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Gas hydrates pose one of the major flow assurance problems in 

natural gas production, field processing, and distribution. In order to 

militate against the costly intervention and the downtime resulting 

from treating hydrates, it is expedient to have an effective strategy of 

predicting the conditions at which they are formed. Various methods 

have been used in time past to predict hydrate formation conditions; 

such includes the vapour-solid equilibrium ratio as proposed in the 

Katz gravity method, the John modified k-factor method, and 

empirical correlations. In this study, a systematical approach is used to 

carry out a comparative analysis of existing correlations for predicting 

hydrate formation conditions, and to determine the suitable method to 

apply for different gas specific gravities and operating scenarios. 

Comparing the experimental value of temperature and the values 

generated from each of the different correlation used, shows that the 

Towler and Mokhatab correlation (regarded herein as T&M) showed a 

very high level of accuracy for all range of specific gravity and at 

temperatures below 60
o
F. 

                  Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
With the ever increasing growth of oil and gas deep-water pipeline infrastructure, it is important to acknowledge, 

identify, and develop the critical relationships between gas hydrate and flow assurance. Gas hydrates pose one of the 

major flow assurance problems in natural gas production and processing, if not handled properly, they can become 

so big hence, and create operational difficulties that lead to undesirable and costly interruptions in gas production, 

field processing, and distribution [3]. 

 

Gas hydrates are ice-like structure formed form the chemical combination of natural gas (methane to iso-butane – 

regarded as “hydrate formers”) and water at a particular pressure and at temperatures above the freezing point of 

water. Contrary to general misconception, hydrates formation occurs not only in sweet gas but also in sour gas, 

common examples of other gases that are likely to form hydrates include: carbon dioxide, hydrogen sulphide, 

nitrogen, and oxygen gas. Hydrates can be classified into three basic structures based on the natural gas component 

contained in the hydrate former [9]; Structure I which allows the inclusion of both methane and ethane but not 

propane in its composition; Structure II which allows inclusion of propane and iso-butane in addition to methane and 

ethane and Structure H which accommodate higher quest molecules such as iso-pentane.  
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Hydrates are generally formed under conditions of low temperature and high pressure, conditions which are easily 

met in subsea operations, thus, there is a very high tendency for hydrate formation in natural gas production 

flowlines and deep water transmission pipelines. Some other conditions which promote hydrate formation are: 

natural gas at or below its “dew point” with free water present, temperatures below the hydrate formation 

temperature for the natural gas composition and pressure being considered, high operating pressures which tend 

increase the “hydrate formation temperature”, high velocity or agitation through piping or equipment e.g. across the 

choke [3]. The dew point is the temperature at which a particular stream of natural gas is in equilibrium with water 

vapour at a particular pressure, as such at temperatures below dew point the water vapour condenses to liquid. 

Hydrate formation temperature on the other hand is the temperature below which hydrates will start forming.  

 

Preventing hydrate formation and its eventual removal accounts for about 70% of deep water flow assurance 

challenges [6]; the remaining 30% deal with waxes, scale corrosion, and asphaltenes [5]. Hydrates plugging up a 

pipeline may cost the oil and gas industry in the excess of $1million in terms of Non-Productive Time (NPT), aside 

the loss incurred due to known production, huge hydrate plugs can take a lot of time (days, weeks or even months) 

to completely dissociate safely, in addition, it will also require complex and very expensive process like pigging for 

plug removal [2]. Surface facilities such as compressors, flowlines, and heat exchangers can become damaged due to 

the formation of hydrates, thus, in order to optimize the cost of operating a natural gas production and or processing 

system it is important to prevent hydrate formation as much as possible.  

 

The textbook method of combating the problem of hydrate formation is by ensuring that the conditions that would 

normally promote it are not met. Since the presence of water and the operating conditions in terms of temperature 

and pressure are two of the major elements in hydrate formation most prevention techniques are targeted towards 

them.  

 

However, the first step towards an effective prevention strategy is the knowledge of the hydrate formation 

conditions – temperature at a specific pressure or pressure at a given temperature. The most appropriate method for 

determining this is by experimentally measuring hydrate formation at the temperature or pressure and gas 

composition of interest [10]. 

 

However, since gases are very sensitive to temperature and pressure changes, it is  practically impossible to carry 

out an experiment for the limitless number of hydrate formation conditions for every distinct gas composition for 

which measurements are required, in addition, this experiments are time-consuming and expensive; hence, accurate 

prediction techniques for hydrate formation condition become desirable. 

 

Literature Review:- 

There are numerous methods available for predicting hydrate formation conditions. The popular ones are highlighted 

below: 

 

K-factor method 
Also referred to as the vapour-solid equilibrium ratio method, it was developed by Carson and Katz (1942), although 

additional data and charts have been reproduced since then. Prediction of hydrate formation temperature is carried 

out by using vapour-solid equilibrium constants. Katz et al reasoned that hydrates are the equivalent of solid 

solutions and are not mixed crystals. They postulated that hydrate formation conditions can be calculated from 

empirically determined vapour-solid equilibrium constants:  

   
  

  

                        

Where, 

Ks = vapour-solid equilibrium constant 

y = mole fraction the ith hydrocarbon component in the gas on a water-free basis 

xs = mole fraction of the ith hydrocarbon component in the solid on a water-free basis. 

The vapour-solid equilibrium constant is determined experimentally, for nitrogen and components heavier than 

butane, the equilibrium constant is taken as infinity. Theoretically, this assumption is not correct, but from a 

practical point of view it provides acceptable engineering results. 

In addition, the hydrate formation condition should satisfy:  
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This procedure is analogous to the dew point calculation for complex gas mixtures, K charts for methane, ethane, 

propane, i-butane, n-butane, carbon dioxide, hydrogen sulphide are provided in the appendix. It provides accurate 

and reliable results for sweet natural gases (the presence of non-hydrocarbon gases most especially carbon dioxide, 

hydrogen sulphide and nitrogen may cause inaccurate results) and has been proven to be appropriate up to about 

1000 psia.  However, the calculation is a rigorous iteration and the solid formation point will determine when 

equation 2 is satisfied.  

 

Gas gravity method:  
developed by Katz (1945), it can be used when the composition of the gas stream is not known [4]. Relative to the 

K-factor method, it provides an approximate and easy-to-use technique of predicting hydrate formation conditions. 

The plot presents a way of relating the hydrate formation pressure and temperature with gas gravity defined as the 

apparent molecular weight of a gas mixture divided by that of air which is 28.96 [1].  

 

The chart was generated from a limited amount of experimental data and a more substantial amount of calculations 

based on the K-value method. A statistical accuracy analysis reported by Sloan showed that his method is not 

accurate [11]. For the same gas gravity, different mixtures may lead to about 50% error in the predicted pressure. As 

a first step to predict hydrate formation temperature, an appropriate equation representing the Katz gravity chart was 

developed by Towler and Mokhatab (2005): 

                    (  )       ⌊        (  )⌋                               

T = 
0
F, P = psia 

 

Hammerschmidt Correlation 
Hammerschmidt (1934) developed the first and simplest correlation for the prediction of hydrate formation 

conditions.  

                                                                  

Transforming (4) to pressure explicit form: 

   
 

   
                                                               

With Temperature in 
o
F, and Pressure in psia. 

 

Makogon Correlation 
This simple hand calculation for predicting hydrate formation was developed by Yuri F. Makogon (1981). This was 

further modified by Ahmed A. Elgibaly & Ali M. Elkamel (1997). Makogon presented various expressions for the 

relationship between hydrate formation pressure and temperature in pure components and selected natural gas 

stream. All of the expressions follow the same form, and based on experimental evidence the following equation 

describes the relationship between hydrate formation pressure and temperature: 

                                               
Where,  

P = pressure (MPa), and T = Temperature (
o
C) 

β and k can be obtained graphically in a separate plot with gas specific gravity as the independent variable. 

However, constants β and k can be calculated as a function of gas gravity thus, 

                                               

                                             
Equation 6 applies to sweet natural gas and is only valid for temperatures within 0 – 25

o
C. 

Makogon’s original work was modified by Carroll (2000): 

                                           
Although not developed for sour gases, it is included in order to determine the degree of uncertainty when applied to 

sour gases [12]. It is a simple method, and can serve as a guide to make an initial approximation of hydrate 

formation conditions. 
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Berge correlation 

Berge (1986) developed temperature explicit equations which calculate the hydrate formation temperature for a 

given pressure at particular gas gravity. The equations are: 

                     

   

               

            
        

     
[               

 

          
        

                     ]                                                                            

                 

   

[                        

          
                    

          
]

[  (        
     

        
)]     

 

With temperature recorded in 
o
F and pressure in psia. 

 

Kobayashi’s Correlation 
Based on Katz’s gas gravity curves, Kobayashi et al (1987) developed a correlation to predict hydrate formation 

temperature given as equation 11 below: 

    [           

                 
 

                                
          

                               

          
           

                
                                 ] 

 

Table 1:-List of Constants in the Kobayashi Correlation 

Constant  Value Constant Value 

A1 2.7707715 X 10
-3

 A9 ─2.3729181 X 10
-4

 

A2 ─2.782238 X 10
-3

 A10 ─2.6840758 X 10
-5

 

A3 ─5.649288 X 10
-4

 A11 4.6610555 X10
3
 

A4 ─1.298593 X 10
-3

 A12 5.5542412 X 10
-4

 

A5 1.407119 X 10
-3

 A13 ─1.4727765 X 10
-5

 

A6 1.785744 X 10
-4

 A14 1.3938082 X 10
-5

 

A7 1.130284 X 10
-3

 A15 1.4885010 X 10
-6

 

A8 5.9728235 X 10
-4

   

 

Equation 4 is accurate for temperatures up to 62
o
F, for pressures up to 1500 psia, and gas gravity up to 0.9. Its 

accuracy becomes questionable above these conditions.   

 

Motiee correlation 

Mottie (1991) used a regression method to determine coefficients that would correlate temperature, pressure and 

specific gravity. The equations are: 

                         
                                        

                               
                        

 

Table 2:-Constants for Temperature Explicit Motiee Correlation (P in psia and T in 
o
F) 

Constant Value Constant Value 

b1 ─238.24469 b4 349.473877 

b2 78.99667 b5 ─150.854675 

b3 ─5.352544 b6 ─27.604065 
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Østergaard et al correlation:- 

Like many of the other hand calculation methods, the correlation developed by Østergaard et al (2000) is based on 

gas gravity. It is applicable for a range of fluids, from black oils to lean natural gas. It differs from many of the other 

available methods by the fact that it accounts for sour gas in CO2, and inert gas in N2. However, the use of this 

model is based on the knowledge of the molar ratio of hydrate to non-hydrate formers – this requires a full analysis 

of the gas mixture. The correlation was not utilized in this study. 

 

The most recent correlation that has been applied in the prediction of hydrate formation conditions is Bahadori and 

Vuthalaru (2009), however, because of the large number of input required and its mathematical complexity it was 

not made use of in this study. 

 

Methodology:- 

To predict hydrate formation, there is a need to perform hydrate modelling, of which the prediction can be gotten 

from hydrate formation linear plot as a function of both temperature and pressure of the gas composition. The 

methodology employed in this study was to develop a very interactive and easy-to-use computer tool for 

determining hydrate formation conditions. Correlations that were incorporated into the tool include Towler and 

Mokhatab, Hammerschmidt, Makogon, Berge, Kobayashi, and Motiee. The tool needs the required data for each of 

the different correlation as input; it either predicts temperature given pressure and specific gravity and pressure 

given temperature and specific gravity. In cases where the specific gravity of the gas is not known, the composition 

of the gas can be inputted into the tool.  

 

Data validation was done by using the R-squared method to compare the experimental results and calculated results. 

 

Results and Discussion:- 
Table 4:-Comparison of Results for 0.555 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

458 35 48.04 51.02 35.38 40.78 47.63 

600 40 51.95 55.10 40.07 44.84 40.75 

800 45 56.11 59.81 44.96 48.99 34.67 

 

Table 5:-Comparison of Results for 0.6 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

250 40 41.24 42.93 -68.16 36.07 68.85 

480 50 50.59 51.71 -33.03 46.05 46.48 

980 60 60.81 63.37 5.52 56.00 31.07 

2625 70 74.93 83.92 45.12 68.03 18.69 

 

Table 6:-Comparison of Results for 0.65 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

110 30 31.59 33.98 -93.88 27.51 116.21 

390 50 49.56 48.74 -31.44 47.44 52.66 

2050 70 73.11 78.21 44.72 68.67 21.14 

 

Table 7:-Comparison of Results for 0.7 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

120 35 34.77 34.83 -84.61 33.40 110.17 

340 50 49.43 46.87 -32.12 49.23 57.27 

690 60 59.38 57.34 5.73 58.74 37.82 

3400 75 81.82 90.34 59.81 76.45 16.50 
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Table 8:-Comparison of Results for 0.8 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

72 30 31.21 30.11 -97.45 32.03 153.24 

280 50 50.01 44.34 -35.48 52.01 64.59 

1700 70 74.98 74.14 46.22 72.79 23.27 

 

Table 9:-Comparison of Results for 0.9 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

110 40 40.18 33.98 -78.03 42.33 117.03 

230 50 50.25 41.93 -42.25 52.13 73.08 

2600 75 83.35 83.69 58.09 76.60 18.79 

 

Table 10:-Comparison of Result for 1.0 gravity gas 

Temperature explicit correlations (Temperature is given in 
o
F) 

Pressure (psia) Experimental  T & M Hammerschmidt Berge Motiee Kobayashi 

60 35 34.80 28.59 -97.91 34.83 172.65 

195 50 50.68 40.00 -48.53 50.00 81.11 

440 60 61.64 50.44 -5.37 58.83 49.20 

 

Comparing the experimental value of temperature and the values generated from each of the different correlation 

used: Berge and Kobayashi equation gave really erroneous results in most cases – as at the time of carrying out this 

research, the constants in Kobayashi’s correlation seem to be wrong. However, as an exception they gave very close 

results for gas of specific gravity 0.555. At specific gravity of 0.555, results obtained from Hammerschmidt 

correlation were different from the experimental value, but as specific gravity increases (from 0.6 to 0.8) and at 

temperatures below 60
o
F, the calculated hydrate formation temperatures were quite close to the experimentally 

obtained results.  

 

Results obtained from Motiee correlation showed a great amount of accuracy at high specific gravities and 

temperatures above 60
o
F, most especially at specific gravity of 1.0, for low specific gravity and temperatures below 

60
o
F results obtained with Motiee correlation were moderately accurate. 

 

The Towler and Mokhatab correlation (regarded herein as T & M) showed a very high level of accuracy for all 

range of specific gravity and at temperatures below 60
o
F. 

 

A summary of the data validation for each of the correlation is given below. 

 
Figure 1:-Cross plot of experimental and predicted values for 0.555 specific gravity gas 
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Figure 2:-Cross plot of experimental and predicted values for 0.6 specific gravity gas 

Figure 3:-Cross plot of experimental and predicted values for 0.65 specific gravity gas 

Figure 4: Cross plot of experimental and predicted values for 0.7 specific gravity gas 
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Figure 5:-Cross plot of experimental and predicted values for 0.8 specific gravity gas 

Figure 6:-Cross plot of experimental and predicted values for 0.9 specific gravity gas 

 
Figure 7:-Cross plot of experimental and predicted values for 0.9 specific gravity gas 
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Conclusion and Recommendation:- 
Prediction of hydrate formation condition using correlations is still a widely used practice. Accurate assessment of 

the risks based on accurate estimated predictions is essential in deep-water production pipeline conceptual design 

and operations. This study herein developed a simple computer modelling tool to aid estimation of the hydrate 

formation condition of a sample fluid using variety of hydrate prediction correlations. The tool uses the required 

data available as input for each known correlation to calculate and predict the hydrate formation temperature and 

pressure profile for any given input. 

 

Having determined the hydrate formation conditions of the natural gas stream, it is expedient to put strategies that 

will prevent or reduce the possibility of hydrate formation in place, the different methods for determining inhibitor 

injection rate should also be included in this tool as a further study.   
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