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The authors have been developing the guidance system of winged 

rocket using dynamically distributed genetic algorithm (DynDGA) for 

trajectory optimization. DynDGA is an advanced genetic algorithm 

(GA) which can enhance the variety of trajectories and maintain the 

trajectory search performance. However, DynDGA requires higher 

computing power. One of the simple solution for this problem is to 

reduce the number of individuals and generations, but it also degrades 

the solution search capability. For the implementation, authors need to 

make a tradeoff between these problems. Evolutionary algorithms 

(EAs) have proven successful in a vast number of static applicat ions 

and the number of papers produced in this area is growing rapidly. 

However, they also seem to be particularly suitable for dynamic and 

stochastic optimizat ion problems such as natural selection. The authors 

performed some simulations, and the results succeeded to reach the 

target point. However, at some initial conditions, the simulat ion could 

not reach near the target point. This paper describes the simulation 

results of DynDGA onboard guidance system for experimental winged 

rocket in dynamic environment. 
 

                 Copy Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
The Reusable Launch Vehicle (RLV) aimed at the low-cost space transportation system is an idea, which has been 

planned for more than half a century. However, RLVs have not been realized except the U.S. space shuttle, which 

has accomplished partial reuse. Kyushu Institute of Technology has been developing winged fully reusable space 

transportation system (as in Figure 1) and studying autonomous  guidance/control algorithm, composite fuel tank and 

aerodynamic design problems of RLVs
 1)

. Real-time guidance is one of the challenging tasks because the system 

needs to generate an optimized guided trajectory even under abort flight. The objective of th is study is to develop an 

algorithm to generate optimal trajectory without any pre-determined trajectory under any uncertainties. 
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Figure 1:- Reusable space transportation system. 

 

The authors have been developing the guidance system using dynamically distributed genetic algorithm (DynDGA 
2)

) for trajectory optimization. DynDGA is an advanced genetic algorithm (GA) which can enhance the variety of 

trajectories and maintain the trajectory search performance. The advantage of adapting DynDGA is obtaining no n-

divergent solutions, compared with conventional studies such as SQP methods 
3)

 and numerical methods. From the 

past studies, the basic algorithm for guidance using DynDGA has been developed. As a next step, the authors have 

been developing the guidance system for real time implementation. This paper describes the simulat ion results of 

DynDGA onboard guidance system for experimental winged rocket in dynamic environment.  

 

Dynamically Distributed Genetic Algori thm:- 

GA is a search heuristic algorithm that imitates the process of natural selection. Figure 2 shows the flowchart of GA. 

At first, GA creates an initial individual group and calculates their fitness. Fitness is the measure of how well the 

individual is fitted to the conditions. Next, the GA selects two individuals and their crossover is performed. Finally, 

GA calculates the individuals’ fitness which are generated by the crossover, and selects the individuals that survive 

to the next generation. Mutation is a process to change the gene values at random with a rate. It makes to escape 

from the local solution. This procedure is repeated many times, and the optimal result is obtained. 

 
Figure2:-Flowchart of GA  

 

An important feature of this search methodology is the diversity of indiv iduals. In a normal search for an  optimal 

solution, searching is fallen into a local solution. In this situation, escape from the local solution may be achieved by 

using mutation or the distributed genetic algorithm (DGA 
4)

). Figure 3 shows the schematic illustration of the DGA 

model. Using DGA, Indiv iduals are divided into sets of populations called islands, the search of an optimal solution 

is conducted in each island independently. For every generation, the DGA trades individuals between islands, which 

is called migration. This process makes it possible to maintain the variation of individuals and to enhance the search 

performance. 
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Figure 3:- Schemat ic illustration of DGA. 

 

DynDGA is an extension to DGA. Figure 3 shows the model of DynDGA. In DynDGA, the population is distributed 

into islands based on their dissimilarity, and the number of islands changes dynamically as the optimization 

proceeds. Hierarchic clustering method 
5)

 is employed to distribute the population into islands. The calculation of the 

dissimilarity is done using the combinatorial method. Among several approaches, the Ward’s method 
6)

 is used in 

this simulation. As a result of dynamic clustering, some similar islands are merged, and an island is divided into 

several islands if necessary. By repeating these procedures, some optimized flight trajectories are finally obtained in 

each island. 

 
Figure 3:- Schemat ic illustration of DynDGA. 

 

Onboard Guidance S ystem:- 

Winged rocket model 

Kyushu Institute of Technology has been developing reusable space transportation system called WIRES (Winged 

REusable Sounding rocket, as in Figure 4) since 2005. The objective of this vehicle is to reach 100km altitude and 

realize the sub-orbital space travel. In the return phase, this rocket glides to a target point using a fully autonomous 

guidance system based on DynDGA trajectory optimization.  

 

In this simulation, the rocket model is a subscale experimental winged rocket called “WIRES#015”. The missio n 

objective of this vehicle is to evaluate the real-time optimal trajectory generation using DynDGA, demonstrate the 

LOX-Methane propulsion system, reentry attitude control system by gas jet thrusters and recovery by two -stage 

parachute and airbags. Table 1 shows the specification of WIRES#015 
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Figure 4:- WIRES#015 

 

Table 1:- WIRES#015 specifications  

Length [m] 4.6 

Launch mass [kg] 1000 

Wing area [m2] 2.68 

 

DynDGA condition 

Table 2shows the DynDGA condition. Terminat ing generation depends on simulat ion types. 

 

Table 2:- DynDGA condition 

Number of indiv iduals  200 

Number of gene  24 

Number of characteristics  40 

Clustering border 4 × 108  

Differential equation solution 4
th

Runge-Kutta 

Crossover method 0.5-Blend crossover 

Selection method Elitist recombination 

Mutation 0.1 

Migration step 10 

Differential equation step 0.5 

 

Fitness 

The objective functionsare defined as written in eqs. (1) -(6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝑥 flight  is trajectory length. In short, the objective function is the min imization of the summation of flight time, 

the difference between the target point and final point in terms of down-range, cross-range, altitude, azimuth, and 

the flight duration when the obstacle area is violated. However, the obstacle parameter is set to zero because the 

simulation doesn’t have obstacle area. 

 

For calcu lating the fitness, the guidance system solves the differential equation of motion as in eqs. (7) -(19). 

𝐹 =
1000

𝑥e + 𝑥err + 𝜓err + 𝑥obs
 (1) 

𝑥e =
𝑥 flight

𝑥base
 (2) 

𝑥err = 10
 𝜉f − 𝜉t  +  𝜂f − 𝜂t  +  ℎf − ℎt  

𝑥base
 (3) 

𝜓err =
50 𝜓f − 𝜓t

 

𝜋
 (4) 

𝑥obs = 0 (5) 

𝑥base =  𝜉t − 𝜉i  +  𝜂t − 𝜂i  +  ℎt − ℎi   (6) 
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where 0a , na , nb and  are optimized variab les, 𝑒 is the user defined parameter and t is time. 

 

Other simulation condition 

Figure 5shows a flight area image. Table 3 shows the initial conditions of the first trajectory. Table 4shows the 

target conditions. 

 
Figure5:- Flight area 

 

Table 3:- In itial condition 

Velocity [m/s] 100 

Flight path angle [°] 0 

Azimuth  [°] 0 

Down range [m] 3000 

Cross range [m] 0 

Altitude [m] 5000 

 

Table 4:- Target condition 

Down range [m] 0 

Cross range [m] 0 

Altitude [m] 1000 

Azimuth  [°] 180 
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Figure 6shows the outline of simulation flow. In this paper, there are 4 simulat ion patterns. First simulation pattern 

is single shot guidance. In this pattern, the guidance system generates an optimal trajectory for every 5 seconds. 

However, there are no inheriting data to use in the next optimization. Second pattern is continuous optimizat ion. In 

this pattern, the guidance system continuously generates an optimal trajectory during the simulation, and it updates 

the optimal solution for every 100 generations. Third pattern is same as second pattern. In this pattern the guidance 

system updates the optimal solution for every 800 generations. Final pattern is also similar to second pattern. In this 

pattern the guidance system updates the optimal solution for every 10 generations. 

 
Figure 6:- Simulation pattern 

Simulation Result:- 

Each simulat ion patterns were able to reach near the target position. Table 5 shows the outline of the simulation 

results. As the interval between the output solutionsdecreased, the total simulation time also decreasedin the 

continuous simulation. However, the error of azimuth increases. From the fitness profile, continuous simulation has 

better fitness than single shot simulation.  

 

In the real time implementation, the guidance system needs  to set the interval not for the off springgeneration but for 

calculation time. Th is is because the calculation time depends on the initial conditions. As a result, the interval time 

is based on the calculation time which is calculating the 100 generations . 

 

Table 5:- Out line of simulat ion result 

 Calculation time  Error o f distance Error o f azimuth 

 [s] [m] [°] 

Single shot 5167 0.18 6.42 

Interval of 100 generation 1082 0.23 39.6 

Interval of 800 generation 7897 0.01 16.9 

Interval of 10 generation  243 104 76.3 

 

Single shot generation 

The simulation result is shown in Figure 7. Th is showsall the optimal trajectories produced. The symbol “*” is the 

initial position at which the trajectory is generated. Each trajectory could reach near the target point. Figure 8 shows 
the fitness value profile. Each fitness starts with a low value.  
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Figure 7:- Trajectory of single shot simulation Figure 8:- Fitness profile of single shot simulation  

 

Interval of 800 generation 

The simulat ion result is shown in Figure 9. Th is shows all the optimal trajectories produced. The symbol “*” is the 

initial position at which the trajectory is generated. Each trajectory could reach near the target point,however the 

final trajectory’s azimuth has larger error. Figure 10 shows the fitness value profile. Each fitness value starts with a 

higher fitness value than single shot pattern, however each fitness value terminates with a lower fitness value than 

single shot pattern. 

  

Figure 9:- Trajectory of continuous generation 

(Interval of 800 generation) 

Figure10:- Fitness profile of continuous generation 

(Interval of 800 generation) 

 

Interval of 100 generations 

The simulation result is shown in Figure 11. This shows all the optimal trajectories produced. The symbol “*” is the 

initial position at which the trajectory is generated. Each trajectory could reach near the target point. However, the 

final trajectory’s azimuth has larger error. Figure 12 shows the fitness value profile. Each fitness value starts with a 

higher fitness value than single shot pattern. The final fitness value is less than the single shot pattern. 
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Figure11:- Trajectory of continuous generation 

(Interval of 100 generation) 

Figure12:- Fitness profile of continuous generation 

(Interval of 100 generation) 

 

Interval of 10 generations 

The simulation result is shown in Figure 13. This shows all the optimal trajectories produced. The symbol “*” is the 

initial position at which the trajectory is generated.  Earlier trajectory could not reach near the target point . However, 

final trajectory could reach near the target. Figure 14 shows the fitness value profile. Each fitness value starts with a 

higher value than single shot pattern. The final fitness value is less than the single shot pattern. 

  

Figure13:- Trajectory of continuous generation 

(Interval of 10 generation) 

Figure14:- Fitness profile of continuous generation 

(Interval of 10 generation) 

 

Conclusion:- 
This paper describes the simulat ion results of DynDGA onboard guidance system for experimental winged rocket in 

dynamic environment. From the results, the continuous generation type which has the interval set at 100 generation 

appears to be optimal than the other generation types. In future, authors continue the simulat ion for real time 

implementation and validate on the experimental winged rocket.  
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