4.75 m. The depth of weathering in this surface in the forest cover zones is more in contrast to the area which are under active cultivation. It is drained by Kolar and Ambar Nadi and their tributaries which are mostly sub parallel to parallel in nature and have cut deeply across, this surface forming small auxiliary terraces along this course. The courses of these streams are strongly influence by the concealed lineaments/joints as evident by their selective entrenchment, cyclic scarps and disposition of recent land form elements along their courses. The various erosional pattern identified in this surface are accelerated headword erosion.

Shivpur Surface:-

The Sivepur Surface (NT2) is younger than Nasrullahganj surface and is identified at an elebation of 280 m. above the m.s.l. and named after Shivepur (23 31 00-77 18 15) the main town situated on this surface. It is vast Quaternary surface and have occupied the area between Phulhara (22 41 30 - 77 29 30) in the east, Achang (22 33 30 - 77 15 05) in the west on the Southern bank of Narmada at an elevation of 280 m above m.s.l. It represent the flood plain deposits of paleodomain of Narmada consisting of pre-dominant sub-rounded to well boulder, cobble, pebble of quartzite, gneiss, basalt, sand stone, agate, chert, jasper, in the matrix of very coarse to fine sand, silt and clay.

This surface is generally is bounded by erosional scarps both from Nasarullahbanj surface and Shivepur surface, showing regional convergent and divergent disposition in the area. It's contact with both these surfaces is commonly erosional, at places transitional and over lapping due to convex slopes developed mostly due to debri slide and post depositional activities and consequent accumulation of sediment along the scarp faces. This land form unit is deeply incised by network of small gullies and have developed small mainliner tracts of ravine tracts north west of Nilkant (22 36 05-77 16 10) around Chameti (22 37 00 -77 17 00) on the northern bank of around Hamidpur (22 34 30 -77 17 30) east of Kalgaon (22 31 30 - 77 16 30) on the southern bank of Narmada. It shows typical undulation (bad land) with height of incisional micro scarps along the gullies reaching upto 3.5 m. The prominent topographic breaks and undulation in this surface due to extensive gullying along the seasonal streams is noticed around Digawar, Bsaniya Khurd, Shamugaon, Samalkhera and Ratanpur, Bansaniyadongar, Banard South of Pathra, around Amalaradongar (55F/6).

It consists of light yellow to deep yellow, light brown, grey and at places reddish soil consisting of clay as main constituents. The soil thickness varies from 1.35 m. to 2.85 m and average thickness is 1.83 m. The average depth of weathering in these surfaces is 3.25 m. It show moderate drainage streams which have active dissected this surface north of Nilkant (22 32 00 -77 16 30) north and east of Tilariya long the Kolar river, north of Parliya, around Hamidpur (22 34 30- 77 17 30) west of Kolgaon around Baseniyadongar, Pathra and Amblaradongar on the south bank of Narmada. The network of these stream have deeply incised the Nasrullahganj (NT3) surface across the scarp faces and have formed closely spaced small valleys having valley filled deposits of Recent sediements. These valleys have developed along the direction of accelerated head ward erosion of these streams. The prominent such valley fills are observed around Rehati (22 44 00 -77 26 15) along Babra river, around Rampura-Gadariya, southwest of Harpatpur south west of Kusumkul on the southern Bank. It is drained by sub-parallel to parallel streams. These Kolar and Ambar are the prominent streams on the northern bank of Indra and Ganjal on the Southern bank of Narmada, which have formed the low level terraces along their courses. The various erosional pattern associated with this surface are rill erosion, deep gully erosion and accelerated head ward erosion.

Demawar Surface:-

The Demawar surface (NT2B) is Crecent in shape and have occupied small areas in the meandering loope of Narmada around Demawar, Nilkant, on the north bank Ramgiri, Babri on the south bank of Narmada at an elevation of about 270 m. above m.s.l. and named after Demawar village (22 34 10 – 77 21 00). It is younger than Shivepur surface and older than Amba surface. It represent the old flood plain deposit of Narmada consisting of sub-rounded to well rounded boulder, cobble, pebble of quartzite , sand stone, basalt, Jaspar and chert with sand silt and clay. This surface is covered by light yellow to dark yellow, drey and light reddish soil having clay and silt as Chief constituents. The soil thickness varies from 0.50 m to 1.50 m.

The average thickness is 0.95 m. This thickness of soil profile increase northward. The average depth of weathering indentified in the areas of this surface is 1.20 m. This surface show very low drainage density and is drained by few sub-parallel to parallel streams mostly having flow direction parallel to Narmada.

Amba Surface:-

It is youngest Quaternary surface of Narmada and have occupied the meandering loope of Narmada at an elevation of about 260 m above m.s.l. around Amba Kund south of Nilkant, around Jajna. Alpa and Guari and named after Amaba, (22 34 10 -77 17 45) a prominent village situated on this surface. This surface show divergent disposition and have diagonally disposed paired equivalent along Narmada in the area. It represent flood plain deposits of Paleodomain of Narmada consisting of clay coarse to fine sand, silt and rock gravels. It consist of light yellow, grey soil principally comprising of clay and silt. The soil profile developed and measured average thickness is about 0.75 m. The depth of weathering restricted to 0.90 m

Kolar Surface / Ganjal Surface:-

The Kolar on the northern bank of Ganjal on the Southern bank have curved their coarses across Chikaldi, Nasrullahganj and Shivepur surfaces and have formed the sequence of small surfaces along their coarses named after Kolar and Ganjal rivers. These surfaces represent the flood plain deposit of Kolar and Ganjal consisting of predominently coarse of fine sand, silt and clay. These surfaces show prominent geomorphic break and are separated by scarps, varying in height from 5 to 10 m. The average height of these scarps both along Kolar and Ganjal is 7.5 m. The height of scarp increases towards Narmada.

Indra Surface:-

These surfaces are developed along Indra river which cut across Shivepur surface, on the southern bank and joined Narmada east of Guari and named after Indra Nadi. These surfaces Pre-dominantly consist of very coarse to fine sand, silt, clay and rock gravel. These surfaces show prominent geomorphic break and are separated by scarp varying in height from 3.5 to 5 m, the average height of scarp is 4.25 m

Ambar Surface:-

The surfaces are formed along the Ambar Nadi, which drain north western part of the area and have curved if coarse across the Chikaldi, Nasrullahganj and Shivepur surfaces. These surfaces are mostly elliptical, crescent in shape, and are restricted in the meandering loopes of channel and named after Ambar Nadi. These are separated by scarp varying in height 2.5 to 5 m. These represent the flood plain deposit and consist of coarse to fine sand, silt and clay. The geomorphology and digonestic elements of Narmada valley in (Table No QGMT_1 to 15 (Plate No_8 &9)

Geomorphology of Garudeshwar_Bharouch Section:-

The Narmada river e Grudeshwar and Bharouche section of Narmada bounded by latitude 21 30 to 22 31 North 72 50 to 74 15 East in parts of of Gujarat state negotiatiates in lower part of valley before debouching in Gulf of Cambay in Arabian Sea in Gujarat state. This segment is about 90 km in length and forms the southern margin of the N–S extending Gujarat alluvial plains .A significant feature of the lower Narmada valley is the deposition of a huge thickness of Tertiary and Quaternary sediments in a fault controlled rift trench. To the south of the ENE–WSW-trending Narmada–Son Fault (NSF), the Tertiary rocks and basaltic flows of Deccan Trap Formation occur on the surface while to the north they lie in the subsurface and are overlain by Quaternary sediments. It is occupied by thick Quaternary deposits of about 800 m which represent various domain of sedimentation. Based on sedimentlogical characters, depositional environments, erosional processes and their relation with depositional activity revealed that it comprised of four domains of sediments viz glacial, fluvio-glacial fluvial and tidal flats. The lower most units (Boulder bed) is, of glacial origin, followed by the boulder conglomerate of glacio-fluvial and subsequently by fluvial of paleo- domain of Narmada and tidal flats. The top Quaternary landscape is chisealed into

three terraces NT1 to NT3 besides presentday flood plain NT0 which is represented by four formations Ankleshwar, Tilakwarda & Bharuch and Aliabat respectively. The Boulder conglomerate is assigned an independent formational status based on distinct lithology and fossil assemblage. The sequence of Quaternary events and the history of sedimentation of Narmada indicate which is exposed at the base of NT2. The upper 180 of the Narmada alluvium was deposited in two distinct aggradations episode with a distinct, well defined break in sedimentation in rift system. The dissection of the quaternary blanket resulted in to two terraces (NT_3 - NT_2), after break in sedimentation. The sediments of this aggradations episode constitute three lithostratigraphy units viz Ankhleshwar, Tilakwarda and Bharuch formation. The sediments of the alluvial phase is underlain by a boulder bed of glacio-fluvial origin. Thus, the fossiliferous boulder conglomerate, the basal unit of alluvium marks a disconformity between the lower glacialboulder layer and upper fluvial sediments. The fossiliferous basal boulder conglomerate is being of middle Pleistocene age..

Geomorphologically, the area between Garudeshwar and Bharuch in the the lower Narmada valley may be divided in to four units each characterized by distinct land form elements, pedology, drainage relief and morphogenetic expression viz i. Upland of basaltic lava flows Cretacious sandstones, Bag formation and Tertiary formation .ii. Quaternary blanket and alluvial tract iii. Alluvial Fan and piedmont zone vi. Coastal zone comprising mud flats v. Active flood plain and associated landform elements. The study area shows a large variety of geomorphic features like deep ravines, uplifted terraces, abandoned cliffs incised cliffy banks and entrenched meanders alluvial plain between the ENE–WSW-trending mountain front scarps and the Narmada river exhibit gentle slope towards north while the alluvial plain in the north of Narmada River show a gentle WSW slope. The Narmada river descending across the rugged and mountainous tract through deep and steep gorges in straight sinuous to meandering pattern entering in terminus segment of valley noce again open out to oval shaped depression which embraces a thick cake of quaternary blanket which has been cut in to NT1 to NT3. The lower segment of valley is controlled by conspicuous E-W lineament which formed unique platform of Quaternary sedimentation as witnessed by thick pile of quaternary sediments and the presence of multicyclic sequence of terraces. These terraces represent the former levels of valley floors formed by cumulative erosional and depositional activities of the river system.

The Narmada in its traverse across in its last leg in lower Narmada valley before entering Gulf of Cambay, in Gurudeshhwar _ Bharouch section it descends in sinuous to meandering pattern which is solely guided by ENE to WSW to E-W lineament and its sympathetic fractures. The landscap architect of valley has multithem manifestation of hidden mechanism of dynamics and Neotectonisam .In this segment Narmada has chiseled three terraces across its course breaking the monotony of land scape which are designated as NT1-NT3 besides its active flood plain. It downstream of Garudeshwar flows in a general WSW direction where it display meanders with wave lengths of 5-8 km .The Orsang, Aswan, Men and Bhuki are the major rivers joining the Narmada from the north. The Karjan River, which drains a major part of the trappean uplands in the lower Narmada valley, meets the Narmada from the south. The other tributary is Madhumati River drains the western fringe of the trappean upland. In between the Karjan and Madhumati rivers there are several north flowing small streams meeting the Narmada at various points. The net work of drainage in the lower Narmada is structurally controlled and they are guided by neosiesmic ecology of pulsation variance evident neoseismic signatures Ouaternary landscape as bv on The presence of ravenous tracts in northern bank of Narmada with incised deep gullies of 20–25 m is manifestation of sudden dislocation of ground water regime and water table to deeper level due to subsidence of block along the lineament zone. The disposition of river terraces, entrenched meanders and alluvial cliff 15-30 m are suggestive of neotectonic activity in the area. The display of active Narmada channel configuration of terraces, meander scrolls, entrenched meander revealed misfit nature. Narmada in the area. The present channel of Narmada is strongly influenced by NSF and display persistent tendency to shift towards north due geotectonic activity along the fault. It also authenticates that there is significant up rise in the southern block of fault and subsidence of northern block which resulted into gliding and shift of Narmada to wards north.

The Quaternary blanket of Narmada display the stepped sequence of fluvial terraces (NT_o to NT3), breaking the monotony of topography, which from the prominent Quaternary landscape flanking Narmada valley, indicating the former levels of flood-plain or valley floor. These land forms have been formed by combined action of erosional and depositional process of stream up warping in the head ward ends and consequent eustatic and related climatic change in the post-Pleistocene time. These terraces (NT_o to NT3), are both of cyclic and non cyclic nature. The NT0-NT1 are developed within the meandering loop of channel where as NT2 NT₃ are widely developed alon the flanks. In the upstream NT3 occurs as isolated caps and lenses along the margin of valley flanks which have divergent relative disposition. These land forms indicate vigorous and abrupt incision of valley floor due to

relatively & repaid uplift of watershed area during Upper Pleistocene time. The NT1to NT₂ are the major depositional terrace and have both convergent & divergent mutual disposition with other terraces. These terraces further downstream have matched equivalents along the valley flank, whereas in the up stream section the matched equivalents are rare. The conspicuous divergent relation of these terraces in the valley reveals successive uplift of catchments area and consequential incision of valley floor and adjustment of base level of Narmada during Upper Pleistocene time. The other land form elements of fluvial domain associated are point bar, sand bar, braided channel, meander scroll and cut of meander and paleo- channel which are braided in nature confined to present channel indicating sudden lose of bed slope due up lift of the area. These terraces (NT1 to NT3) of Gurudeshwar _ Bharuch section of lower Narmada valley are time equivalent to the three terraces (NT1 to NT3) of Jabalpur _ Harda section central sector of Narmada and Khan (1982) (1984) (1992) Khan et.al (2014. The sequence of Narmada terraces is shown in the (Table No 3) Plate No 3 & 4). The salient and diagnostic features and elements of these terraces are incorporated in the (Table No 5-10.) (Plate No 1, 3 & 4).

The study of river terraces (NT-1, NT-2A, NT-2B, NT2C, NT3A, NT3B, NT3C,) along the entire length of 1300 kms of Narmada Rift between Jabalpur- Bharuch their correlation, relative disposition, their elevation and slope their critical and crucial sediment sequence in type area, drainage net work and its configuration, neo-seismic data imprints and signatures of modules of neo- deformation by compressive force, in relation to the movement of the Indian plate indicates that peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north (Subramanya, 1996). The study of Quaternary tectonics activity of Khandwa Sukta faults and Barwani faults Khan (2017) in the middle segment of valley, analysis of quaternary terraces of Tapti and their imprints of isoseismic events Khan (1984) in the confluence area of Tapti and Waghour, further authenticate the record that these N–S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. The manifestation of this Phenomenon a part of these compressive stress is recorded along the NSF, a major E–W-trending crustal discontinuity in the central part of the Indian plate; further activities of significant magnitude are recorded from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate during the Early Holocene respectively.

The Narmada River in its lower reaches defends in sinuous to meandering pattern which is soley guided by ENEto WSW to E_W lineament and its sympathetic fractures .it has chiseled the land scape in to terraces, valley flats which form the prominent landscape of quaternary terraces breaking the monotony of close topograoghyThe Narmada down stram of Garudeshwar flows in a general WSW direction where it display meanders with wavelengths of 5-8 km The Orsang, Aswan, Men and Bhuki are the major rivers joining the Narmada from the north. The Karjan River, which drains a major part of the trappean uplands in the lower Narmada valley, meets the Narmada from the south. The other tributary, the Madhumati River drains the western fringe of the trappean upland.In between the Karjan and Madhumati rivers there are several north flowing small streams meeting the Narmada. The net work of drainage in the lower Narmada is structurally controlled and developed and work under the mechanism of neosiesmic ecology of pulsation variance evident by river terraces, linear scarp. The presence of ravenous tracts with incised deep gullies of 20-25 m. is manifestation of deep seated water table due to subsidence of block along the lineament zone. The disposition of river terraces, entrenched meanders and alluvial ciff 15-30 m are suggestive of neotectonic activity in the area. The display of active Narmada Channel configuration of terraces, meander scrolls, entrenched meander revealed misfit nature of Narmada in the area. The present channel of Narmada is strongly influenced by NSF and display persistent tendency to shift towards north due geotectonic activity along the fault. It is also further authenticated that there is perceptible up rise in the southern block of fault and subsidence of northern block which has manifested and resulted into gliding and shift of Narmada to wards north.

The Quaternary blanket in lower Narmada valley provides evidences of significant changes in channel kinetics of Paleo domain and present day domain of Narmada related with eustatic & sea-level fluctuation. The Quaternary deposits contained in the western asymmetric trench consist of sediments of various domains viz glacial, fluvio-glacial, fluvial, lacustrine and tidal flats later influenced by incursion of marine transgression and regression on tectonically active platform. It is evidenced by bore hole data and subsurface statistical analysis of sediments, quartz grain morphology of sediments, pale sole geometry and configuration of quaternary deposits in western segments of Narmada rift valley and SONATA TECTONIC ZONE.

The Quaternary river terraces of Narmada (NT1to NT3) entrapped in tectonic zone with rock cut equivalence and scars are positive significant imprints of euestatic change / climatic changes in the during the sedimentation. The alluvial fan in between Tilakwarda and Rajpipla within the loop of Narmada Chamyal (2002) is mono illustration of morphogenetic process associated with neotectonic event. The disposition of Quaternary blanket, fan deposit and other quaternary land forms are controlled and restricted by SONATA LINEAMENT towards north. It appears to be older quaternary deposits of Narmada which has moved from basement and has been pasted along SONATA LINEAMENT. The westward extension of this zone into the lower Narmada valley exhibits a less complex structural setting it is expressed as a single deep-seated fault (NSF) confirmed by the Deep Seismic Sounding studies (Kaila et al., 1981). Seismic reflection studies have firmly established that the NSF is a normal fault in the subsurface and becomes markedly reverse near the surface (Roy, 1990). Reactivation of the fault in Late Cretaceous led to the formation of a depositional basin in which marine Bagh beds were deposited (Biswas, 1987). The NSF remained tectonically active since then with continuous subsidence of the northern block, designated as the Broach block, which accommodated 6-7-km thick Cenozoic sediments (Biswas, 1987). The total displacement along the NSF exceeds 1 km within the Cenozoic section (Roy, 1990). However, the movements along this fault have not been unidirectional throughout. The general tendency of the basin to subside has been punctuated by phases of structural and tectonic inversion (Roy, 1990). The N-S-directed compressive stresses during the Early Ouaternary, folded the Tertiary sediments into a broad syncline, the Broach syncline, in the rapidly subsiding northern block (Roy, 1990). The Broach syncline extends from the NSF to the Mahi river in the north. The E-W trending axis of this syncline lies to the north of the Narmada river. Corresponding anticlinal structures are found in the Tertiary rocks exposed in the southern up thrown block (Fig. 2A and B). Historical and instrumental records indicate that the compressive stresses still continue to accumulate along the NSF due to continued northward movement of the Indian plate. This is evidenced by the fault solution studies of the earthquakes at Broach (23 March 1970) and Jabalpur (22 May 1997), which suggest a thrusting movement (Gupta et al., 1972, 1997; Chandra, 1977; Acharyya et al., 1998). However, the underlying cause of the seismicity in the NSF zone is not yet understood (Ouittmever and Jacob, 1979).

It is situated a terminus point of basin which forms a oval depression which elongated and starched E-W direction ad truncated by crossed structural lineaments trending NW-SE, NE-SW direction. The quaternary blanket exposed to post deposition activity which subsequently chiseled by cumulative geostatic ad climatic changes resulting into various terraces, pre-quaternary and quaternary surfaces and landform elements of various domain and plantation surface. In the area Narmada channel course is both obstructed & guided and controlled by the cross lineament trending transverse to strongly dominated ENE-WSW to E-W SONATA LINEAMENT resulting in the channel dynamics to suddenly open out which at short range became sluggish as evident by the landscape manifestation of the area. The Garudeshwar and Bharuch section Narmada, descends in sinuous to meandering pattern, it is strongly influenced and guided by the SONATA lineament the major geofracture known as the Narmada-Son fault, which causes the river to flow westwards, opposite to the regional slope. The Narmada basin in the area consists of various sub- basins like Madhumati,Orsang Unch Heran,Aswan, as in built part of Men rivers constitute minor basins which are tectonically segmented & ecologically as in built part of rift System. (Plate 1)

The landscape architech composite expression of lower Narmada valley illustrate and indicate that the area is exposed to the repeated post erosional & depositional activities and subjected to anisotropic and asymmetric tectonic dislocation which has culminated diversified manifestation, which further undergone to process of tectonic evolution and chiseling of rift valley by dynamic erosional and depositional activity resulting in reshaping of the terrain into various multi morphogenetic illustration and reorganization of units and land form element, sequential and renewed configuration of drainage, topography, physiography, plantation surfaces, denudation ridges, structural linear valleys, strike hills, valley gapes, escarpments and river terraces. The cumulative concealed dynamics and structural deformation of rinsing and sinking platform of Narmada, hidden cyclic mechanism of tectonics, geothermic, seismicity and neotectonics has illustrated various signatures and imprints on landscape in the valley. In addition the valley gapes and valley trenches provided ideal sites for sedimentation for formation of quaternary platform, pediment, pediplain, peniplain and river terraces.

The Quaternary landscape in Jabalpur- Harda Section and Gurudeshwar _Bharuch Section represents stepped sequence of river terraces (NT1_NT3) where Harda _Barwani sction is represented by rock cut terraces and rock benches with thin cap of Quaternary sediments at places . The Harda _Barwani Section embodies prominent landscape of rock cut terraces, rock sheets which are time equvilent to (NT1_NT3) of central sector and lower sector

of Narmada indicating cyclic rejuvenation of river due to uplift in watershed region of Narmada in Quaternary times. The fluvial terrace (NT 2) is conspicuous landscape and persistently developed along the valley, has divergent relative disposition and cyclic in nature and has paired equivalent. The inter relations of fluvial terrace and rock cut terraces, their relative disposition, divergence and convergence of older and younger terraces across the length of Narmada indicate mega linear tectonic dislocation across Peninsular India Khan (2014), Khan et.al (1991), Khan et.al (1992) Khan et.al (2015) Khan et.al (1991) Khan et.al (2016) Khan et.al (2016) Khan (2017) These (NT₀ to NT3), NT₀ being the lowest terrace above the present-day course of the river, NT₁, NT2 both are of cyclic and non cyclic nature. The NT₃ terrace occurs as elongated strip and isolated caps and lenses along the margin of valley flanks has divergent relative disposition. These land forms indicate vigorous and abrupt incision of valley floor due to relatively & repaid uplift of watershed area during Upper Pleistocene time. The (NT1NT2) are the major depositional terrace and have both convergent & divergent mutual disposition with other terrace. These terraces further downstream have matched equivalents along the valley flank, whereas in the up stream section the matched equivalents are rare. The conspicuous divergent relation of these terraces the valley reveals successive uplift of catchments area and consequential incision of valley floor and adjustment of base level of Narmada during Upper Pleistocene time. The other land form elements of fluvial domain associated are point bar, sand bar, braided channel, meander scroll and cut of meander and paleo- channel. These terraces NT1 to NT3 of western sector are time equivalent to the three terraces of central Narmada and represents three sequential Quaternary events in SNONATA LINEAMENT ZONE in Central India Khan (1982) (1984) (1992) Khan et.al (2014). (Table No QGMT 2)

The Quaternary blanket of Narmada in lower Narmada provides evidence for significant changes in channel kinetics of Paleo domain and present day domain of Narmada related with eustatic & sea-level fluctuation. The Quaternary deposits contained in the western asymmetric trench consist of sediments of various domains viz glacial, fluvio-glacial, fluvial, lacustrine and tidal flats influenced by incursion of marine transgression and regression on tectonically active platform. It is evidenced by bore hole data and subsurface statistical analysis of sediments, quartz grain morphology of sediments, pale sole geometry and configuration of quaternary deposits in western segments of Narmada rift valley and SONATA TECTONIC ZONE.

The area of study is occupied by Quaternary blanket of about 800 m which represent different domain of sedimentation. Based on sedimentlogical characters, depositional environments, and erosional processes and their correlation with depositional erosional activity revealed that it comprised of four distinct domains of sediments viz glacial, fluvio-glacial fluvial / lacutrine and tidal flats. The lower most units (Boulder bed) is of glacial origin, the boulder conglomerate which seprates glacial and fluvial deposit is persistent horizon and is of of glacio-fluvial (Khan *el. al* 1991) fluvial terraces are of paleo- domain of Narmada and tidal flats over top the fluvial deposits and confined along the coast line on the margin of gulf of Cambay.The top three formations Ankleshwar, Tilakwarda , Bharuch, and Aliabat are designated as (NTo-NT₃) represent thick and multiple sequences of Quaternary sediments. Khan (2015).

The Aliabet channel island which is entrapped in a meandering loope of Narmada on the mouth of Gulf of Cambay formation comprises of sediments of active channel deposit where as the older three Ankleshwar, Tilakwarda Bharuch (NTo- NT3) formation are related to older flood plains deposits of paleo-do-main of Narmada and are grouped under older alluvium. Boulder conglomerate of fluvio-glacial origin is assigned an independent formational status based on distinct lithology and fossil assemblage. Boulder conglomerate which forms rock cut terraces is assigned an independent formational status based on distinct lithology and fossil assemblage.

The Narmada in its lower Narmada valley before entering Gulf of Cambay, in Gurudeshhwar _ Bharouch section it descends in sinuous to meandering pattern which is solely guided by ENE to WSW to E-W lineament and its sympathetic fractures. The landscap architect of valley has multithem manifestation of hidden mechanism of dynamics and Neotectonisam .In this segment Narmada has chiseled three terraces across its course breaking the monotony of land scape which are designated as NT1-NT3 besides its active flood plain. It downstream of Garudeshwar flows in a general WSW direction where it display meanders with wave lengths of 5–8 km.

The Orsang, Aswan, Men and Bhuki are the major rivers joining the Narmada from the north. The Karjan River, which drains a major part of the trappean uplands in the lower Narmada valley, meets the Narmada from the south. The other tributary is Madhumati River drains the western fringe of the trappean upland. In between the Karjan and Madhumati rivers there are several north flowing small streams meeting the Narmada at various points. The net

work of drainage in the lower Narmada is structurally controlled and they are guided by neosiesmic ecology of pulsation variance as evident by neoseismic signatures on Quaternary landscape.

The presence of ravenous tracts in northern bank of Narmada with incised deep gullies of 20–25 m is manifestation of sudden dislocation of ground water regime and water table to deeper level due to subsidence of block along the lineament zone. The disposition of river terraces, entrenched meanders and alluvial cliff 15–30 m are suggestive of neotectonic activity in the area. The display of active Narmada channel configuration of terraces, meander scrolls, entrenched meander revealed misfit nature. Narmada in the area. The present channel of Narmada is strongly influenced by NSF and display persistent tendency to shift towards north due geotectonic activity along the fault. It also authenticates that there is significant up rise in the southern block of fault and subsidence of northern block which resulted into gliding and shifting of Narmada to wards north.

The study of river terraces (NT-1, NT-2A, NT-2B, NT2C, NT3A, NT3B, NT3C,) along the entire length of 1300 kms of Narmada Rift Valley between Jabalpur-Harda and Harda - Bharuch , their correlation disposition, sediment sequence comprehensive sedimentological columns in type area, drainage net work, Neo-seismic data of imprints and signatures of Neotectoisam & data base analysis of available models of neotectonic deformation of the Indian plate indicate that peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north (Subramanya, 1996). The study of neotectonic activity of Khandwa Sukta faults and Barwani faults Khan (2017) in the middle segment of valley , study and analysis of quaternary terraces of Tapti and their imprints of neoseismic events (TT-1 to TT-3) Khan (1984) in the confluence area of Tapti and Waghour further document and authenticate that these N–S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. A part of these compressive stresses are accumulated along the NSF, a major E–W-trending crustal discontinuity in the central part of the Indian plate. The perceptible tectonic activity of significant magnitude during the Early Holocene has been reported from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate respectively.

The present Quaternary landscape of the lower Narmada valley which comprises of glacial deposit, fluvio glacial deposit and river terraces (NT-1 to NT-3) and their correlation with rest of Narmada Rift valley between Jabalpur-Harda and Harda – Bharuch, with the terraces of type area suggest that it has evolved mainly due to tectonic activity along the SONATA LINEAMENT in a compressive stress regime. The sediments comprising these were deposits in a slowly subsiding basin during early Pleistocene middle Pleistocene and the Late Pleistocene. The Holocene period is marked by inversion, which had earlier suffered subsidence. The inversion of the basin is due to a significant increase in compressive stresses along the NSF during the Early Holocene, resulting in differential uplift of the lower Narmada valley. The continuation of the compressive stress regime due to ongoing northward movement of the Indian plate which is illustrated by imprints of noeotectonisam indicates that the NSF is a major candidate for future intraplate seismicity in the region.

In the terminal segment of Narmada forms the funnel shaped basin where incursion and transgression of tides, present estuarine reach contains several islands, which are coeval with the terrace surface above the present tidal range. Hence, they are the products of estuarine processes of the Mid–Late Holocene and not those of the present day. Funnel shaped morphology and increasing tidal energy landward are characteristics of tide-dominated estuaries (Wright et al., 1973). Existing data suggest that the Mid–Late Holocene sea level has remained at the same level up to the present with minor fluctuations (Chappel and Shackleton, 1986. The Mid–Late Holocene sediments show tilting of 10–20 m which is more pronounced in the vicinity of the NSF suggesting that the incision and uplift of the valley-fill terraces well above the present day tidal limits is related to the continued differential uplift along NSF. Evidence of tectonic uplift has been reported from the coast also in the form of raised mudflats occurring 2–4 m above present sea level (Merh, 1993). Currently, the river occupies the northern margin of the Early Holocene channel belt and is clearly more sinuous. It exhibits a narrow channel with wide meanders inside wide belts of Mid–Late Holocene terraces (NT-3) a typical pattern of unfit stream in the own system. (Dury, 1970)

The geomorphic, physiographic set up and drainage configuration of the Narmada the area of study demonstrate strong influence of tectonic and structure on development ad evolution of drainage. The Narmada enters in the area around Garudeshwar descends NW –SE direction cutting across NSA entering the quaternary tract. It further down stream of Tilakarda swing to wards west and suddenly become slow and sluggish and sinuous to meandering in channel pattern long the northern edge of upland ad ultimately debouches in the Gulf of Cambay. The disposition

and convergence of drainage net in conformity of disposition of quaternary landscape demonstrates. Is anomalous further imprints and neosiesmic signatures on landscape profile reveled persistent instability of basin during sedimentation.

The tectonic uplift of the lower Narmada valley during the Early and Late Holocene suggests inversion of an earlier subsiding basin. Such inversions of the basin have been common in the Tertiary times and are well recorded in the sediments of that age (Roy, 1990). A symmetric convergence of the NT-1,NT-2 terraces, diagonal disposition of paired equivalent of terraces across the channel, divergent and linear disposition of cliff of NT-3 terrace in conformity of NSF constant subsidence of basin and in response to frequential movement and geotectonic activity along the NSF. The displaced Late Pleistocene sediments across NSF in the Narmada and Orsang Heran and Madhumati & Karjan valleys, the NNW tilting of the NT-1, NT-2 sediments litho units consisting of the Late Pleistocene sequence, the anomalous topographic slope in the same direction and the incised cliffs up to 25-30 m in the streams that flow along this slope in the area between NSF and the Narmada River, indicate unsynchronized neoseismic movements along the NSF during the Early Holocene. The displacement of sediments of NT-1 surface across the NSF indicates differential movement of about 35 m along the NSF during Early Holocene. The block between the Narmada and Karjan rivers bounded by the NSF and the two other cross-faults suffered subsidence leading to the formation of a series, linear and curvilinear cuts of on terraces and flood plains. The 5-8-m incised cliffs of the streams also suggest that this block escaped the uplift induced large scale incision going on simultaneously in other areas of the lower Narmada valley. The occurrence of ravines and association of deep gullies with the river terraces is morph- tectonic manifestation caused by the sudden vertical movement and block adjustment due subsidence resulting to sudden collapse of water table and ground water regime in the area. The strongest supporting evidence for the Early Holocene tectonic uplift of the area comes from the sea-level curves of the west coast of India which suggest a tectonic component of about 40 m at this time (Rao et al., 1996). The geomorphology and digonestic elements of Narmada valley in Table No QGMT_16 to 21 (Plate No_7 & 10 11,12)

Summary & Conclusion:-

Narmada River originates at Amarkantak at an elevation of about 1057m above m.s.l. It descendeds from the mountainous tract traversing over a distance of 1280 km across the middle of the Indian sub-continent to join the Gulf of Cambay, near Baroda in Gujrat state. The area of study around Homonid locality Hathnora forms the part of central sector of Narmada, it is bound by Vindhyachal in the north and Satpura range to the south; the area in between these two upland is found to be ideal locus of sedimentation as witnessed by the presence of Quaternary landscape and multicyclic sequence of Quaternary terraces in the valley. The general elevation of Narmada alluvial plain varies between 00.00 to 65.00 m in lower Narmada and 65.00 to 95.00 m in upper Narmada valley above the sea level. The general gradient of this plain in this stretch is about 1m /km towards west.

The Narmada conspicuously has straight course is controlled by ENE_WSW to E_W lineament, is bounded by Vindhyan in the north and Satpura in the south it is exposed the repeated post erisional and depositional activities and subjected to anisotropic and asymmetric tectonic dislocation which has culminated diversified units and region which further undergone to process of tectonic evolution and chiseling of terrain by dynamic erosional and depositional activity resulting in and reshaping the terrain into various morphogenetic units and land form elements, re-configuration of drainage, topography, physiographic, erosional platform, planation surfaces, denudation ridges, structural units linear valleys, strike hills, valley gapes, escarpments and river terraces. The cumulative dynamics of structural deform, rinsing and sinking platform of Narmada has also manifested concealed cyclic mechanism of tectonics, seiesmicity, neosiesmic events and in surface manifestation. In addition the valley gapes and valley trenches provided ideal sites and platform for accumulation& sedimentation.

The Narmada Rift valley formed a linear trench in the middle of Indian subcontinent was an ideal locus for accumulation of sediments. The rift trench is intruded by the dolerite and other mafic and siliceous dykes and sills along lineaments in different phases of tectonic deformation. The Quaternary sedimentation incepting from glacial activity, followed by fluvio-glacial, lacustrine and fluvial phase within the rinsing and sinking environment, block, faulting, uplifting, isolated domal up- lift, Neogene rifting, Quaternary sedimentation, rift-bound Pliocene– Pleistocene rifting and volcanic activity specifically during glacial and fluvio-glacial phase are major component of the Quaternary period and tectonic processes of the Narmada Rift System which forms the base of quaternary deposits.

The glacial and fluvio-glacial deposits of Narmada unconformable overly the Vindhyan and the basaltic Deccan Trap rocks. The sediments consist of a Hetero-heterogeneous assemblage of sub-angular to angular, sub-rounded, unsorted, stratifiedrock fragments ranging from boulders to small pebbles, predominantly of quartzite, gneiss, sandstone, basalt, jasper, chart, gneiss, sandstone, basalt, chart, altered feldspar, ferruginous nodules, in a matrix of very coarse to very fine-sand, silt and clay. The sediments of glacial domain of Narmada occur between and average depth of about 320-265 below the surface and were deposited in glacial environments during Pleistocene time. These deposits are concealed under boulder conglomerate in the valley. The conglomerate bed that constituted the fossiliferous horizon of Narmada is sandwiched between older Alluvium and the glacio-fluvial bounder bed. This conglomerate bed is a very persistent marked horizon indicating a distance phase of sedimentation in the Narmada Valley. It is exposed in the bluff/scrap of Narmada around Sardar Nager, Hathnora, Surajgarh, Budhni, Hoshangabad, Khoksa, Tigharia, Demawar and Bhariya-Ghat at the base of terraces NT₂ (Khan, 1984). The boulder conglomerate predominantly consists of sub-rounded to well-rounded boulder, cobble and pebble of quartzite, gneiss, sandstone, basalt, agate, jasper, chert, chalcedony tightly cemented in a matrix of sand and silt. These deposits identified between an average elevations of 245 to 300 m above m.s.l. the basal unit of boulder conglomerate identified is marked at an elevation of about 268 m above m.s.l, exposed on the northern bank of Narmada around Hathnora (22° 52" N - 77° 52" E) at the depth of about 83 m in stratigraphic column of Quaternary sediments of Narmada.

				Table No QG	GMT_1						
Quater	nary St	rat	igraphy o	of the Narmada	Valley		•	•	•		
(Jabalp	our - N	usr	ullaganj -	Harda Section	n)						
Chro	Meg		Morp	Litho	Soil S	Stratigraphy		Teph	Biostra	tigraph	
no	neto		ho-	ho- ra		ra	У				
Strati	Strati	g	Stratig	Stratigraph	Soil	Degree	Degree of	Strati	Faun	Pollen	Paleocli
graph	raphy		raphy	У	Тур	of	Calcificati	graph	al		mate
У					e	Oxidatio	on	У			
						n			Acco	Assom	
									mbla	hlage	
									ge	~Be	
	Not			Ramnagar	Ι	Nil	Nil			•••••	
	Done			Formation					•••••		
				Amber					Upper		Present
				Formation			-				~
			NΤ _O	Indra/Kolar	11	Nil	Low	•••••	Asse	••••	Climate
				normationA					mblag		
Holoc	-		T _o Den	Ianwasa					C		
ene			osition	Formation							
			al								
			NT ₁	Hoshangaba							Warm
				d							and
			T_1	Formation	III		•••••	•••••		••••	Semiaer
			Erosio			•••••			•••••		id
13 Kg			nai								
Bn Rn			e								
- D P	Bł		NT ₂ -A	Shahganj				NAB-			Warm
	RUI		2	2 5				III			and
Upper	NH		T ₂	Formation	IV	Low	Intense	volca	1		Semiaer
	ES		Deposi					nic			id
D1 ·	NC		tional					Ash			
Pleist)RI		Surfac					Trans	Upper		
oncen	ΛA		e					ported			
Ċ											

			NT ₂ -B	Demaur	V	Moderate	Moderate	NAB- II volca nic Ash	Asse mblag e	Grami nae Comp ositae	Î	
128 Ka Bp				Formation						Cheno podiac ae		
Middl e			NT ₂ -C	Shivpur	VI	High	Moderate		Lowe r			
Pleist oncen e				Formation					Asse mblag e			
700 Ka Bp			NT ₃ -A	Nusrullahgan j	VII	Very High	Low	•••••				
	Mat uya ma			Formation								
	Rev erse d											
			NT ₃ -B	Sohagpur	VIII	Intense	Nil		Not Repor ted	•••••	Warm and Humid	
				Formation								
Lowe r	•••••	••	•••••	Hathmora	glacia	Fluvio- l/deposit	•••••	NB-I		•••••	•••••	
Pleist ocene			•••	Formation								
				(Boulder conglomeral e)								
••••••	••••••	••••	•••••	(Boulder conglomeral e)	glacia	l/Fluvio-glac	ial/deposit	••••••				

 Table No Qgmt2:-Major Quaternary Events In Central India.

Age	Climati c events		Geomorp hic features (khan e1.a1.199 2)		Weathering events	Sedimentary events after Tiwari 2001	Tepra Events Khan e1 a1.1991	Palaeo - Magnetic events Y.Rao e1. al 1997	Tectonic events		Sedimentation events sedimentation after Khan e1.a1 1992
4 ka Late Holocen e	On set of aridity		Inset terrace formation (NT ₀)			Ramnagar formation Boaras formation				110111sods11	Amber/Indrakdar/A mba Janswasa formation unicycle
6Ka- 13ka, Middle to Early Holocen e	Good Monsoo n	up warping	15m to 30m of entrancin g of river (NT ₁)	I V	Vertisol	Boaras formation					Hoshangabad formation polycycle

13ka to 25ka, late upper Pleistoce ne	Arid	Older flood plain(NT ₂ A)	v		Hirdepur Formation	Rework ed Tepra NA _B -III	Brunhes normal polarity		Shahganj Formation
	Humid	Dissectio n of Baneta Formation		Brown soil					Polycycle
75ka						Tepra	Brunhes Normal polarity		Polycycle
75ka to 118 ka early upper Pleistoce	Arid	Aggradati on Degration (NT ₂ B)	I V		Baneta Formation	NA _b -II	Brunhes Normal polarity		Demarwar Formation
								Rejuvenatat ion of south Satpura fault purna Tapti Valley	
				Yellow Clayey Soil			Brunhes Normal polarity		Polycycle
Middle Pleistoce ne	A Bid	Agradatio n & Degradati on (NT ₂ C)	II I		Surajkhund Formation		Brunhes Normal polarity		Shivpur Formation
				Red Soil			Matuyam a Reverse polarity		
								Formation of structural basin in the purna valley	Polycycle
Lower Pleistoce ne	A Bid	Agradatio n & Degradati on (NT ₃ A)	II		Dhansi Formation		Matuyam a Reverse polarity		Nasruhahganj Formation
								Formation of structural basin in the Central Narmada valley	Polycycle
Lower Pleistoce	Humid	Agradatio n		Laterite/lato sol	Pilikarar formation				Sohagpur Formation

ne		& Degradati on					
Lower Pleistoce ne	warm/co ld	Agradatio n & Degradati on	Hathmora formation (conglomera te)	NA _B -I	Entrench mal formation of structural basin in Narmada		
	warm/co ld	Agradatio n & Degradati on	Boulder conglomerat e (Base not exposed)		Entrench mal formation of structural basin in Narmada		

TABLE NO	GEOMO	ORPHOLO	OGY AND	DIGONES	STIC EL	LEM	ENTS		Paniplai	Pediplin
QGMT_3	NRMAD	A VALLI	EY						n/ Pediplin	/ pedimen t
locality: JABALPUR Central I	River bad	ΝТο	NT1	NT2-A	NT2-I	B	NT2- C	NT3- B NT3- C	PP	P PD
Age										
lavation above MSL (m)	340	345	355	365	375		380	400	415	430
Geomorphic break (m)	0.00	5.00 Alluvia I section / Bank Scarp	10 Alluvia I f section Bank Scarp	10 Alluvial section with rep[itati on of sediment cycle	10 Alluvi section with well layere sedim ts	ial n ed en	5.00 Alluvi al Bluff sectio n with rock cut terrac e at base	20 Alluvi al Bluff with rock cut terrac e at base.	15 Paniplai n with gentle slope	15 Pedipail with sloping surface
Elavation above RB (m)	0.00 River bad Braide d Chann el, Point Bar, Side	5.00	15.00	25.00	35.00		40.00	60.00	65.000	80.00to
Slope	T west	owards		TowardsS	SW	wes	Towa st	nds	To wards south	To wards south
Nature of		Deposi	tional]	Erosional	1	Erosion al	Erosion all
Cycle			Polycy	ycle			ľ	Not expos	ed	an
Sedimentation Orientation of W-Axes		ENE- WSW, E-W	E-W	ENE- WSW	ENE- WSW	r	E-W	E-W		
Plunge of L-		Tow Fast	vards	Tov	vards N	E			Tov	vards NE-
Relative	Converg	ent	- Divergen	t / Diverge	nt	Dive	ergent	Diverg	jent	
disposition		(Convex slo	pe		•				
Paired/Unpaire d	Isolated	Unpai Patches	red	Unpaired	Pair	red	Pai	red]	Paired	Pailred /
Nature of scarp		Curv	ilinear r				Linea	ar		
Sedimentarv		-Not expo	sed	Graded h	edding		Cross 1	bedding.	Laminatio	on, cross
feature				lamination	& Cut	<u>and</u>]	Fill featu	res		,
Terrace shape		Cuspa	ate		Rectar	ngula	ar			Elongated

	& RecangularIsolated cap
Land use	Inhabitation and cultivation
pattern	
Composition/Li	River bad : Quartzite, granite, gneiss, sandstone, limestone, Augate, Jaspar, Chart schist,
tho	basallt, phyllite, slate, sand and silt.
constituents	NTo : Quartzite, gneiss, granite, , sandstone limestone, basic, phyllite, slate, shale,
arranged in	sand and silt.
probable order	NT1 : Quartzite, gneiss, basic, schist, granite sandstone, phyllite, slate, shale sand
of abundance	and silt.
/The rock	NT1-A : Quartzite, granite, gneiss, schist, basic, phyllite, slate, shale, sand silt and
gravel of river	clay.
terraces range	NT2-B : Quartzite limestone, gneiss, granite, schist, , slate, sand, silt and clay.
in size from	NT2-C : Quartzite limestone, gneiss, granite, sandstone, basic schist, phyllite, slate,
boulder to	sand, silt and clay
small pebble.	NT3-A : Quartzite limestone, gneiss, granite, basalt schist, slate, sand, silt and clay.
The finer	NT3-B : Quartzite limestone sanstone, gneiss, granite, basalt schist, phyllite, slate,
clastics	sand, silt and clay.
comprise of	Boulder Conglomerate : Sub angular to sub rounded boulder cobble pebble of Quartzite,
very coarse to	gneiss, basic, schist, granite sandstone, Phyllite , slate, shale sand and silt. The
very fine sand,	fine matrix of sand ,clay and silt is cross bedded, laminated with cut and features
silt and clay.	Boulder Bed : sub angular to angular, sub round hybrid and heterogeneous assorted rock
These rock	febric of Quartzite limestone, gneiss, granite, schist, , slate, sand, silt and clay.
febrics are	
generally	
surrounded to	
well rounded	
and mostly	
spherical,	
oblate, prolate	
and bladed in	
shape.	

										Penip	Pediplai
TABLE NO	GEOMORPHOL	OGY AN	D DI	IGO	NESTIC I	ELEI	MENT	ſS		lain	n
QGMT_4	NRMADA VALL	EY								Pedip	
		1								lain	
Locality:								NT2-	NT3-B	PP	PD
PIPARIA-	River bad	NTo	NT	1	NT2-A	NT	2-В	C	NT3-C		
SOHAGPUR								U	1110 0		
Age									- HOL	OCENE	
Elavation above	300	310	320		328	340)	345	355	358	362
MSL (m)	500	510	040		020	0.10		040	000		
					8 00	12.)0	5.00	10.00	13.00	17.00
					0.00	Co	nposi	Roc	Compos	Gradu	Distinc
			10.0	00	Aluvial	t	Rock	k	it Rock	al	t
Geomorphic break			Alu	vi	section	cut	cut		cut		
(m)	0.00	10.00	al		with	teri	race	terr	terrace		
(111)			sect	tio	sodimo	wit	h	ace	with		
			n		nt woll	rec	ent	with	recent		
					hoddod	sed	iment	rece	sedimen		
					beuued	s la	yer	nt	ts layer		
Elavation above	0.00	10.00	20.0	00	28.00	400	<u> </u>	45.0	55.00	58.00	62.00
RB (m) 10.00 20.00 20.00							4000 0 55.				
Slope	- NS-SWTowar	ds west		NS-S	SW		Tow	ards we	est & NS-	S-	S-SSW

				Tow	ards w	est	S	SW, NE-S	W		SSW	
Nature of surface	Erosional /	' Depositi	ional			Ero Ero	osion	al / 1 al	Depositi	ional.	Erosio nal& partly deposi tional	Erorosi onal
Cycle Sedimentation	Section d NTo, NT1	lepicts ı .Polycycl	up ward lic with	l cyclic breaks	sequen NT2-A	ce wit NT2-	h in BNI	icomplete Γ2-C	cycle	Cliff expos	secti sed NT3	on not -B NT3-C
Orientation of W- Axes			ENE- WSW to E- W, NW- SE	ENE- WSW to, E- W	ENE- W NW- NE- SW	E V V N S	NE- VS V, W- E	E-W & NW- SE	ENI	E-WSV	V, NW-S	E E-W
Plunge of L-Axes			Tov west	wards 	 NE	-Towa	rds		T	o ward	ls NE	
Relative disposition	Convergen	onvergent Divergent Divergent Divergent									ent	
Paired/Unpaired	Isolated Pa	Unpaired Unpaired Paired Paired Paired Paired lated Patches section not exposed LinearLinearLinearLinear									Paiired /	
Nature of scarp	(Linea	Curviline 	ear	Curvil	linear - ar	-		Linear]	In habit	ation	& Cultiv	-Linear vation
Sedimentary feature	Graded b	edding	, Cross aminati	s beddi on	ng, G		bed ion 8	ding,Cı & Cut and	oss bec Fill fe	lding, atures	Lamina	tion, cross
Terrace shape	Isolated ca	p	Crese	nt / Cus	pate					- Rect	angular-	
Land use pattern	I	n habita	tion &	·Inhabit Cultivat	ation a ion	nd cul	tivati	ion		H	Forest co	ver area
Composition/Litho constituents arranged in probable order of abundance /The rock gravel of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock febrics are generally surrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.	River bad , slate, sand NTo sand and s NT1 sand and NT1-A shale, sand NT2-B and clay. NT2-C silt and clay. NT2-C silt and clay. NT3-A sand, silt a NT3-B basic basic Boulder C gneiss, bas sand ,clay a Boulder B febric of Q	: Quar : Quar : Qu ilt : Qua silt. : Quart : Quart : Quart : Quart y : Quar y : Quar onglome ic, schist and silt is ed: sub uartzite	tzite, gn t. artzite, g rtzite, gra clay. zite gnei tzite gnei tzite gnei rtzite gnei rtzite gnei rtzite gnei tzite gnei	eiss, gra gneiss,, neiss, n nnite, gn iss, gran eiss, gran eiss, gra nestone lay. Sub ang e sandst bedded, I r to ang ne, gneis	nite, ba basalt, neta ba eiss, m ite, san nite, sa anite, n sanston ular to one, Pl lamina gular, s s, gran	asalt, ,grani sic , ba eta baa dstond ndston ndston neta ba ne, gne sub n nyllite ted wit ub rou ite, sch	sand ite, lin asalt, sic sa e, lim ne, lim asic h eiss, g round , slat th cut und l nist, ,	lstone, lir imestone, , granite s and stone estone, so mestone, so basalt lim granite, b ded bould te, shale s t and feat hybrid an <u>slate, sar</u>	nestone sandsto sandsto , lime s chist, n basic sc estone, asalt sc ler cob and an sures nd hete <u>id, silt a</u>	, Aug one, pl ne, ph tone s neta ba hist, s sand : chist, p ble pe d silt. rogene ind cla	ate, Jasp hyllite, s yllite, , s chistphy schistphy sic, slate late, phy stone sla ohyllite, s bble of The fine cous asso <u>y.</u>	par, schist, late, shale, chist shale llite, slate, c, sand, silt llite, sand, te schist, , slate, meta Quartzite, matrix of orted rock Pediplain
TABLE NO QGMT_5) GEOMO NRMAI	ORPHOI DA VALI	LOGY A LEY	AND DI	GONES	STIC I	ELEN	MENTS		n Pe	ediplai	i cuipiani
Locality	River	NTo	NT1	NT2	2-A	NT2-I	B N	T2-C	NT3-B	P	P	PD

:HATHNORA	bad						NT3-C				
Δσο					HOLO	CENE					
Elavation above MSL (m)	280	290	300	305	315	325	330	333	338		
Geomorphic break (m)	0.00	10.00	10.00	5.00	10.00	10.00	5.00	8.00	13.00		
Elavation above RB (m)	0.00	10.00	20.00	25.00	35.00	45.00	50.00	55.00	60.00		
Slope	Tov & NS	vards we	st Towa	ards west	To S'	owards wes W,	st & NS-	S-SSW	S-SSW		
Nature of surface	Erosiona Depositi	al Rock onal	cut su	ırface /	Erosiona valley fil Relict	l / Depositie l E	onal and rosional /	Erosion al /	Erosiona l /		
Cycle Sedimentation	Section with inc Polycycl NT2-A, NT2-B N	Section depicts up ward cyclic sequence th incomplete cycle NTo, NT1 lycyclic with breaks / with upward fining I2-A, I2-B NT2-C									
Orientation of L - Axis	Braide d	ENE- WSW to E- W,	ENE- WSW to, E- W,	ENE-W NW- NE-SW	ENE- WSW, E-W	E-W & NW-SE	ENE-WS	W, E-W NV	V-SE		
Plunge of L-Axis		Tov East & N	vards NE	To East & N	wards IE	To wards	East & NE				
Relative disposition	Converg	ent	Diverge	ent	Diverger	nt I	Divergent	Div	ergent		
Paired/Unpaired	Isolated	Unpa Patches	ired	Unpaired	Pai	red P	aired	Paired	Paiired /		
Nature of scarp	 convex s	Curvilir lope cove	near red by for	Curviline Lin st and coll	ar ear ovium ma	Line	ear	Li	Linear- near with 		
Sedimentary feature	Graded bedding cross lar	bedding , Lam nination	, Cross ination,	Graded b & Cut and	edding , (d Fill feat	Cross beddii ures	ng, Lamina	tion, cross	lamination		
	bedding, Lamination, cross lamination & Cut and Fill features Cresent / Cuspate Rectangular										
Terrace shape			Cresen	at / Cuspate	e			Rectangula	nr		
Terrace shape Land use pattern	 		Cresen	at / Cuspate	e	ation-/ Fore	est cover ar	Rectangula Iso ea	blated cap		
Terrace shape Land use pattern Composition/Litho constituents arranged in probable order of abundance /The rock gravel of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay.	River ba Augate, NTo slate, sh NT1 phyllite, NT1-A schist,ph NT2-B sand, silt NT2-C , phyllite	ad : Jaspar, , s : Qu ale, sand : Q , shale Au : nyllite, , sh : t and clay : Qu : Qu : Qu	Quartzite slate, , sch artzite, gr and silt uartzite, sar Quart ale, sand Quartzite iartzite gr par, sand	Inhabitation , gneiss, g nist sand ar neiss, basa gneiss, ma nd and silt tzite, gran silt and cla e gneiss, grani , silt and	on / cultiv ranite, m od silt. lt, ,granit eta basic , t. ite, gneiss y. canite, lin te, sandst clay	eta basic , e, meta basi , basalt, gra s, meta bas nestone, san	est cover ar , basalt s c , limeston nite sandst ic sand st dstone, sch one, basalt a	Rectangula Iso rea andstone, 1 ne, sandston one, lime st tone, lime st tone, lime st tone, lime st and meta b	ar blated cap limestone , le, phyllite, cone, schist stone slate neta basic, asic schist,		

surrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.	NT3-B slate,sar Boulder gneiss, I of sand Boulder febric of	NT3-B : Quartzite, gneiss, granite, basalt limestone sandstone, schist, phyllite, slate,sand, silt and clay. Boulder Conglomerate : Sub angular to sub rounded boulder cobble pebble of Quartzite, gneiss, basic, schist, granite sandstone, Phyllite , slate, shale sand and silt. The fine matrix of sand ,clay and silt is cross bedded, laminated with cut and features Boulder Bed: sub angular to angular, sub round hybrid and heterogeneous assorted rock febric of Quartzite limestone, gneiss, granite, schist, , slate, sand, silt and clay.									
TABLE NO QGMT_6	GEOM(NRMAI	ORPHOL DA VALL	OGY AN EY	D DIGON	NESTI	C EI	LEMENTS		Pediplai n	Pediplain	
Locality : HOSHANGABAD- BABAI	River bad	ΝТο	NT1	NT2-A	NT: B	2-	NT2-C	NT3-B NT3-C	PP	PD	
Age		HOLOCENE									
Elavation above MSL (m)	260	260 270 280 285 295 310 315								322.00	
Geomorphic break (m)	0.00	10.00 Alluvi al sectio n	5.00 Alluvial section	10.0 Alla sect n c roci cut bas)0 1vi io o n k e	15.00 Alluvial section o n rock cut base	5.00 Rock cut surface with thin layer of recent sedimen ts	5.00 Breaks grdual with and soil cover	4.00 Distinct breaks with rock relicts and imprints of erosional activity.		
Elavation above RB (m)	0.00	10.00	20.00	25.00	35.0)0	50.00	55.00	58.00	59.00	
Slope	Tov & SW	wards we	st Towa SW	ards we	st &	То	wards wes	t & SW			
Nature of surface	Channel / Depos	l braiding sitional	; E	rosional	Erosi valley Relic cut b	onal / fill t & ench	/ Dep E isolated ca es	positional. rosional / ps o rock	Erosion al /	Erosional /	
Cycle Sedimentation	River b sand ba section o incompl NT2-B N Polycycl	oed with urs , brai depicts uj ete NT2-C dis lic with br	channel ded char p ward cy cycle play reaks / wit	braids , mel. N yclic sequ th upward	poit k Fo , N ence w NT2 l fining	oar, T1 vith -A,	section n and collu	ot exposed vium /scree	and cover e deposit	ed by forest	
Orientation of L - Axis	Braide d / Grade d	ENE- WSW to E- W,	ENE- WSW to, E- W,	ENE-W NW- ta N-E-	EN WS E-V NW SE	E- W, V 7-	E-W & NW-SE	ENE-WS	W, E-W		
Plunge of L-Axis		Tov East	vards -	NE-SE	owards &E-W	5	To wards	Eeast and	NE		
Relative disposition	Converg	gent	Diverge	ent	Dive	rgen	it 🔤	Divergent	Div	vergent	
Paired/Unpaired	Isolated	Unpa Patches	ired	Unpaire	d	Pai	red 1	Paired	Paired	Paiired /	
Nature of scarp		Curvilii	near	Curvilii Line	near ear		Lin	iear	Linear	Linear-	

Sedimentary feature	Graded Lamina	bedding tion. cross	g , Cı s laminati	ross bed ion	ding,	Graded bedd cross laminati	ing,Cross ion & Cut a	s bedding, and Fill feat	Lamination, tures	
Terrace shape		 Isola	Crese	nt / Cuspa	ite			Rectangu	lar	
Land use pattern				-Inhabitat	tion / cu	iltivation-/ Fo	rest cover a	area		
Composition/Litho constituents arranged in probable order of abundance /The rock gravel of river terraces range in size from boulder to small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock febrics are generally surrounded to well rounded and mostly spherical, oblate, prolate and bladed in shap	River ba Jaspar, NTo slate, sh NT1 schist sh NT1-A schist,pl NT2-B silt and NT2-C phyllite NT3-A sand, sil NT3-B slate,sar Boulder gneiss, h sand, cla Boulder febric of	River bad : Quartzite, gneiss, granite, meta basic , , basalt , sandstone, limestone Augate, Iaspar, , slate, , schist sand and silt. NTo : Quartzite, gneiss, basalt, ,granite, meta basic , limestone, sandstone, phyllite, late, shale, sand and silt NT1 : Quartzite, gneiss, meta basic, basalt, granite sandstone, lime stone, phyllite, schist shale Augate, sand and silt. NT1-A : Quartzite, granite, gneiss basalt , meta basic sand stone, lime stone slate schist,phyllite, , shale, sand silt and clay. NT2-B : Quartzite gneiss, granite, limestone, sandstone, schist, slate meta basic, sand, silt and clay. NT2-C : Quartzite gneiss, granite, sandstone, limestone, basalt and meta basic schist, , hyllite slate Jaspar, sand, silt and clay NT3-A : Quartzite gneiss, granite, meta basic basalt limestone, sand stone slate schist, , sand, silt and clay. NT3-B : Quartzite, gneiss, granite, basalt limestone sandstone , schist, phyllite, slate,sand, silt and clay. NT3-B : Quartzite, gneiss, granite, basalt limestone sandstone , schist, phyllite, slate,sand, silt and clay. NT3-B : Quartzite, gneiss, granite, basalt limestone sandstone , schist, phyllite, slate,sand, silt and clay. Boulder Conglomerate : Sub angular to sub rounded boulder cobble pebble of Quartzite, gneiss, basic, schist, granite sandstone, Phyllite , slate, shale sand and silt. The fine matrix of sand ,clay and silt is cross bedded, laminated with cut and features Boulder Bed: sub angular to angular, sub round hybrid and heterogeneous assorted rock tebric of Quartzite limestone, gneiss, granite, schist, , slate, sand, silt and clay. ECOMOPHOU OCY AND DICONESTIC ELEMENTS Dedinkit Pedinkit Pedinkite								
TABLENOOGMT7	GEOM NRMAI	ORPHOL DA VALL	OGY AN EY	D DIGON	ESTIC	C ELEMENTS		Pediplai n	Pediplain /pediment	
Locality: NASRULLAHGUNJ	River bad	ΝТο	NT1	NT2-A	NT2 B	- NT2-C	NT3-B NT3-C	PP	PD	
Age					HO	DLOCENE				
Elavation above MSL (m)	255	265	270	280	290	300	310	313	318	
Geomorphic break (m)	0.00	10.00	10.00	10.00	10	10.00	10.00	3.00	5.00	
Elavation above RB (m)	0.00	10.00	20.00	30.00	40.0	0 50.00	60.00	63.00	68.00	
Slope	Tov & SW	wards we	st Towa SW	ards wes	st &	Towards wes	t & SW			
Nature of surface	Channe / Depos	l braiding sitional	g E	crosional	Erosic Relict rock c	onal / Depositi & isolated ca ut benches of]	onal. valle aps on roc basaltic roc	ey fill k cut bencl cks	Erosional / hes / barren	
Cycle Sedimentation	River h braids depicts incompl NT2-B h Upward cycle.	River bed with rock cut benches , channel braids braided channel. NTo, NT1 section depicts thin veneer of quaternary sediments incomplete cycle. NT2-A, NT2-B NT2-C display Upward fining sequence with incomplete cycleRock cut benches and platform.							1.	
Orientation of L - Axis	Braide d / Grade	ENE- WSW to E-	ENE- WSW to, E-	ENE-W NW- to N-E-	ENE WSV E-W	W, E-W & NW-SE	ENE-WS	SW, E-W		

	1	r		1							
	d	W,	W,		NW- SE						
Plunge of L-Axis		Tov East	wards 	Tov NE-SE &	vards E-W	To ward	s Eeast and	NE			
Relative disposition	Converg	gent	Diverg	ent	Diverger	nt	Divergent	Div	vergent		
Paired/Unpaired	Isolated	Unpa Patches	ired	Unpaired	Pai	ired	Paired	Paired	Paiired /		
Nature of scarp		Curvilii 	near Linear- 		Linea	ar	Linear- v	Linear with rock cu	ıt faces		
Sedimentary feature	Graded bedding cross lai	Graded bedding , Cross redding, Lamination, Cross lamination, Cross lamination, Cross laminationGraded bedding , Cross bedding, Lamination, Cross laminationGraded bedding , Cross bedding, Lamination, Cross laminationGraded bedding , Cross bedding, Lamination, Cross lamination									
Terrace shape		Cuspate Rectangular Isolated									
Land use pattern		Inhabitation / cultivation-/ Forest cover area									
Composition/Litho	River ba	id : Qua	rtzite, gn	eiss, granit	e, meta ba	asic , , bas	alt , sandst	tone, limesto	one Augate,		
constituents	Jaspar,	, slate, , so	chist sand	and silt.							
arranged in	NTo	: Qu	artzite, g	neiss,, basal	lt, ,granit	e, meta ba	sic , limesto	one, sandsto	ne, phyllite,		
probable order of	slate, sh	ale, sand	and silt								
abundance /The rock	NT1	; Q	uartzite,	gneiss, meta	a basic, b	asalt, grar	nite sandsto	ne, lime sto	ne, phyllite,		
gravel of river	schist sh	ale Augat	te, sand a	nd silt.		14					
terraces range in size	NII-A	i (byllita al	zuartzite,	granite, gi	ieiss dasa	iit, meta	Dasic sand	stone, ime	stone slate		
small nebble The	NT2-R	тушte, , si • Оц	artzite or	eiss granit	ıy. e limesto	ne sandst	one schist	slate meta	hasic sand		
finer clastics	silt and	- Qua clav.	artzite gi	ciss, graint	c, micsto	inc, sanusi	one, semsi,	state meta	basic, sanu,		
comprise of very	NT2-C	: Qua	artzite gn	eiss, granite	e, sandsto	ne, limeste	one, basalt a	and meta b	asic schist, ,		
coarse to very fine	phyllite	slate Jasp	ar, sand,	silt and o	lay		,				
sand, silt and clay.	NT3-A	: Qua	artzite gn	eiss, granite	e, meta ba	asic basalt	limestone,	sand stone s	late schist, ,		
These rock febrics	sand, sil	t and clay	7• . •.		• •	.	• .				
are generally	NT3-B	· Q	uartzite,	gneiss, grai	nite, basa	It limestor	he sandston	e, schist, ph	iyllite, slate,		
rounded and mostly	Sanu, Si Roulder	Conglon	'. nerate · S	uh angular	to sub r	ounded by	oulder cobb	ole nebble o	f Quartzite		
spherical. oblate.	gneiss, h	asic. schi	st. granit	e sandstone	. Phyllite	. slate. sha	ale sand and	l silt. The fir	ne matrix of		
prolate and bladed	sand ,cla	sand ,clay and silt is cross bedded, laminated with cut and features									
in shape.	Boulder	Bed: su	b angula	r to angula	r, sub rou	und hybrid	and heter	ogeneous as	sorted rock		
	febric of	' Quartzit	e limesto	ne, gneiss, g	ranite, sc	hist, , slate	e, sand, silt	and clay.			
	1										

TABLE NO QGMT_8	GEON NRM	MORPH ADA VA	VTS	Pediplai n	Pediplai n /pedimen t				
Locality: NASRULLAHGAN J-HANDIA- HARDA SECTION	Rive r bad	ΝТο	РР	PD					
Age		•			H	OLOCEN	E		
Elavation above MSL (m)	255	265	310	313	318				
Geomorphic break (m)	0.00	10.00	10.00 Alluvial	10.00 Alluvi	10 Alluvi	10.00 Alluvi	10.00 Rock	3.00 Slope	4.00 Distinct

			section	al sectio n	al sect n	tio	al bluff with rock cut base	cut terrrac e	with breaks and micro nicks with soil cover	breaks with rock relicts and imprints of erosional activity
Elavation above RB (m)	0.00	10.00	20.00	30.00	40.0	00	50.00	60.00	63.00	68.00
Slope		-Toward & SW	ls and SV	Cowards westW& S			Towa SW	rds west -	S-SSW	S-SSW
Nature of surface		Depositi	onal				Erosiona	all	Erosiona ll	Erosiona ll
Cycle Sedimentation			Poly	vcycle -			Section exposed	n not not	- Section not not exposed	Section not not exposed
Orientation of W- Axes		ENE - WS W to E-W	ENE- WSW to, E-W	ENE- WSW	EN WS NW SE	E- SW, 7-	E-W & NW- SE	ENE-WS	SW, NW-SE	E-W
Plunge of L-Axes		TowardsTowards west NE								
Relative disposition	Conve	Convergent Divergent Divergent Divergent							gent	Divergent
Paired/Unpaired	Isolate	Ui ed Patch	npaired es	Unpair	red	Pa	ired	Paired	Paired	Paiired /
Nature of scarp	- Linear Linear	Cur 	vilinear	Cui 	rviline: 	ar Li	inear	Linear		
Sedimentary feature	Grade Cross Lamin lamina	d bed ation, ation	ding , bedding, (cross la	Fraded Aminatio	bedd on & C	ing Cut a	, Cross and Fill fea	bedding atures	g, Laminati	ion, cross
Terrace shape		 Isolate	Cuspa d cap	te				Rect	angular	
Land use pattern	coverd	l area		-Inhabi 	tation	an	d cultiva	tion		Forest
Composition/Litho constituents arranged in	River schist, NTo	bad : (, slate, s :)uartzite, gn and and silt Quartzite, s	eiss, gra gneiss,, l	anite, l basalt,	basal	lt, sandst anite, , sar	tone, limes ndstone lin	tone , Auga	te, Jaspar, dlite, slate,
probable order of abundance /The	shale, NT1	sand and : (l silt Quartzite, gi	neiss, , b	oasalt,	gran	nite sandst	one, phyll	ite, , basic, s	chist shale
terraces range in size from boulder	NT1-A phyllit	na sni A : Ç æ. slate.	Juartzite, gr shale. sand s	anite, gr silt and	neiss, r clav.	neta	basic sar	nd stone, li	me stone sc	hist, basic,
to small pebble. The finer clastics	NT2-E sand, s	silt and o	Quartzite gr clay.	neiss, gr	anite,	sand	lstone, lim	estone, m	eta basic sch	nist, , slate,
comprise of very coarse to very fine sand, silt and clay	NT2-0 sand, NT3-4	silt an	uartzite gno d clay Quartzite on	eiss, grai	nite, sa anite. 1	ands mets	tone, lime 1 basic bas	stone, basi	ic schist, phy	one schist
These rock febrics are generally	slate, s NT3-E	and, silt	and clay. Quartzite lin	nestone	sansto	ne, g	gneiss, gra	nite, basa	lt schist, phy	vllite, slate,

surrounded to well	meta basic sand, silt and clay.
rounded and	Boulder Conglomerate : Sub angular to sub rounded boulder cobble pebble of
mostly spherical,	Quartzite, gneiss, basic, schist, granite sandstone, Phyllite , slate, shale sand and silt.
oblate, prolate and	The fine matrix of sand ,clay and silt is cross bedded, laminated with cut and features
bladed in shape.	Boulder Bed: sub angular to angular, sub round hybrid and heterogeneous assorted
-	rock febric of Quartzite limestone, gneiss, granite, schist, , slate, sand, silt and clay.

TABLE NO QGMT_9	GEOMO	RPHOLO	GY AND I	DIGONEST	IC ELEMEN	TS					
SHER RIVER .	NRMAD	A VALLE	Y								
T 14	D	C/T	0751		D 11 1 1						
Locality:	River	STO	STI	Pediplain	Pediplain	-	-				
WITH NADMADA	Dau			-	/pediment						
NORTH OF					-						
NARSINGHPUR											
Age		HOLOCENE									
Elavation above MSL	330	330 335 340 345.00- 350.00									
(m)											
Geomorphic break	0.00	5.00	10.00	5.00	5.00	-	-				
(m)		Alluvial	Alluvial	Gradual	Break in						
		section	section		slope						
	0.00	= 00	10.00	15.00	distinct						
Elavation above RB	0.00).00 5.00 10.00 15.00- 20.00									
(III) Slope	Towards	Towards NW NE S SSW									
Nature of surface	Channel	braids	/ Erosio	nal /	Erosional / p	artly depos	sitional				
	Depositio	Depositional valley fill									
Cycle Sedimentation	River b	ed with ro	ock cut be	enches, cha	nnel braids	section n	ot exposed	i			
	braided o	hannel. ST	Го, ST1 sec	tion depicts	s incomplete		_				
	cycle with	1									
	Upward f	fining sequ	ence.	1	•		1	1			
Orientation of L -Axis	Braided	NE-SE,	NE-SE,	-	_	-	-				
		NW-	NW-								
Dungo of L Avis	Graded	Тот	orde SF	Тот	vorde SF	To words	NF				
Flunge of L-Axis		10w	arus SE -	10v	varus SE	10 warus					
Relative disposition			-Converge	nt							
FF											
Paired/Unpaired		Unpair	ed Pair	ed / Unpair	red						
Nature of scarp		Curvi	linear								
Sedimentary feature	Graded	bedding	, Cross	bedding,							
	Laminati	on, cross	lamination	n & Cut							
Tomaco chono	and Fill f	Curres									
L and use nattorn		- Cuspate-	tion / culti	votion / For	rost aavar ara	0					
Lanu use pattern				vation-/ roi							
Composition/Litho	River ba	d : Qua	rtzite, gneis	ss, granite,	meta basic , ,	basalt, sa	andstone,	limestone			
constituents arranged	,Zeolite,	Augate, Ja	sper, " sch	ist sand and	d silt.	,	,				
in probable order of	STo	: Q	uartzite, g	neiss,, basal	lt, ,granite, b	asalt, met	a basic , l	imestone,			
abundance	sandston	e, slate, sha	ale, sand ar	nd silt							
	ST1	: Qu	artzite, gn	eiss, meta l	oasic, basalt,	granite sar	ndstone, li	me stone,			
	phyllite, s	schist shale	e Augate, sa	and and si	ilt.						

TABLENOQGMT_10SHAKKARRIVER	GEOMO NRMAI	ORPHO DA VAL	LOGY ANI JEY	D DIGONES	STIC EL	EMENT	ſS			
Locality: CONFLUENCE WITH	River bad	SKT o	SKT1	SKT2	Pedipla n	i Ped /peo	iplain liment -	-	-	
NARMADA SOUTH EAST OF UDAIPURA										
Age							HO	DLOCENE		
Elavation above	327	330	335	340	345	350			-	
MSL (m) Geomorphic	0.00	3.00	8.00	5.00	5.00	5.00)	-	-	
break (m)			Alluvial section with composit sediment	Altuvial section with composit sediment	Gradua	il Bro slop dist	eak in De inct			
Elavation above RB (m)	0.00	s s								
Slope	Towards N-S	Towards NW, NE, Towards NW, NE SSW								
Nature of surface	Channe / Eros valley fil	Channel meander, Channel braids / Erosional / Depositional valley fill								
Cycle Sedimentation	River b braided incomple	ed with channe ete cycle fining s	rock cut be el. SKTo, S e with	enches, chan SKT1 section	nel braic on depic	ls _ ts				
Orientation of L -Axis	Braide d / Grade d	NE- SE, NW-	NE-SE, NW-	_	_	-		_		
Plunge of L-		T	owards	Tow	vards SE	To	NE			
Axis Relative	Converg	ent	Converge	ent / Diver	gent					
disposition Paired/Unpaire		Uni	paired P	aired / Unn	aired					
d							C.	<u> </u>		
Nature of scarp Sedimentary	Graded	beddin	irvilinear ig . Cross	 bedding.			<u>Slo</u>	pe gradual		
feature	Laminat and Fill	tion, cro features	oss laminati S	on & Cut						
Terrace shape		Cusp	ate		-					
Land use pattern		Inha	bitation / cu	iltivation-/]	Forest co	ver area	1			
Composition/Lit ho constituents	River bad : Quartzite, gneiss, granite, meta basic , , basalt , sandstone, limeston , Zeolite, Augate, Jasper, ,, schist sand and silt.								limestone	
arranged in	STo slota shi	: Q	uartzite, gn	eiss,, basalt,	, granite,	, basalt,	meta ba	sic , limestone,	sandstone,	
of abundance	ST1	are, sand : Q) and sitt Quartzite, gr	ieiss, meta l	oasic, bas	alt <u>, g</u> rai	nite sands	tone, lime ston	e, phyllite,	

schist shale Augate, sand and silt. ------ Base is not exposed------

TABLE NO	GEOMO	RPHOL	LOGY AND	DIGONEST	IC ELEM	ENTS					
QGMT_11	NRMADA VALLEY										
TAWA RIVER											
Locality:	River	ТТо	TT1	TT2	Pediplai	n Pediplain -					
CONFLUENCE	bad				/pedime	nt /pediment -					
WITH	~~~				-	, prominent					
NARMADA											
HOSHANCARAD											
Age	220	225	220	225							
Elavation above	320	325	550	335	340-	- 345					
MSL (m)	0.00	= 00	5 00	5 .00	= 00	7 .00					
Geomorphic	0.00	5.00	5.00	5.00	5.00	5.00 -					
break (m)			Alluvial	Alluvial	Gradual	Breaks					
			section	section		distinct with					
			with	with		imprints of					
			composit	composit		extensive					
			sediments	sediments		erosional					
						activity					
Elavation above	0.00	10.00	15.00	20.00	25	30					
RB (m)											
Slope	Towards	owards NW, NE. Towards NW, NESSW									
-											
Nature of surface	/ Erosie	onal /	Deposition	nal valley ·		Desse	eted				
	fill / Dis	fill / Dissected surface with Channel									
	meander	, Chann	nel braids in	n present							
	channel s	vstem									
Cvcle	River b	ed with	. channel b	raids braide	ed channe	l.					
Sedimentation	TTo. TT.	TT2 se	ction depicts	s incomplete	cvcle with	_					
	Upward	fining se	auence.	I							
Orientation of L -	Braided	NE-	NE-SE.	NE-SW	NE	NE					
Axis	/	SE.	NW-	112 0 11							
	Graded	NW-									
Plunge of L-Axis	Giudeu	Т	owards SE	Tow	ards SE						
Thinge of L-MAIS			owards DE	1000		-					
Relative				I		Convergent					
disposition						Convergent					
Paired/Unnaired		Unne	aired Pai	red / Unneir	ho						
Noture of goorn		Cur	alleu Ial	reu / Onpan	eu						
Nature of scarp	Creduel	Cui	rviimear								
Codimontowy	Gradual	haddin	a Cuosa	hadding	Cross he	dding Lomination areas lam	ination				
footure	Graded	bedain	g , Uross	s beauing,	Cross De	uuing, Lammation, cross lam	mation				
leature		on, cros	s lamination	a Cut and							
	F III leatu	res									
Lerrace shape		- Cresce	ent / Cuspat	ie							
Land use pattern		Inhab	oitation / cult	ivation-/ For	est cover a	area					
a	D		0								
Composition/Litho	River ba	d :	Quartzite, g	neiss, granit	e, meta b	asıc,, basalt , sandstone, lin	nestone				
constituents	,Zeolite,	Augate,	Jasper, sch	ist sand and	silt.						
arranged in	ТТо	:	Quartzite	, gneiss,, ba	salt, ,gran	ite, basalt, meta basic , lim	estone,				

probable order of abundance	sandstone, slate, shale, sand and siltTT1: Quartzite, gneiss, meta basic, basalt, granite sandstone, lime stone, schistshale Augate, sand and silt.TT2: Quartzite, gneiss, meta basic, basalt, granite sandstone, lime stone, , schistshale Augate, sand and silt.

TABLENO	GEOMO	RPHOL	OGY AND	DIGONES	STIC ELEM	ENTS					
QGMT_12	NRMAD	A VALL	EY								
HIRAN RIVER											
Locality: PATAN-	River	НТо	HT1	HT2	Pediplain	Pediplain	-	-			
BANTOLI AREA	bad					/pediment					
					HOLOCE	NE		l			
Flavation above	335	3/0	345	350	353_	358_	L				
MSI (m)	555	340	545	550	555-	550-	-	-			
	0.00	5.00	5.00	5.00	2.00	5.00					
Geomorphic break	0.00	5.00	00 5.00 5.00 3.00- 5.00 -								
(m)			Alluvial	Alluvial	Gradual	Breaks					
				section		distinct					
			with with								
				rock		imprints					
				cut		of					
				base		extensive					
						erosional					
		activity									
Elavation above RB	0.00	10.00	15.00	20.00	23.00	28.00-	-	-			
(m)											
Slope	Towards	owards NW, NE. Towards NW, NE NE									
Nature of surface	/ Eros	/ Erosional / Denositional Erosional/dissected									
	valley fil	valley fill / Dissected surface with									
	rock cut	rock cut platform Relict platform									
	Channel	with C	'hannel m	laciorin,							
	Channel	hraids in	nrosont sv	stom							
Cycle Sedimentation	Divor bo	d with o	honnol bro	oide broide	d channal	soction not	ovnorod				
Cycle Sedimentation		1 UT 7	contion do	niota incon	u channel.	section not	exposed_				
	п10, п1	-1 П1-2	section de	picts meon	ipiete cycle						
	Upward I	inning seq	uence.		1		1				
Orientation of L -	Braided	NE-	NE-SE,	NE-SW	-	-	-				
Axis	/	SE,	NW-								
	Graded	NW-									
Plunge of L-Axis		То	wards	То	wards SW-						
		SW									
Relative disposition	Converge	ent	Converge	nt / Diver	gent						
Paired/Unpaired		Unpai	ired Pa	ired / Unp	aired						
Nature of scarp		Curv	vilinear								
-	Gradual										
Sedimentary feature	Graded	bedding	g , Cro	ss beddi	ng, Cross	bedding,	Laminat	ion, cross			
L.	Laminati	on, cross	laminatio	n & Cut a	and lamina	ation					
	Fill featu	res									
Terrace shape		- Crescei	nt / Cuspa	te							
Land use nattern		Inhahi	tation / cul	tivation_/ I	Forest cover	area					
Composition/Litho	River bo		uartzita m	neiss grop	ite mete he	sic basalt	sandston	limestone			
constituents		River Dau : Quarizite, gneiss, granite, meta Dasic,, Dasait, sandstone, limestone Zoolite, Augete, Jospon, schiet and and silt									
orranged	JTcolle,	Augate,	Ouortrite	anoice L	iu siit. agalt - amawi4	o hogolt	noto hadia	limostone			
arrangeo in	HI0	: 1	Quartzite,	gneiss, ba	asan, ,grann	le, Dasait, n	ieta dasic	, innestone,			
probable order of	sandston	e, siate, s	nale, sand a	and silt							

abundanceHT1: Quartzite, gneiss, meta basic, basalt, granite sandstone, lime stone,
schist shale Augate, sand and silt.
HT2: Quartzite, gneiss, meta basic, basalt, granite sandstone, lime stone, ,
schist shale Augate, sand and silt.

TAB LE NO QG MT- 13	GEOM NRMA	ORPHOLO(DA VALLEY	GY AI	ND DI(GONEST	FIC EL	EME	NTS		Panipl ain Pedipl ain	Pedipl ain /pedim ent
Locality:	River	NTo	NT1		NT2-	NT2-I	3	NT2-	NT3-B	PP	PD
HATHNORA	bad				Α			С	NT3-C		
Age	200	200		0.0	205	015	HOL	OCENE		222	220
Elavation above MSL (m)	280	290 Basaltic rock Overlain by Bould Conglome ate Bar Section	er r ık	00	305	315	i	325	330	333	338
Geomorphic break (m)	0.00	10.00 Alluvial Bluff section	1 A I SO R fa	0.00 Alluvia Bluff ection/ Rock ace	5.00 Alluvi al Bluff section / Roc face	10 Alla Blu sect n k	uvial Iff tion	10.00 Alluvi al Bluff sectio n	5.00 i Alluvi al Bluff sectio n / Rock face	3 .00 Gradual without any distinct break.	5.00 Gradu al withou t any distinct break
Elavation above RB (m)	0.00 River bad Braide d Chann el, Point Bar, Side Bar	10.00	2	0.00	25.00	35.	00	45.00	50.00	53.00	58.00
Slope	Tov NS	wards west	& T	oward	s west	T S	Towar SW,	ds wes	t & NS-	S-SSE	S-SSE
Nature of surface	Erosion Deposit	al Rock cu ional	it s	surface	e / Ero val	osional ley fill	/ Do Ei	epositio rosional	nal and / Relict	Erosiona l	Erosio nal
Cycle Sedimentatio n	Section depicts up ward cyclic sequence with incomplete cycle NTo , NT1 Polycyclic with breaks / with upward fining Csection forestcovered to forest								ered by		
Orientation of L -Axis	Braid ed	ENE- WSW to E- W,	NE- VSW 1 -W,	to, N	NE-W E-SW	NW-	ENE WSV E-W	2- E V, N	U-W & IW-SE	ENE-WSV NW-SE	м, E-W
Plunge of L- Axis		Toward East & NE	ds	& NI	Towaro E	ls Eas	t To	o wards	East & NE		

Relative	Convergent Divergent	Divergent	Divergent	Dive	rgent
disposition					
Paired/Unpai	Unpaired Unpair	red Paired	Paired	Paired	Paiired /
red	Isolated Patches				
Nature of	Curvilinear Curvilinear	Lir	near	Linear	ť
scarp	LinearI	Linear with conv	vex slope covered	by forst and	d collovium
	material				
Sedimentary	The Deccan basalt exposed in r	iver section is	Graded beddi	ng , Cross	s bedding,
feature	overlain by boulder conglomerate	e which display	Lamination, cr	oss laminati	ion & Cut
	sedimentary structures like Gr	aded bedding,	and Fill feature	S	
	Cross bedding, Lamination, cross la	amination			
Terrace	Cresent / Cusp	ate		Rectangular	*
shape	Isolated cap				
Land use	Inhabit	ation / cultivation	-/ Forest cover an	ea	
pattern					
Composition/	River bad : The Deccan bas	alt exposed in	river section	is overlain l	by boulder
Litho	conglomerate Quartzite, gneiss, gr	anite, meta basic	,,basalt sandsto	ne, limestone	е,
constituents	Augate, Jaspar, , slat	e, , schist sand an	d silt.		
arranged in	NTo : Quartzite, gneiss,, b	asalt, ,granite, m	eta basic , limeste	one, sandstor	ne, phyllite,
probable	slate, shale, sand and silt				
order of	NT1 : Quartzite, gneiss,	meta basic, bas	alt, granite sand	stone, lime s	tone, schist
abundance	phyllite, , shale Augate, sand and	silt.			
/The rock	NT1-A : Quartzite, gra	anite, gneiss, me	ta basic sand	stone, lime	stone slate
gravel of	schist,phyllite, , shale, sand silt and	clay.		_	
river terraces	NT2-B : Quartzite gneiss, gra	anite, limestone, s	andstone, schist,	slate meta l	basic, sand,
range in size	silt and clay.				
from boulder	N12-C : Quartzite gneiss, gra	inite, sandstone, l	imestone, basalt	and meta ba	asic schist, ,
to small	phyllite slate Jaspar, sand, silt ar	id clay	.		
pebble. The	NI3-A : Quartzite gneiss, gra	inite, meta basic l	basalt limestone,	sand stone sl	ate schist, ,
tiner clastics	sand, slit and clay.	•	14 19	1.4	- 4 1 - 11°4 -
comprise of	NIS-B : Quartzite, gne	iss, granite, basa	it limestone san	dstone, schis	st, pnyinte,
very coarse to	State, sand, silt and clay.	lon to out nound	lad haviday ashi	la nabbla af	Quantaita
very inte	boulder Conglomerate : Sub angl	nar to sub round	ted boulder cobl	l cilt The fin	Quartzite,
sanu, siit anu	gend elev and gilt is grante sature	lominated with a	te, shale sanu anu		e matrix of
rook fobrigg	Poulder Pode sub ongular to ong	alimateu with cu	it and reatures.	aganaana ag	control moole
are generally	fobric of Quartzita limostona gnois	nar, sub roun ue	sloto cond silt o	ogeneous as	sorteu rock
are generally	repric of Quartzite innestone, gneis	s, granne, senise,	, slate, sallu, slit a	inu ciay.	
to well					
rounded and					
mostly					
spherical					
oblate.					
prolate and					
bladed in					
shape.					

TABLE NO	GEOMORPHOLOGY AND DIGONESTIC ELEMENTS	Panipla	Pediplai
QGMT_14	NRMADA VALLEY	in	n

										Pedipla in	//pedime
Locality:	River	NTo		NT1	NT2-A	NT2	2-	NT2-	NT3-	PP	nt PD
SAHAGANJ	bad					В	_	C	B		
									NT3-		
							<u> </u>		C		
Age	075	205		202	200	H	OL	JCENE	222	207	222
Elavation above MSI	275	285 Basaltic		292,	298	310		320	323	321	332
(m)		rock	·								
		Overlai	n by								
		Boulder	•								
		Conglo	mer								
		Section	бапк								
Geomorphic	0.00	10.00		7.00	6.00	12		10.00	3.00	4.00	5
break (m)		Alluvia	l	Alluvi		Allu	ıvi	Alluvi	Alluvi	Gradual	Gradu
		Bluff		al	Alluvia	al	00	al	al	without	al
		section		Bluff	I Bluff	Blui	tt io	Bluff	Bluff	any distinct	withou t onv
				n/	/ Rock	n	10	n	n /	break 0	distinct
				Rock	face				Rock		break.
				face					face		
Elavation	0.00	5.00		12.00	18.00	30.0)0	40.00	43.00	47.00	52.00
above RB (m)	Kiver bad										
	Braided	1									
	Channe	ł									
	, Poin	ıt									
	Bar, Side Ba	r									
Slope		-Towards	Tow	ards wes	t '	Towar	rds v	vest & I	NS-SW,	SSW	SSW
_	west &	NS									
Nature of	Erosion	al Rock o	cut	surface	/ Erosio	nal /	De	position	al and	Erosiona	Erosio
Cycle	Sectio	n denicts u	n wai	rd cyclic	sequence v	uii vith ii	ncon	nlete	section	section	section
Sedimentation	cycle N	Го, NT1	.p	u cyche	sequence (ipiete	covered	not	not
	Polycyc	lic with b	reaks	/ with	upward fi	ning	Ν	Т2-А,	by	exposed	expose
	NT2-B	NT2-C Bou	lder	Conglom	erate expo	sed at	t the	e base	forest		d
Orientation of	Braid	ENE-	EN	E-	ENE-W		EN	E-	E-W &	ENE-WS	SW. E-W
L -Axis	ed	WSW to	WS	W to,	NW-	NE-	WS	W,	NW-SE	NW-SE	,
		E-W,	E-V	V,	SW		E-V	V			
Plunge of L-		Towa	rds I	Last &	To	wards	Ea	st &	To wards	East & NE	
Relative	Conver	gent	Dive	rgent	Dive	rgent		Div	vergent	Dive	gent
disposition	Conver	Bent	Dive	- gene	Dive	gene		21	ergene	Dive	Sent
Paired/Unpair		Unpai	red	Unpa	aired	Paire	ed	Pa	ired I	Paired	Paiired /
ed	Isolated	Patches		a			T •				
Nature of	Cl I incor-	irvilinear	(Curviline Linear	ar with convo	v slon	-Lin	lear	Lli v forst and	near	motorial -
scarp				Lincal		ч эюр	0	Tereu D	y 1015t allu	Contraini	mattial •
Sedimentary	The D	eccan basa	lt e	exposed	in river	Grad	led	bedding	g , Cross b	edding, La	mination,
feature	section	is o	verlai	n by	boulder	cross	s lan	nination	& Cut an	d Fill featu	res
	conglon	nerate Gr	aded	bedding	, Cross						

	bedding, Lamination, cross lamination	
Terrace shape	e Cresent / Cuspate Re	ectangular
	Isolated cap	-
Land use	e Inhabitation / cultivation-/ Forest cover area	
pattern	•	
Composition/	River bad : The Deccan basalt exposed in river section is o	verlain by boulder
Litho	conglomerate containing Quartzite, gneiss, granite, meta basic, , basalt	sandstone,
constituents	limestone, Augate, Jaspar, , slate, , schist sand and silt.	
arranged in	1 NTo : Quartzite, gneiss,, basalt, ,granite, meta basic , limestone,	, sandstone, phyllite,
probable	slate, shale, sand and silt	
ord/The rock	NT1 : Quartzite, gneiss, meta basic, basalt, granite sandstor	e, lime stone, schist
gravel of river	r phyllite, , shale Augate, sand and silt.	
terraces range	e NT1-A : Quartzite, granite, gneiss, meta basic sand stor	ne, lime stone slate
in size from	n schist,phyllite, , shale, sand silt and clay.	
boulder to	D NT2-B : Quartzite gneiss, granite, limestone, sandstone, schist, slav	te meta basic, sand,
small pebble.	silt and clay.	
The finer	r NT2-C : Quartzite gneiss, granite, sandstone, limestone, basalt and	meta basic schist,
clastics	phyllite slate Jaspar, sand, silt and clay	
comprise of	f NT3-A : Quartzite gneiss, granite, meta basic basalt limestone, san	d stone slate schist, ,
very coarse to	b sand, silt and clay.	
very fine sand,	, NT3-B : Quartzite, gneiss, granite, basalt limestone sandsto	one, schist, phyllite,
silt and clay.	slate, sand, silt and clay.	
These rock	K Boulder Conglomerate : Sub angular to sub rounded boulder cobble j	pebble of Quartzite,
febrics are	e gneiss, basic, schist, granite sandstone, Phyllite , slate, shale sand and sil	t. The fine matrix of
generally	sand ,clay and silt is cross bedded, laminated with cut and features	
surrounded to	Boulder Bed: sub angular to angular, sub round hybrid and heteroge	neous assorted rock
well rounded	l febric of Quartzite limestone, gneiss, granite, schist, , slate, sand, silt & c	lay.
and mostly	y l	
spherical,		
oblate, prolate	e	
and bladed in	1	
shape er of	f	
abundance.		

TABLE NO QGMT_15	GEOMORF NRMADA V	GEOMORPHOLOGY AND DIGONESTIC ELEMENTS NRMADA VALLEY											
4.00Locality: HOSHANGA BAD-BABAI	River bad	ΝТο	NT1	NT2-A	NT2-B	NT2-C	NT3-H NT3-(3 C	РР	PD			
Age		HOLOCENE											
Elavation above MSL (m)	260	270	280	285	295	310	315	31	L 8	322			
Geomorphic break (m)	0.00	10.00 Alluvia l Bluff section	10.00 Alluvi al Bluff sectio n	5.00 Alluvial Bluff section	10 Alluvi al Bluff section	15.00 Alluvi al Bluff sectio n	5.00 Alluvi al Bluff section	3.0 G wi ar di bı	00 Fradual ithout iy stinct reak.	4.00 Gradual without any distinct break			
Elavation above RB (m)	0.0 River bad Braided	10.00	20.00	25.00	35.00	50.00	55.00	58	\$.00	62.00			

	Chann	el,											
	Point I	Bar,											
	Side Ba	ar O											
Slope		Towards	Tow	ards wes	st & SW	Tow	ards v	west & S	SW		SSW		SSW
-	west &	z SW											
Nature of	Chann	el braidir	ıg	Erosion	al Ero	sional	/ Dep	osition	al. v	alley	Erosi	ona	Erosiona
surface	/ Depo	ositional	0		fill		Ero	sional /	Reli	ct &	1		1
	-				iso	ated ca	ps o r	ock cut	benc	hes			
Cycle	River	bed with	chan	nel braio	ds , poi	t bar,	sand	bars ,	secti	ion no	ot expos	sed an	nd covered
Sedimentatio	braide	d channe	I. N7	Fo, NT1	section	depict	ts up	ward	by f	orest	and co	lluviu	um /scree
n	cvclic	seauence	with	incompl	ete cvc	e. NT2	2-A. N	NT2-B	depo	osit			
	NT2-C	display		ľ	•••		,						
	Polycy	clic with l	breaks	/ with u	pward fi	ning							
Orientation	Braid	ENE-	ENE	-WSW	ENE	-W	EN	E-WSW	γ , E -	E-W	′&	EN	E-WSW,
of L -Axis	ed /	WSW	to, E-	-W,	NW	to N-	WI	NW-SE	·	NW-	-SE	E-V	N
	Grad	to E-	,	,	E-								
	ed	W,											
Plunge of L-		To	wards		-Towar	ls	To wa	ards Eea	ıst an	d NE			
Axis		East		NE-S	E &E-V	7							
Relative	Conver	gent	Di	vergent		Diverge	ent	D	iverg	ent		Diver	gent
disposition		0		0		0			C	,			0
Paired/Unpai		Ung	oaired	Ur	paired	Р	aired]	Paire	ł	Paired		Paiired /
red	Isolate	d Patches			-								
Nature of		Curvi	linear-	Cu	ırvilinea	r		Line	ar				Linear
scarp]	Linear						Linea	r	
_													
Sedimentary	Gradeo	l bedding	g , Cro	oss bedd	ing, G	raded	beddi	ng , C	ross	beddi	ng, La	mina	tion, cross
feature	Lamina	ation, cro	ss lami	ination	la	minatio	on & (Cut and	Fill f	eature	es		,
Terrace			C	resent / (Cuspate]	Rectang	gular	
shape	Isolated cap												
Land use				Inh	abitatio	n / culti	vatior	1-/ Fore	st cov	ver are	a		
pattern													

TABLE NO	GEOM	ORPHC	DLOGY AN	D DIGONE	STIC ELE	MENTS		Panipl	Paniplain			
QGMT_16	NRMAI	DA VAI	LLEY					ain	Pediment			
								Pedipl				
								ain				
Locality:	River	NTo	NT1	NT2-A	NT2-B	NT2-C	NT3-B	PP/PD	PP/PD			
BARWAHA	bad						NT3-C	Р				
SECTION-I												
Age		HOLOCENE										
Elavation	238	243	254	258	265	270	275	278	283			
above MSL												
(m)												
Geomorphic	0.00	5.00	5.00	10.00	8.00	5.00	5.00	3.00	5.00			
break (m)	River	Ban	Alluvial	Alluvial	Rock	Rock	Rock		Breaks			
	bad	k	Bluff	Bluff	Cut	Cut	Cut		distinct with			
	Braide	Scar	Bank	Bank	scars /	scars /	scars /	Breaks	rock relicts			
	d	р	Scarp	Scarp /	Rock	Rock	Rock	not	irregular			
	Chann		Composi	Rock	faces	faces	faces	distinct	imprints of			
	el,		te scarp	faces					morphotecto			
	Point								nics			
	Bar,			Composi								
	Side			te scarp								
	Bar											

	0.00	5.00	1000	2000	28.00		32.00	37.00	40.00.	45.00					
above RB (m)	0.00		20000		Rock		Rock	Rock	Irregul	Irregular					
					Cut		Cut	Cut	ar	surface with					
					Terra	ce	Terrac	Terrac	surface	relicts of					
					s / Ro	ck	es /	es /	with	erosional					
					Cut		Rock	Rock	relicts	activity.					
					Scar		Cut	Cut	of						
					Rock		Scar	Scar	erosion						
					Cut		Rock	Rock	al						
					Faces		Cut	Cut	activity						
							Faces	Faces							
Slope	T	owards		Towards	west		Towa	rds west	& SW						
STOP .	west & S	SW	and S	W			20110								
Nature of	D	Depositional Rock cyut terraces and Rock scarErosionall								Erosionall					
surface	Errosion	Errosional													
Cycle			Polv	cvcle			Rock	cut scars	s Sect	tion not not					
Sedimentation			i oly	cycle			evnosed	cut scar	,).cc						
Orientation of		FN	FNF-	ENE-	ENF-		F-W	FNF-W	SW NF-S	W F-W					
W-Aves		E.	WSW	WSW	WSW		£- \\ &		5 ••• , I \L -6	•• E-••					
VV-AAUS		WS	to F-W	11.511	NW-S	, F	NW-								
		w	10, E- W		1400-6		SF								
		to					SL								
		F-W													
Plunge of L.		<u></u> Т	owards	Toy	vards		Rock cu	t terraces	and Scar						
Aves		west	South	SW	varus		ROCK CU	i terraces	and Scar						
АЛСО		west -	South	5 • • • • • • • • • • • • • • • • • • •											
Relative	Converg	mest -	Diverg	nt	Diverge	ent	I	Divergent	T	Divergent					
disposition	Converg	şem	Diverge	.iit	Diverge	int	1	Jivergent	L	nvergent					
Daired/Unpair		Un	naired	Unnaired	Pa	iro	1 De	ired	unnaired	Paiirad /					
ed	Isolated	Patches		Onpaneu	1 a	nu		mcu	unpancu	Tanrea /					
Natura of	Isolateu	Curvi	, linoor	Curvilino	or		I in	09r		I incor					
scorn				Culvinne	ai		1/111	cai	I inoo	r					
scarp		Dook	cut scars	Emean	ional lii	nes			Linca	1					
		Rock cut scars Frosional lines								Dungan Dam					
Sedimentary	Braided Channel Channel har Point har Terrace Section Scarn section Punasa Dam														
Sedimentary feature	Braided	- Kock I Chanr nce (el, Channe bannel ba	l bar Point r. Side ba	bar i	l'eri ite	Trench	coalescence Channel har Side har site Trench Damsite Foundation Exception							
Sedimentary feature	Braided coalesce Graded	- Kock I Chann nce C beddi	iel, Channe Channel ba	l bar Point r, Side ba oss bedd	bar ing	Feri ite Gra	Trench,	Damsite	Foundations bedding	on Excavation					
Sedimentary feature	Braided coalesce Graded Laminat	- Kock I Chann nce C beddi tion, cro	el, Channe Channel ba ing , Ci oss laminatio	l bar Point r, Side ba coss bedd	bar 1 ar , si ing, ,(Feri ite Gra ross	Trench, ded bedd	Damsite ing , Cro on & Cut	Foundations s bedding and Fill for	on Excavation g, Lamination,					
Sedimentary feature	Braided coalesce Graded Laminat	- Kock I Chanr nce C beddi tion, cro	el, Channe Channel ba ing , Cı oss laminatio	l bar Point r, Side ba coss bedd on e	bar , si ar , si ing, ,(c	Teri ite Gra ross	Trench , ded bedd	Damsite ing , Cro on & Cut Rectang	Foundations Foundations Found Fill found Fill foundations Foundati	Punasa Dam on Excavation g, Lamination, eatures					
Sedimentary feature Terrace shape	Braided coalesce Graded Laminat	- Kock I Chann nce C beddi tion, cro	iel, Channe Channel ba ing , Cr oss laminatio Cuspat	l bar Point r, Side ba oss bedd on e	bar , si ar , si ing, ,(c	ite Gra <u>ross</u>	Trench , ded bedd s laminati	Damsite ing , Cro on & Cut - Rectang	Foundations Foundations so bedding and Fill found ular	Punasa Dam on Excavation g, Lamination, eatures					
Sedimentary feature Terrace shape	Braided coalesce Graded Laminat	- Kock I Chanr nce C beddi tion, cro	iel, Channe Channel ba ing , Cr iss laminatio Cuspat	l bar Point r, Side ba coss bedd on e	bar , si ar , si ing, ,(c	l'eri ite Gra ross	Trench , ded bedd a laminati	Damsite ing , Cro on & Cut - Rectang	Foundations so bedding and Fill for ular Sh	arn edge scar					
Sedimentary feature Terrace shape	Braided coalesce: Graded Laminat - Isolated	- Kock I Chann nce C beddi tion, cro 	iel, Channe Channel ba ing , Cr iss laminations Cuspat Rock cut s	l bar Point r, Side ba coss bedd on e scar	bar , si ar , si ing, ,(c	l'eri ite Gra ross	Trench , ded bedd a laminati	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding <u>and Fill fo</u> ular Sh	arp edge scar					
Sedimentary feature Terrace shape	Braided coalesce: Graded Laminat - Isolated	l Chanr nce C beddi tion, cro 	iel, Channe Channel ba ing , Cr iss laminatio Cuspat Rock cut s	l bar Point r, Side ba coss bedd on e scar	bar , si ar , si ing, ,(c	ite Gra ross	tivation	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill fo ular Sh	Funasa Dam on Excavation g, Lamination, eatures arp edge scar					
Sedimentary feature Terrace shape Land use pattern	Braided coalesce: Graded Laminat - Isolated area	I Chann nce C beddi tion, cro 	iel, Channe Channel ba ing , Cr oss lamination Cuspat Rock cut s	l bar Point r, Side ba coss bedd on e scar Inhabitatic	bar , si ing, , c	reri ite Gra ross	Trench , ded bedd <u>s laminati</u>	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill fould ular Sh	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd					
Sedimentary feature Terrace shape Land use pattern Composition/	Braided coalesce Graded Laminat - Isolated area River ba	cap	el, Channelba Channelba ing, Cr oss laminations Cuspat Rockcuts	l bar Point r, Side ba coss bedd on e scar Inhabitatic	bar sing, sing, c	Cult	tivation	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill four ular Sh 	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho	Braided coalesce Graded Laminat - Isolated area River ba Laspar, s	i Chann nce C beddi tion, cro cap ad : c	iel, Channe Channel ba ing , Cr oss laminations Cuspat Rock cut s Quartzite G slate, sand	l bar Point r, Side ba coss bedd on e scar Inhabitatic Gneiss, grar and silt.	bar , si ing, , (c	cul	tivation	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill fo ular Sh one, limes	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate,					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents	Braided coalesce: Graded Laminat - Isolated 	cap cap cap cap cap	eel, Channe Channel ba ing , Cr oss laminations Cuspat Rock cut s Quartzite G slate, sand	l bar Point r, Side ba ross bedd on e scar Inhabitatic cneiss, grar and silt. zite, gneiss	bar si ar , si ing, ,(c on and iite, qua	ite Gra ross cul artzi	tivation	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill four ular Sh one, limes	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, nhyllite, slate,					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in	Braided coalesce: Graded Laminat - Isolated 	cap cap ad : 0 schist, , : 6	el, Channe Channel ba ing , Cr iss laminati Cuspat Rock cut s Quartzite G slate, sand silt	l bar Point r, Side ba ross bedd on e scar Inhabitatio Aneiss, grar and silt. zite, gneiss	bar , si ing, , (c on and iite, qua	feri ite Gra ross cul nrtzi	tivation	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill fe ular Sh one, limes limestone,	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate,					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable	Braided coalesce: Graded Laminat - - Isolated 	cap cap ad : 0 schist, , : 0 	el, Channe Channel ba ing , Cr iss laminati Cuspat Rock cut s Quartzite G slate, sand s ineiss,quart silt	l bar Point r, Side ba ross bedd e	bar , si ing, , (c on and iite, qua ,, basalt	feri ite Gra ross cul 	tivation ite, basalt	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill four ular Sh 	runasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of	Braided coalesce: Graded Laminat - - Isolated 	cap cap ad : G schist, , : G	el, Channe Channel ba ing , Cr iss laminati Cuspat Rock cut s Quartzite G slate, sand ineiss,quart silt Quartzite, gr	l bar Point r, Side ba coss bedd on e scar Inhabitatic Eneiss, grar and silt. zite, gneiss neiss, , basa	bar , si ing, , (c on and iite, qua ,, basalt lt, grani	ross cul nrtzi	tivation tite, basalt	Damsite ing , Cro on & Cut - Rectang	Foundations ss bedding and Fill for ular Sh one, limes limestone, , basic, scl	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of abundance	Braided coalesce: Graded Laminat - - - 	cap cap ad : G schist, , : G und and : Q	el, Channelba ing, Cr iss laminations laminations Rock cut s Rock cut s Quartzite G slate, sand Sneiss, quart silt Quartzite, gr Quartzite	l bar Point r, Side ba coss bedd on e scar Inhabitatic meiss, grar and silt. zite, gneiss meiss, , basa	bar , si ing, , (c on and iite, qua ,, basalt lt, grani	feri ite Gra ross cul artzi	tivation tite, basalt ranite, , sa	Damsite ing , Cro on & Cut - Rectang , sandst andstone l , phyllite,	Foundations ss bedding and Fill for ular Sh one, limes limestone, , basic, scl	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of abundance /The rock	Braided coalesce: Graded Laminat - Isolated 	cap cap ad : G schist, , : G und and : Q	el, Channelba Channelba ing, Cr oss lamination Rockcuts Rockcuts Quartzite G slate, sand Gneiss, quart silt Quartzite, gr Quartzite, gr	l bar Point r, Side ba coss bedd on e scar Inhabitatic Gneiss, grar and silt. zite, gneiss neiss, , basa granite, gn ilt and clay	bar si ing, si ing, (c c on and iite, qua iite, qua iite, qua	cul ite s ite s ite s	tivation ite, basalt ranite, , sa andstone, basic san	Damsite ing , Cro on & Cut - Rectang , sandst andstone I , phyllite, ad stone, I	Foundations ss bedding and Fill for ular Sh one, limes limestone, , basic, scl lime stone	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand schist, basic,					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of abundance /The rock gravel of river	Braided coalesce: Graded Laminat - Isolated 	$\frac{cap}{cap}$	el, Channel ba ing , Cr oss laminations laminations Rock cut s Quartzite G slate, sand s Eneiss, quart silt Quartzite, gr Quartzite, gr	l bar Point r, Side ba coss bedd on e scar Inhabitatic Gneiss, grar and silt. zite, gneiss neiss, , basa granite, gn ilt and clay	bar si ing, si ing, (c c on and ite, qua ite, qua ite, grani eiss, mo	Culi culi artzi ite s eta l	tivation tite, basalt ranite, , sa andstone, basic san	Damsite ing , Cro on & Cut - Rectang , sandst andstone I , phyllite, ad stone, I	Foundations ss bedding and Fill foular	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand schist, basic,					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of abundance /The rock gravel of river terraces range	Braided coalesce: Graded Laminat - Isolated 	cap ad : G schist, , : G ad : G schist, , : G ad : G clay	eel, Channel ba Channel ba ing , Cr oss lamination Cuspat Rock cut s Quartzite G slate, sand s cheiss, quart silt Quartzite, gn Quartzite, gn Anele, sand si cheiss, grani	l bar Point r, Side ba coss bedd on e scar Inhabitatic Gneiss, grar and silt. zite, gneiss neiss, , basa granite, gn ilt and clay ite, quartzi	bar , si ing, , (c on and iite, qua ,, basalt lt, grani eiss, me	cul ite s cul ite s ite s	tivation ite, basalt ranite, , sa andstone, basic san e, limesto	Damsite ing , Cro on & Cut - Rectang , sandst andstone I , phyllite, ad stone, I ne, meta I	Foundations ss bedding and Fill four ular	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand schist, basic, t, , slate, sand,					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of abundance /The rock gravel of river terraces range in size from	Braided coalesce: Graded Laminat - - - - - - - - - - - - - - - - - - -	cap cap ad : G schist, , : G ad : G schist, ; : G ad : G clay.	el, Channe Channel ba ing , Cr iss laminati Cuspat Rock cut s Quartzite G slate, sand s cheiss, quart silt Quartzite, gn Quartzite, sand s cheiss, grani Quartzite	l bar Point r, Side ba coss bedd on e scar Inhabitatic Eneiss, grar and silt. zite, gneiss neiss, , basa granite, gn ilt and clay ite, quartzi gneiss, gra	bar si ing, si ing, (c c on and iite, qua iite, qua ,, basalt lt, grani eiss, mo te sands	cul cul ite s cul ite s eta l	tivation ite, basalt ranite, , sa andstone, basic san e, limesto	Damsite ing , Cro on & Cut - Rectang 	Foundations so bedding and Fill for ular	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand schist, basic, t, , slate, sand, phyllite, slate					
Sedimentary feature Terrace shape Land use pattern Composition/ Litho constituents arranged in probable order of abundance /The rock gravel of river terraces range in size from boulder to	Braided coalesce: Graded Laminat - - - - solated 	cap cap ad : G schist, , : G ad : G schist, sl : G ad : G clay. : silt and	el, Channe Channel ba ing , Cr iss laminations Rock cut s Rock cut s Quartzite G slate, sand s cheiss, quart silt Quartzite, gr Quartzite, grani cheiss, grani Quartzite clay	l bar Point r, Side ba ross bedd on e	bar si ing, si ing, (c c on and iite, qua iite, qua iite, qua iite, grani eiss, me te sands nite, san	cult cult , ,gr ite s eta l tono	tivation ite, basalt ranite, , sa andstone, basic san e, limesto tone, lime	Damsite ing , Cro on & Cut - Rectang , Rectang , sandst andstone I , phyllite, ad stone, I ne, meta I estone, ba	Foundations so bedding and Fill for ular Sh 	Funasa Dam on Excavation g, Lamination, eatures arp edge scar Forest coverd tone, Augate, phyllite, slate, hist shale sand schist, basic, t, , slate, sand, phyllite, slate,					

small pebble. The finer clastics comprise of very coarse to very fine sand, silt and clay. These rock febrics are generally surrounded to well rounded and mostly spherical, oblate, prolate and bladed in shape.	Quartzite gneiss, granite, meta basic sand stone basalt limestone, schist, slate, sand, silt and clay. NT3-B : Rock cut scar with thin vaneer of quaternary sediments with Quartzite limestone sanstone, gneiss, granite, basalt slate, schist, phyllite, meta basic sand, silt and clay. Note : NT3-A Rock cut Scar , Strand lines , rock cut dissected nicks Panipla Pediplai										
TABLE NO QGMT_17	GEOMORPHOLOGY AND DIGONESTIC ELEMENTS NRMADA VALLEY Pedipla in nt										
(i) Locality DHADGAON -I	River bad	ΝТο	PP/PD	PP/PD							
Age	HOLOCENE										
Elavation above MSL (m)	210	215 Bank cut scar	225 Micro scar	230 Alluvial bluff section	23 F /A se	35 Rock Alluv ection	ial 1	240 Rock /Allu vial sectio n	247 Rock cut Terrac es rock Scar	250 Gradua l	253 Gradua l
Geomorphic break (m)	0.00	5.00 Alluvi al Face	10.00 Alluvia I Bluf Section Steep Alluvia I face	5.00 Alluvial Bluff Section f Steep Alluvial fac Compos te Roc Face	5. A B S R T i k F	00 lluvi luff ectio ock errac ock S ock ace	al n cut ces Scar	10.00 Alluv ial Bluff Section N Rock cut Terra ces rock Scar Rock Face Rock Face	7.00 Alluvia I Bluff Section Rock cut Terrac es rock Scar Rock Face Compo sit Rock Face	3.00 Breaks Gradua I with thin covers of soil	3.00 Breaks Gradua I with thin covers of soil
Elavation above RB (m)	0.00 River bad Braided Channe I, Poin Bar,	5.00 Rock Face and Alluvi t al Bluff	1500 Rock Face and Alluvia I Bluff	2000 Rock Face	25 R F:	5.00 ock ace		35.00 Rock Face	42.00 Rock cut Terrac es rock Scar	45.00 distinct	48.00 distinct

					-			
	Side							
	Dai							
							Toward	Toward
Slope	Towards	Toward	ls west	'	Towards	west &	s west	s west
Stope	west & SW an	d SW		SW			& SW	& SW
							Erosion	Erosion
Nature of	Depositional, Cres	ent shape	Rock o	yut terr	aces and	d Rock	al	al/
surface	elongated H	Errosional	scar -	Ero	osional	Lieanr		partly
	•••••		scar in	e				deposio nal
<u> </u>	Up ward fining cycle			Ro	ck cut	scars		nui
Cycle	Polycycle -			Sec	tion n	ot not		
Seumentation				exp	osed			
Orientation of	ENE-WSW to	ENE-WSV	V EN	NE-	ENE-	E-W	& ENE-V	VSW,
W-Axes	E-W	to, E-W	W	SW N	VSW, JW SF	NW-	NE-SV	VE-W
Plunge of L-	Towards v	vest. Sout	h	Toward	ls SW	- Rock	cut terrs	aces and
Axes	North West & W	'est		1000410		Scar	cut terri	uces und
Relative disposition	Convergent Diver	gent	Diverg	gent	Dive	ergent	Diver	gent
Paired/Unpair	Unpaired	Paired	Paire	d F	Paired	unpaire	d Pai	red sharp
ed	Strand lines					•		•
Nature of	Curvilinear Cu	rvilinear		Linear		Liı	near	
scarp	Linear		Lin	ear		I	Rock cut sc	ars
-	Erosional lines Braided Channel Chanr	ol har Dair	x t					
	bar coalescence Chann	el bar. Sid	le Teri	ace Sect	ion Sca	rp section	Punasa	Dam site
Sedimentary	bar, Graded beddin	ig , Cros	s Tren	ch, Dai	nsite Foi	undation	Excavation	,Graded
leature	bedding, Lamination	n, cros	s Deuu	nation &	Cut and	Fill featur	Lannatio res	
	lamination			D 4		I III Icutui		Daala aat
Terrace shape	scar	Shar	p edge sc	ar Recta	angular]	Isolated ca	ROCK CUL
Land use	Barren]	Inhabitat	tion and	cultivat	ion		Forest
pattern	coverd area							
Composition/	River bad Braided Cha	annel, Poin	t Bar, Si	de Bar. V	With very	y coarse to	very fine	sand, silt
Litho	& Clay : Quartzite G	neiss, gran d and silt	ite, quai	rtzite, ba	isalt, s	andstone,	limestone,	Augate,
arranged in	NTo : Gneiss.quartzite.	gneiss., bag	saltgrai	nite. , sai	ndstone l	imestone.	phyllite, sk	ate, shale,
probable	sand and silt	8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				P J, 5-	,
order of	NT1: Quartzite, gneiss	, , basalt, g	ranite sa	ndstone,	phyllite	, , basic, s	chist shale	sand and
abundance	silt.							
/The rock	NT1-A : Quartzite, grani	te, gneiss, 1	neta bas	ic sand s	stone, lin	ne stone s	chist, basic	, phyllite,
gravel of river	slate, shale, sand silt and	clay.	andatan	limoste	mo moto	hadia dah	ist slata	cand cilt
in size from	and clay	quartzite s	anustone	e, innesit	me, meta	i basic sch	ist, , state,	sand, sin
boulder to	NT2-C : Quartzite gnei	iss, granite.	sandsto	ne, limes	tone, ba	sic schist,	phyllite, sl	ate, sand,
small pebble.	silt and clay	/8 /		,	,	,		, ,
The finer	NT3-A : Rock cut scar	with thin v	aneer of	quaterna	ary sedin	nents with	n Gneiss,	Quartzite
clastics	gneiss, granite, meta basi	c sand ston	e basalt l	limestone	e, schist, s	slate, sand	, silt and cl	ay.
comprise of	NI3-B : Kock cut sca	er with t	hin van	eer of qu	uaternary	y sedimen	ts with	Quartzite
very coarse to	clay.	iss, granne	, Dasalt S	state, sc	mst, pny	mie, meta	Dasic sand	i, siit allu
silt and clay.	Note : NT3-A , B Rock of	ut Scar . St	trand lin	es , rock	cut disse	cted nicks		
These meals	Boulder Conglomerate :	Sub angul	ar to sul	o rounde	d boulde	er cobble	nebble of (Duartzite

febrics are	gneiss, basic, schist, granite sandstone, Phyllite , slate, shale sand and silt. The fine matrix of
generally	sand ,clay and silt is cross bedded, laminated with cut and features
surrounded to	Boulder Bed: sub angular to angular, sub round hybrid and heterogeneous assorted rock
well rounded	febric of Quartzite limestone, gneiss, granite, schist, , slate, sand, silt and clay.
and mostly	
spherical,	
oblate, prolate	
and bladed in	
shape.	

Geomorphology and digonestic elements Nrmada valley

TABLE NO QGMT-18 Locality: TILAKWAR DA / : GARUDESW AR	River bad	ΝΤο	NT1	NT2-A	NT2-B	NT2-C	NT-3	Paniplain/Pedi plain PP/PD	Pedime nt PP/PD
Age						HOLO	CENE		
Elavation above MSL (m)	85	90	96	110	115	120	130 Rock cut Terrac es rock Scar	133	138
Geomorphic break (m)	0.00	05.00 Alluv ial Face	11.00 Alluv ial Bluff Secti on Steep Alluv ial face	25.00 Steep Alluvial fac Composi te Rock Face	30.00 Rock cut Terrac es rock Scar Rock Face	35.00 Rock cut Terrac es rock Scar Rock Face Rock Face	45.00 Rock cut Terrac es rock Scar Rock Face Compo sit Rock Face	48.00 Gradual	53.00 Distinct with breaks and rock rlicts and imprint s of neotect onic activity
Elavation above RB (m)	0.00 River bad Chann el, Point Bar, Side Bar	08.00 Rock Face and Alluv ial Bluff	150 0 Rock Face and Alluv ial Bluff	2000 Alluvial Bluff Rock Face	25.00 Rock Face	35.00 Rock Face	45.00 Rock cut Terrac es rock Scar	50.00 Rock surface with soil cover	55.00 Pedime nt surface
Slope	Towards & SW	s west	west an	Fowards nd SW	T SW	owards	west &		

Nature of	Depositional Rock cut terraces and Rock scar Erosional Eros						
surface	,Cresent shapeErosionalLieanr scar line al						
	elongated						
	Errosional						
Cycle	Up ward fining cycle Rock cut scars Section not not exposed						
Sedimentatio	Polycycle						
n							
Orientation	ENE- ENE-WSW ENE- ENE- E-W & ENE-WSW, NE-						
of W-Axes	WS to, E-W WSW, WSW, NW-SE SW E-W						
	W to NW-SE NW-SE						
	E-W						
Plunge of L-	Towards west, South NorthTowards Rock cut terraces and						
Axes	West & West Sw Scar						
Relative	Convergent Divergent DivergentDivergent						
disposition							
Paired/Unpai	Unpaired Paired PairedPaired unpaired Paired sharp Strand						
red	lines						
Nature of	Curvilinear CurvilinearLinearLinearLinear						
scarp	LinearLinearLinearLinearLinearLinearLinear						
	Rock cut scarsErosional lines						
Sedimentary	Braided Channel, Channel bar Terrace Section Scarp section Punasa Dam site Trench						
feature	Point bar coalescence Channel , Damsite Foundation Excavation ,Graded bedding ,						
	bar, Side bar, Graded bedding, Cross bedding, Lamination, cross lamination & Cut and						
	Cross bedding, Lamination, Fill features						
	cross lamination						
Terrace	Cuspate Rectangular Rectangular						
shape	Sharp edge scar Isolated cap						
Land use	BarrenInhabitation and cultivationBarren Forest						
pattern	coverd area						
Composition/	River bad Braided Channel, Point Bar, Side Bar. With very coarse to very fine sand , silt &						
Litho	Clay: Quartzite Gneiss, granite, quartzite, basalt, sandstone, limestone, Augate, Jaspar,						
constituents	schist, , slate, sand and silt.						
arranged in	NTo: Gneiss, quartzite, gneiss, basalt, ,granite, , sandstone limestone, phyllite, slate, shale,						
probable	sand and silt						
order of	NT1 : Quartzite, gneiss, , basalt, granite sandstone, phyllite, , basic, schist shale sand and						
abundance	silt.						
	NT1-A: Quartzite, granite, gneiss, meta basic sand stone, lime stone schist, basic, phyllite,						
	slate, shale, sand silt and clay.						
	NT2-B.: Rock cut scar						
	NT2-C : Rock cut scar						
	NT3-A : Not Developed						
	NT3-B: Not Developed						
	NT3-C: Not Developed						

Geomorphology and digonestic elements Narmada valley

TABLE NO QGMT_19 Locality: BHARUCH	River bad	ΝТο	NT1	NT2-A	NT2-B	NT2-C	NT3- A NT3- B NT- C	Paniplain/Pedi plain Paniplain/Pedi plain PP/PD	Pedime nt /PD
Age HOLOCENE									
Elavation above MSL (m)	60	70	80	90.00			NT3- A 105	PP/PD	PD

Geomorphic break (m)	0.00	10.00 Alluv ial Face	20.00 Alluv ial Bluff Secti on Steep Alluv ial face	30.00 Steep Alluvial fac Composi te Rock Face	Not Develo ped	Not Develop ed	45 .00 m Alluvi al Bluff Sectio n Steep Alluvi al face	50.00 Gradual		55.0000 Distinct with breaks and rock relicts and imprint s of geotect onic activity
Elavation above RB (m)	0.00 River bad Chann el, Point Bar, Side Bar	10.00 Rock Face and Alluv ial Bluff	200 0 Rock Face and Alluv ial Bluff	3000 Alluvial Bluff Rock Face	Not Develo ped	Not Develop ed	45 .00 m Alluvi al Bluff Sectio n Steep Alluvi al face	55.00		60.00
Slope	Towards west west and SW- & SW				s Towards west & Towards west SW					
Nature of surface	De Cresents	position hape elo Err 	al, ongated osional	Rock cyut Erosion	terraces a alLiear	and Rock s or scar line	car	Erosiona	1	Erosion al
Cycle Sedimentatio n	Up ward Poly 	fining c ycycle	ycle		Rock cu	t scars S	ection n	ot not expos	sed	
Orientation of W-Axes	ENE to E-	-WSW W	ENE- WSW E-W	to, ENE- SE	NE-WSW, NW- E WSW, E-W & E-W & E-W & F NW-SE NW-SE NW-SE			ENE- NE-S	WSW, W E-W	
Plunge of L- Axes	South & W	Towards h Nortl est	s west, h West	Tov SW	vards	Rock cut	terraces	and Scar		
Relative disposition	Converg	ent	Dive	rgent	Diverge	ntDivergen	tDiverg	ent		
Paired/Unpai red	lines	Unp	aired	Paired	Paired	Paired	unpaire	ed Pair	red sha	rp Strand
Nature of scarp		Curvili Rock cu	inear t scars	Curvilia Linea Eros	near r sional lines	Li 	near	Line	ar	-Linear
Sedimentary feature	Braided Channel, Channel bar Point bar coalescence Channel bar, Side bar , Graded bedding , Cross bedding, Lamination, cross lamination					Terrace Section Scarp section Punasa Dam site Trench, Damsite Foundation Excavation ,Graded bedding, Cross bedding, Lamination, cross lamination & Cut and Fill features				
Terrace shape	Sharp ed	Cuspa lge scar	te		Re Isolate	ectangular- ed cap		- R	ock c	cut scar
Land use		BarrenInhabitation and cultivationForest								

pattern	coverd area								
Composition/	River bad Braided Channel, Point Bar, Side Bar. With very coarse to very fine sand , silt &								
Litho	Clay: Quartzite Gneiss, granite, quartzite, basalt, sandstone, limestone, Augate, Jaspar,								
constituents	schist, , slate, sand and silt.								
arranged in	NTo: Gneiss, quartzite, gneiss, basalt, ,granite, , sandstone limestone, phyllite, slate, shale,								
probable	sand and silt								
order of	NT1 : Quartzite, gneiss, , basalt, granite sandstone, phyllite, , basic, schist shale sand and								
abundance	silt.								
	NT1-A : Quartzite, granite, gneiss, meta basic sand stone, lime stone schist, basic, phyllite,								
	slate, shale, sand silt and clay.								
	NT-3 : Alluvial Bluff Section Steep Alluvial face								
	NT2-B.: Not Developed NT2-C Not Developed								
	NT3-A : Not Developed NT3-B Not Developed								

Geomorphology and digonestic elements

Narmada valle	y											
TABLE NO QGMT_20 Locality: ALIABAT	River bad	ΝТο	NT1	NT2-	-A	NT2-B	NT2	2-C	NT3-A NT3-B NT-C	Pani plair PP/F	plain/Pedi 1 PD	Pedim ent /PD
Age HOLOCENE												
Elavation above MSL (m)	25	35										
Geomorphic break (m)	0.00	10.00 Alluv ial Face	Not Develo ped	Not Deve ed	elop	Not Develop ed	Not Dev ped	relo	Not Develop ed	Not	Developed	Not Develo ped
Elavation above RB (m)	0.00 River bad Chan nel, Point Bar, Side Bar	10.00 Rock Face and Alluv ial Bluff	Not Develo ped	Not Deve ed	elop	Not Develop ed	Not Dev ped	relo	Not Develop ed	Not Developed		Not Develo ped
Slope	Towards Towards west west and SW & SW			5 	Towards west & SW- 				Tow	ards west	Towar ds west	
Nature of surface	Depositional,Cresentshape elongatedRErrosional				ock cyut terraces and Rock scar -ErosionalLieanr scar line					Eros	sional	Erosio nal
Cycle Sedimentatio n	Up ward fining cycle 				ycle ycle	Rock cut scars Section not not exposed						
Orientation of W-Axes	ENE- WS W to E-W			E- SW, ENE-WSW, E-W NW-SE NW-SE			E ENE-WSW, NE- SW E-W					

Plunge of L- Axes	Towards west, South North West & West	Towards SW	Rock cut terraces and Scar						
Relative disposition	Convergent DivergentDivergentDivergent								
Paired/Unpa ired	Unpaired Paired PairedPaired unpaired Paired sharp Strand lines								
Nature of scarp	CurvilinearCurvilinearLinearLinearLinearLinearLinearLinearLinearLinearLinearLinearLinearLinearLinear								
Sedimentary feature	BraidedChannel, Channel barChannel, Channel barChannel bar Point bar coalescenceChannel DansiteTerrace Sectionbar, Side bar , Graded bedding , Cross bedding, Lamination, cross laminationTerrace SectionScarp sectionPunasaDam siteTerraceDamsite Foundation Excavation ,Graded bedding , CrossCross lamination, Cross lamination,Cross lamination & Cut and Fill features								
Terrace shape	Cuspa Rock cut Isolated cap	ate ; scar	Rectangular Sharp edge scar						
Land use pattern	Barren coverd area	Inhabitatio	on and cultivation Forest						
Composition /Litho constituents arranged in probable order of abundance	NTo : Quartzite Gneiss, granite, quartzite, basalt, sandstone, limestone, Augate, Jaspar, schist, , slate, sand and silt. : NT1 Not Developed NT1-A : NT-3 Not Developed NT2-B. : Not Developed NT2-C Not Developed								
		- · · ·]	•						

						Table					
				No QGMT- 21							
Quater	nary St	rat	tigraphy	of the Lower Nai	mada	Valley					
(Garu	deshar-	Bł	naruch S	Section)							
Chro	Meg		Morp	Litho Soil Stratigraphy				Teph	Biostra	tigraph	
Strati grap hy	Stratig raphy	g Strati Stratigraphy graph y		Soil Typ e	Degree of Oxidatio n	Degree of Calcificati on	Strati grap hy	y Faun al	Pollen	Paleocl imate	
									Asse mbla ge	Assem blage	
	Not Done			Aliabat Formation	Ι	Nil	Nil			•••••	
				Aliabat Formation = Tidal Flats					Uppe r		Present
			NT _O		II	Nil	Low	•••••	Asse mbla ge	••••	Climate

Holoc ene		T ₀ Dep osition								
		al	N 1 1							
		\mathbf{NT}_1	Bharuch							Warm and
		T ₁ Erosio nal	Formation	III		•••••			••••	Semiaer id
13 Ka Bp		Surfac								
	BRUI	NT ₂ -A	Tilakwarada- C				NAB- III			Warm and
Upper	NHES NO	T ₂ Deposi tional	Formation	IV	Low	Intense	volca nic Ash			Semiaer id
Pleist oncen e	ORMAL	Surfac e					Trans porte d	Uppe r		
		NT ₂ -B	Tilakwarada- B	V	Moderate	Moderate	NAB- II volca nic Ash	Asse mbla ge	Grami nae Comp ositae	Î
128 Ka Bp			Formation						Cheno podiac ae	
Middl e		NT ₂ -C	Tilakwarada- A	VI	High	Moderate	•••••	Lowe r		
Pleist oncen e			Formation					Asse mbla ge		
700 Ka Bp		NT ₃ -A	Ankleshwar-B	VII	Very High	Low	•••••			
	Mat uya ma		Formation							
	Rev erse d									
		NT ₃ -B	Ankleshwar-A	VIII	Intense	Nil	•••••	Not Repor ted	•••••	Warm and Humid
			Formation							
Lowe r		····· ····	(Boulder conglomerate)	glacial/deposit		NB-I	••••••			
Pleist										
ocene										
 		(Boulder conglomerate)	Glacia	al/Fluvio-gla	cial/deposit		I			

Plate No.1:-& Plate No.2:-

Plate No.4:-

Plate No.5:-

GEOMORPHOLOGICAL MAP OF NARMADA VALLEY PARTS OF RAISEN AND HOSHNAGABADM.P.

Plate No.6:-

GEOMORPHOLOGICAL MAP OF THE AREA AROUND HOMINID FOSSIL LOCALITY HATHNORA, NARMADA VALLEY SEHORE AND HOSHANGABAD DISTRICT, MADHYA PRADESH, INDIA

Plate No. 3

Plate No.7:-

Plate No.8:-GEOMORPHOLOGICAL MAP OF PARTS OF THE NARMADA BASIN SEHORE, DISTRICT, M.P.

Plate No.9:-

INDEX

al and the second se
T Quaternary Terraces (280 to 300 m above msl.) Aggradation & degradation of Quaternary se
I Mordor Surface (300m. above m s.t.)
II Sarolo Surface (320 m above m.s.l.) Peneplanation
III Khadar Surface 1340 m above m.s.l.) Dissection and Peneplanation
III Borgaon Surface. (360 m above m s.i.)
Jalondhor Surface (400 m above m.s.l.) Peneplanation
I Sara Surface (440 m above m.s.l.) Peneplanation
Gularpan Surface (SE) (460 m obove m sl.)
Gularpan Surface (SW) (460 - 480 m above msl)

SEOMORPHIC FEATURES & LANDFORM	MORPHOTECTONIC F
ELEMENTS Flood plain	Perennial channel segme
Point bar	Impersistent and partly inte
Low level terrace	Knee shaped channel bo
Channel broids	Linear incisional scarp
Linear scorp	Rock cut benches / Rock
Curvilinear scarp	
Knee shaped channe band	
Perenhial channel segments	
->+ Leteral bank cutting	
Hertical bank cutting	
Impersistent and partly internal drainog	
Deep gully erașion	
Accelerated headward erasion	
sa scree	
Refrecting scarp	
Relict Surfaces	
FF Foults	
Lineoment	
..* Deccan trap upland	
Village, Town, Rood, Rollway line	
rearrand .	

MORPHOTECTONIC FEATURES

Presented (shows) segment
 Eithingh energy of segment
 Eithingh energy of weiter folds controlled by cross lineament))
 Presented and party internal drainage
 Make inspect channel band
 Eineer Incluinant scarp
 Rock and Becher / Rock and River bed /Nick points in channel bed

by... Dr. A. A. Khan Geologist (Sr.) Map and Cortegraphy GSI, OPMP Bhopol F. S. -, 1993-94

Plate No.10

Plate No.11:-

The sediments of paleo-domain of Narmada conformably overlie the boulder conglomerate and represent the floodplain fluvial facies of the Narmada. The sediments of the fancies predominantly consist of clay silt and sand, discontinuous nodules and plates. The beds are horizontal, exhibit upward fining sequence typical of fluviatile deposits .This domain may be divided divided into three formations based on lithology, sediment assemblage, shape and size of rock clastics, relative disposition and diagnostic sedimentary characteristics. These formations are, viz. (i) Shohagpur, (ii) Shahganj, and (iii) Hoshangabad Formations respectively. These formations represent the sediments the complete sequence of Narmada deposited in channel and flood plain environments during Upper Pleistocene times. The lowest Sohagpur Formation is named after Sohagpur town. The unit occurs along the outer flanks of Narmada Valley bounded by Vindhyachal range to the north and Satpura to the south. It consists of sediments of paleo-domain of Narmada. It is represented by a thick sequence of clay, silt-sand and rock gravels.

The Quaternary landscape of Narmada comprises (NT-1 to NT-3) and their correlation with rest of Narmada Rift Valley between Jabalpur-Harda and Harda - Bharuch suggest that it has evolved mainly due to tectonic activity along the SONATA LINEAMENT in a compressive stress regime. The sediments comprising these were deposited in a slowly subsiding basin during early Pleistocene middle Pleistocene and the Late Pleistocene. The Holocene period is marked by inversion, which had earlier suffered subsidence. The inversion of the basin is due to a significant increase in compressive stresses along the NSF during the Early Holocene, resulting in differential uplift of the lower Narmada valley. The continuation of the compressive stress regime due to ongoing northward movement of the Indian plate indicates that the NSF is a major candidate for future intraplate seismicity in the region.Khan et.al (1991) Khan et.al (1985) (Khan2016)

In Narmada rift valley the quaternary sediments are accumulated in two section viz Jabalpur-Harda section and Guredhwar and bharouch section where as in other area Harda to Gurudeshwar section of valley rock cut terraces, rock cut platform and benches are notices which at many places over lie by caps and strips quaternary deposits representing the former level of valley floor of Narmada. The rock cut terraces and rock cut benches are time equivalent to NT1 to NT3 which have developed in Jabalpur-Harda and Gurudeshwar -Bharouche sections.Khan et.al (2016). The Quaternary events of the Narmada portys three prominent terraces and two sub terraces in these sections which are designated NT1 to NT3 and sub terraces NT2-A is NT2-B, NT2 B, besides NT2-C, NT3-A & NT3-B besides NT-0 in the valley. They have been designed NT₀ to NT3, (280 to 400 m), NT₀ being the low level terrace above the present-day course of the river, NT_1 -the younger terrace both of cyclic ad o cyclic nature. The NT_3 terrace occurs as elongated strip and isolated caps and lenses along the margin of valley flanks has divergent relative disposition. These land forms indicate vigorous and abrupt incision of valley floor due to relatively & repaid uplift of watershed area during Upper Pleistocene time. The NT1to NT2are the major depositional terrace and have both convergent & divergent mutual disposition with other terrace. These terraces further downstream have matched equivalents along the valley flanks, whereas in the up stream section the matched equivalents are rare. The conspicuous divergent relation of these terraces the valley reveals successive uplift of catchments area and consequential incision of valley floor and adjustment of base level of Narmada during Upper Pleistocene time.

The Quaternary river terraces of Narmada (NT1to NT3) entrapped in tectonic zone with rock cut equivalence and scars are positive significant imprints of euestatic change / climatic changes in the during the sedimentation. The alluvial fan in between Tilakwarda and Rajpipla within the loop of Narmada Chamyal (2002) is mono illustration of morphogenetic process associated with neotectonic event. The disposition of Quaternary blanket, fan deposit and other quaternary land forms are controlled and restricted by SONATA LINEAMENT towards north. It appears to be older quaternary deposits of Narmada which has moved from basement and has been pasted along SONATA LINEAMENT.

The study of Narmada river terraces along the length of 1300 kms in between Jabalpur- Bharuch their correlation, relative disposition, their elevation and slope their critical and crucial sediment sequence in type area, drainage net work and its configuration, neo-seismic data imprints and signatures of modules of neo- deformation by compressive force, in relation to the movement of the Indian plate indicates that peninsular India has been undergoing high compressive stresses due to the sea-floor spreading in the Indian Ocean and locking up of the Indian plate with the Eurasian plate to the north. The study of Quaternary tectonics activity of Khandwa Sukta faults and Barwani faults Khan (2017) in the middle segment of valley, analysis of quaternary terraces of Tapti and their imprints of isoseismic events Khan (1984) in the confluence area of Tapti and Waghour, further authenticate the record that these N–S directed stresses have been accommodated by the under thrusting of the Indian plate below the Eurasian plate. The manifestation of this Phenomenon a part of these compressive stress is

recorded along the NSF, a major E–W-trending crustal discontinuity in the central part of the Indian plate; further activities of significant magnitude are recorded from sea-level studies on the west coast and in the Himalaya located at the trailing and leading edges of the Indian plate during the Early Holocene respectively

References:-

- Acharyya, S.K., Kayal, J.R. and Roy, A. 1998 "Jabalpur Earthquake of May 22, 1997: Constraint from after Shock Study", Journal Geological Society of India, Vol. 51, pp. 295-304. Agarwai, B.N.P., Das, L.K., Chakraborty, K. and Sivaji, C.H. 1995 "Analysis of the Bouger anomaly over central India: A
- 2. Acharyya, S.K., Kayal, J.R. and Roy, A. 2000, Tectono thermal history of the central India tectonic zone and reactivation of major faults, Jour.Geol.Soci. India 55,239-256.
- Bhattaacharji,S; Chatterji,N; Wampler J.M. 1996 Zones of Narmada Tapti area activation and Deccan volcanisam: geochronological and geochemical evidences. Chaube, V.D.(1970): The Narmada Son line thrust, the geat boundary fault along the southern margin of the Vidhyan basin, Central India, West Commomoration Volume, Today and Tommarow printers and publishers, Faridabad. Pp.420 – 438.
- 4. Chanda, S.K (1960) on certain structures of Heavy minerals of Assamtertiaries and their gelogical interpretation. Quart.Jour, Min.Met, India, vol 52, 141-444
- Chaube, V.D.(1970): The Narmada Son line thrust, the geat boundary fault along the southern margin of the Vidhyan basin, Central India, West Commomoration Volume, Today and Tommarow printers and publishers, Faridabad. Pp.420 – 438.
- 6. Jain, S.C., Nair, K.K.K.and Yedekar, D.B. (1991): Geology of Son-Narmad-Tapti lineament zone in Central India, in final report "on studies in phase II special project CRUMANSONATA" progress report (unpublished) Geol. Surr. Ind.
- Jain, S.C., Nair, K.K.K.and Yedekar, D.B. (1991): Geology of Son-Narmad-Tapti lineament zone in Central India, in final report "on studies in phase II special project CRUMANSONATA" progress report (unpublished) Geol. Surr. Ind.
- 8. Jain, S.C., Yedekar, D.B.and Nair, K.K.K (1991): Central Indian shears Zone, a major Precambrain Crustal boundary. Jour.Geol Soc. India Vol.37. pp.521 531.
- 9. Jain, S.C., Yedekar, and D.B.and Nair, K.K.K (1991): Central Indian shears Zone, a major Precambrain Crustal boundary. Jour.Geol Soc. India Vol.37. pp.521 531.
- Jain, S.C., Nair, K.K.K.and Yedekar, D.B.(1993): Geology of Son-Narmada-Tapti lineament zone in Central India, In final report "on studies in phase II special project CRUMANSONATA" progress report (unpublished) Geol. Surr. Ind.
- 11. Khan A.A. & Balchandran, V (1974-75) Records Volume109 of Gelogical survey Of India partI, pp.59
- 12. Khan A.A. 1984 Geology of Geomorphological studies in parts of Narmada Basin, Sehore Dist. Of M.P. GeolSurv. Of India Progress Report (Unpublished).
- 13. Khan, A.A. & Banerjee, S.N. (1984) Geology and Geomorphological studies in the parts of Narmada Basin, Sehore district of M.P. Un Pub. Report. Geol. Surv. India.
- 14. Khan, A.A. (1984) Geological and Geomorphological studies around Tapti-Vagher confluence district Jalgaon, Maharashtra. Geol, Surv. India Rec. V.113 pt 6 pp 99-109
- 15. Khan A.A. and Bajerjee, S.N. 1985: Geomorphological and geological studies of Quaternary sediments in collaboration with project Crumansonata in parts of the Narmada basin, Sehore, Dewas and Hoshangabad districts unpublished Geol. Surv. Ind. Progress Report.
- 16. Khan, A.A. (1990) Geomorphology of Narmada Valley Of Jabalpur_ Handia Section Unpublished G.S.I Note.
- Khan, A.A., and Rahate, D.N (1990-91 & 1991-92) Geological and Geomor -phological studies in parts of Narmada Basin) parts Hoshangabad and Narshingpur district, M.P. Geol. Surv. Of India Unpublished Progress Report
- Khan, A.A. (1991). Geological studies of Harda Barwaha basin in parts of Dewas, Sehore, Hoshangabad and Khandwa districts with the Aid of Satellite imagery and Remote Sensing Techniques, Geol. Surv. Ind, Rec. Vol; 126 pt-6
- 19. Khan, A.A, Rahate, D.N. (1991) Volcanic Ash from Quaternary deposits of Narmada Valley Central India. Proceed, of 78th session of Indian Sci. Cong. Association. (Abstract) pt. III pp 28-29
- 20. Khan, A. A, Rahate, D.N, Fahim, M & Banerjee, S.N.(1991) Evaluation of Quaternary terrace of lower Narmada valley, Districts Schore and Hoshangabad, Madhya Pradesh
- 21. Khan, A.A., Rahate, D.N; Shah; (1991) M.R. and Fahim; M. volcanic Ash from Quaternary deposits of Narmada valley central India. Indian science Congress 1991

- 22. Khan, A., &Sonakia, A. (1992). Quaternary deposits of Narmada with special reference to the hominid fossil. *Journal of the Geological Society of India, 39,* 147-154.
- 23. Khan, A.A, Rahate, D.N,, FAHIM, M. and Banarjee, S.N (1992) Evaluation of Geology and Geomorphology in Central Narmada Valley (Districts Schore and Hoshangabad, Madhya Pradesh) Scientific Publishers, Jodhpur.
- 24. Khan, A.A; Rahate D.N, Fahim, M. and Banarjee, S.N. (1992): Evaluation of Geology and Geomorphology in Central Narmada Valley (Districts Schore and Hoshangabad, Madhya Pradesh) Scientific Publishers, Jodhpur
- 25. Khan A.A. 1994 Geological and Geomorphological studies around Tapti-Vagher confluence district JaloaonMaharastra, Geol. Surv. Of India, Rev. Vol. 113 pt. 6 pp 99 109.
- Khan A.A. & Maria Aziz (2012)"Homo erectus On Unified Quaternary Platform in India and China a Correlation & Sequential Analysis". Status Published Research Scapes International Journal Vol I, Issue IV October -December 2012. (ISSN: 2277-7792).
- 27. Khan. A.A. & Aziz, Maria (2012) "Homo Erectus & Homo Sapiens In Spectrum Of Volcanic Ecology, Narmada Valley (M.P) India"Status Published Research Scapes International Multidisciplinary Journal Voll, Issue III July-September 2012
- 28. Khan, A.A. & Aziz; Maria (2013) Homo Erectus & Homo Sapien in Spectrum of Volcanic Ecology, Narmada valley (M.P.) India Research scapes vol. i issue -4 pp-161 -178
- 29. Khan A.A; & Joshi O.P. (2014) Geology Lithostratigraphy And Correlation of Basaltic Lava Flows of Parts of Western Madhay Pradesh With Special Reference To Megacryst Bearing Horizons And Geotechnical Aspects For Heavy Engineerging Structures
- 30. Khan, A.A & Aziz, Maria (2014-15) Tectonics Evolution, Quaternary Sedimentation, And The Paleoanthropological Record InThe Narmada Rift System (m.p.) Central India Khan*, A.A. Aziz, Maria International Journal for Research and Technological Sciences Vol. 1, Issue 1 (2014) 91-93 ISSN -2349-0667.
- 31. Khan A.A. & Aziz, Maria (2015) Quaternary Tectonics & Sedimentation in Narmada Rift Valley, With Special Reference to Garudeshwar and Bharuch Section Gujarat State India, ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 3, 430-457 430 Journal homepage: http://www.journalijar.com.
- 32. Khan, A.A. & Aziz; Maria (2014-2015). Quaternary volcanic Eruption Toba Ash fall its impact on Environment of late Pleistocene Hominines in Indian subcontinent with Special Reference to Narmada Valley. International journal of Research in Technological sciences vol.1, Issue 2 & Vol-2 issue-1 July -January 2014 January-June 2015 PP1-18 (ISSN-2349-0667)
- Khan, A.A. Aziz; Maria (2015) A critical analysis of statistical parameters of quaternary deposit of Hominid locality, Hathnora, Narmada valley, distirctsehore (M.P), India Jour. Of Agriculture, Foresty and Environment al Science Vol.IIssue.I July –Aug 2015 .I pp 17-29 ISSN 2454-2792.
- 34. Khan A.A. & Aziz, Maria (2016)Heavy Minerals assemblage of quaternary column of hominid locality Hathnora, Nnarmada valley district SehoreM.P India. ISSN 2320-5407 International Journal of Advanced Research (2016), Volume 4, Issue 7, 1748-1780 Journal homepage: http://www.journalijar.com.
- 35. Khan A.A. Maria Aziz. (2016) Quaternary tectonics & geomoprhic evolution of Narmada vally, its impact on tracing the remains of Homo erectus and other quaternary fauna & flora. ISSN 2320-5407 International Journal of Advanced Research (2016),
- Kaila, K.L.1988: Mapping the thickness of Deccan Trap flows from DSS studies and inferences about a hidden Mesozoic basin in Narmada-Tapti Region. Proc. workshop on Deccan Flood Basalts, December 1988. Geol. Surv. India. pp. 81-177.
- Mishra, P.S., Venkatraman, N.V., Roy, Abhinaba and Tiwari, M.P., 1999: Seismotectonics evaluation of Quaternary sedimentary basins yoked with Satpura horst. Gondwana Geological magazine, Special Vol. 4, pp. 81-
- 38. Nayak, P.N.(1990) Deep crustal configuration of central India .Geol. Surv.Ind spec. pub 28, pp 67-98
- 39. Roy, A.K. 1971 Geology and Ground Water Resources of Narmada Valley Bult of Geol
- 40. Ravi Shankar, 1987: History and status of geothermal exploration in the Central Region (M.P. & Maharashtra). Rao, Geol. Surv. Ind., 115, pt. 6, pp. 7-29.
- 41. Sonakia A. 1984 The Skull Cap of Early man and associated mammalian fauna from Narmada Valley alluvium Hoshangabad area. Madhya Pradesh, India Rec. GeolSurv. India Vol. 113, Pt. 6 pp 159-172