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Differential equations have solutions which contains a number of unknown 

integration constants that can be found by applying appropriate boundary 

conditions. This rather tedious procedure was overcome by the application of 

Laplace transform techniques, where the unknown integration constants were 

evaluated during the process of solution by use of straightforward algebraic 

equations. In this study, the Laplace transform technique was used to solve 

the diffusivity equation of fluid flow. The technique was used to extract the 

kinematic viscosity, and then the dynamic viscosity was obtained. The 

Prandtl number of the fluid was used to generate the time domain of the 

motion in the container. The shear viscosity of water at a temperature of 

293.15 K was determined to be 1.0006 cp, and this compares with the value 

obtainable from standard experimental procedure. From the analysis in this 

study, it is confirmed that the viscosity of water is a strong function of 

temperature.  
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1.0 INTRODUCTION 

The general property equation is one of the most widely applicable laws in nature. Many real time problems can be 

solved by applying this law either alone or by combining heat, mass and momentum equations. The most 

generalized property equation in differential form is widely given as in equation 1, (Brodkey and Hersey, 1989): 
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For an incompressible fluid with constant transport coefficient, no generation, and transient flow condition, equation 

(1) turns into equation (2): 
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For the case of momentum transfer, equation (2) turns into equation (3): 
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Equation (3) is an example of a partial differential equation whose solution can be solved by first obtaining the 

general form of the expression, u. This general form will contain a number of integration constants, whose values 

can be found by applying the appropriate boundary conditions. 

  Laplace transform provides the engineer and scientist with a more systematic way of solving such equations by 

converting the differential equations into an algebraic expression and incorporating the boundary conditions right 

from the beginning of the solution process. Such equations abound in practice and include, but not limited to, flow 

of crude oil through porous and permeable formations, diffusion of species in process flow, vibration of materials 

while drilling for crude oil and molecular diffusion of the motions of fluids. 

The shear viscosity is a measure of the shear stress induced by an applied velocity gradient. When molecules are in 

an applied force field or in thermal energy fields, they experience disturbances from such fields and thus respond to 

the effects of the fields. Transport coefficients, e.g. shear viscosity, are defined in terms of the response of the 

system to these perturbations, ( Danielewicz and Gyulass, 2012 ) . 

1.1 AIM/ OBJECTIVE 

The objective of this study is to solve the momentum equation for the viscosity of fluids by the application of 

Laplace transform techniques, and to subsequently devise a scheme for computation of viscosity at any given 

temperature. 

1.2 STATEMENT OF THE PROBLEM 

To evaluate the shear viscosity of fluids, the velocity of motion and a useful time domain are usually needed. An 

inappropriate value of the velocity will yield inaccurate results. To apply the Laplace transform technique on 

differential equations, a useful set of boundary or initial conditions are needed. The momentum equation is a 

complicated one because the velocity vector is composed of three (3) components in the x, y and z directions. Each 

component can be treated as a scalar quantity. The Laplace transform usually involves integration from zero to 

infinity, so it is needful to ask such questions as: 

 How can an accurate value of the velocity of motion in a control volume be obtained? 

 What is the appropriate length scale for the transfer of momentum in the volume? 

 What sets of boundary or initial condition will yield accurate result? 

These questions and more issues will be attempted to be answered in this study.  

1.3 SIGNIFICANCE OF STUDY AND SCOPE 

i. This study presents a new scheme which can be easily used to extract the shear viscosity of a fluid in its 

pure state. 

ii. It shows how the viscosity of fluids can be obtained from knowledge of the general balance equation using 

Laplace transform technique. 

iii. It is useful in the design of fluid flow through conduits. 

2.0 LITERATURE  

There are several methods for calculating shear viscosity. In literature, the most prominently employed ones are the 

relaxation time theory, (Eyring et al, 1941), (Reif, 1965) and the Chapman-Engskon method, de Groot et al (1980). 
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 In the relaxation time theory, the flow is pictured as taking place by a unit-molecular process whereby the 

application of a shearing force cause a single molecule to squeeze past its neighbouring particles and move into an 

unoccupied hole. The theory employs the basic Newton`s shearing equation for liquids, and substitutes for a derived 

velocity of the molecules. It has been widely used because of its simplicity to evaluate viscosity for both hadronic 

and partonic matter according to (Danielewicz and Gyulassy, 2012). 

The viscosity of a system can also be calculated from simulations using two standard methods, (Zwanzig, 1965): 

 Linear-response-based nonequilibrium molecular dynamics (NEMD) approach, where transport coefficient 

is related to an imposed gradient or driving force, F,  and a resulting flux, J: 

eFJ   . . . . . . . . . 2 

Where  transport coefficient. 

 Green-Kubo methods, using equilibrium molecular dynamics (EMD), where transport coefficient is related 

to the time integral of a correlation function. 

 According to Evans and Morris, (1998) one of the simplest exact expressions for viscosity is that of the Green-

Kubo relations for the linear shear viscosity. The use of the equation requires knowledge and application of the 

Molecular Dynamics Simulation. 

In their work on transport phenomena, Brodkey and Hershey, (1989) utilized the Laplace transform technique to 

provide solution to the heat transfer problem. A similar method has been adopted here in this work. They applied 

Laplace transform to the general balance equation along with the boundary conditions thereby transforming the 

partial differential equation into an ordinary differential equation. By use of appropriate boundary conditions, they 

evaluated the constants in the differential equation and applied the inverse transform of the solution obtained. 

Further mathematical manipulations were used to obtain solutions in real time domain.  

3.0 METHODOLOGY 

The general property balance equation has been used to obtain a one dimensional transfer in the x-direction. There 

was no generation term and the flow was allowed to occur as a transient state flow in a cubic container of uniform 

dimensions. The velocities at the boundaries of the container were taken as equal to zero due to the no slip 

condition. The application of the Laplace transforms technique both to the boundary conditions and the general 

property equation that was derived resulted to equations of the form of Bessel functions. This gave rise to a solution 

in the Laplace domain.  

The application of Laplace inverse to this solution generated the velocity distribution which contained the 

complimentary error functions. Further application of the boundary condition reduced the velocity distribution to a 

form where the diffusivity was obtained. 

The computation of results in this study has been done by use of the Excel Spreadsheet. The spreadsheet calculates 

the dynamic viscosity of fluids by incorporating appropriate fluid data like the density, molecular weight, specific 

heat capacity, thermal conductivity, and Prandtl number. 
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4.0 ANALYSIS AND THEORY 

4.1    THEORY 

The viscosity of fluids is a function of time and velocity of flow as given by the general property equation. The 

shear viscosity can be extracted from this equation by applying the Laplace transform technique and obtaining 

appropriate velocity of motion of the fluids at corresponding time scale. As a result of the complexities in real time 

flow, the use of dimensionless numbers can prove to be important in determining the velocity of flow. 

The model for the diffusivity of fluid has been given as in equation 1: 
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For one dimensional momentum transfer in the x direction with no generation and transient flow, equation 2 

becomes equation 3 as given below: 
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 = kinematic viscosity of the fluid, which can be given as below: 




   . . . . . . . . . . . 4 

4.2 PHYSICAL MODEL 

The flow of an element of fluid in a cubic container can be given as in fig 1. 

 

Fig 1: fluid flow through cubic container 

The appropriate boundary conditions are stated as: 
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0),0(  txu  . . . . . . . . . . 5a 

0),(  tLxu  . . . . . . . . . . 5b 
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The application of Laplace transform to equation 3 is: 
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Invoking the boundary conditions of equations 5 and rearranging gives: 
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s = Laplace variable 

Equation 7 which is a form of Bessel function has a solution of the form: 
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Differentiation of equation 9 with respect to x gives the form below: 

SinhxCsCoshxCs
dx
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From the boundary condition,   0,0 t
dx

du
 

0Sinhx , 1Coshx ,  thus 01 C  
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Equation 9 becomes: 
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Using the condition that 0),(  tLxu , the second constant can be obtained as: 
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Upon substitution, the Laplace domain solution becomes: 
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4.3 TIME DOMAIN SOLUTION 

)( sxCosh is a hyperbolic function. For such function it holds that 
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Therefore, equation 11 becomes: 
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Mathematical arrangements yield the simplified form of the solution as: 
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The Laplace inverse of equation 14 can be taken as: 
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From standard inverse integral table for exponential functions, (EqWorld, http://eqworld.ipmnet.ry): 
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The equation for the velocity distribution becomes: 
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An alternative form of equation 16 can be given as in equation 17: 
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4.4 LENGTH OF CONTAINER 

The cubic box has a mass of fluid, m kg, flowing through it. On a molecular basis the mass of the fluid can be given 

as: 

nMm   

AN

N
n   

N is the number of molecules in the box and AN is the Avogadro`s number which equals 

molmoleculesX /10023.6 23
 

Arithmetic manipulation gives the length of the box as: 

3
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L


  . . . . . . . . . . 18 

For one mole of fluid in the box, ANN   

3



M
L   . . . . . . . . . . 19 

M is the molecular weight of the fluid and  is the density 
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From equation 17 and the application of the boundary condition 0),0(  txu ,  
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Equation 20 simplifies to equation 21: 
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From the table of error function, the argument that satisfies this condition lies between 0.4 and 0.5. Interpolation of 

data gives 

4795.05.0

5.0
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Therefore the argument of the error function which satisfies equation 23 is: 
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, which can be approximated as given below: 
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4.5 TIME OF MOTION 

The time taken for a fluid component to travel from one face of the box to the other is given as: 

u

L
t   . . . . . . . . . . . 25 

To obtain the average velocity of flow through the container, combination of momentum transfer and heat transfer is 

important. The equation of flow through the container (no generation and for incompressible flow), for the 

respective transport is: 
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From the Prandtl number, the velocity of flow can be obtained as: 

PrN
Lc

k
u

p
  . . . . . . .. . .  .28 

k thermal conductivity of fluid at given temperature 

pc specific heat capacity of fluid 

PrN Prandtl number (dimensionless) 

4.6 SCHEME FOR EXTRACTION OF SHEAR VISCOSITY 

 Specify fluid temperature 

 With specified temperature read up fluid data: k , pc , PrN  

 With fluid data calculate the average velocity through the container 

 With known velocity get time of flow using equation 25 

 Get the viscosity by employing equation 24 

4.7 RESULTS 

The viscosity of water at 293.15 K is determined in this section. At this temperature, the density is
3998 Kgm . The 

result can be compared with experimental value of spas 001002.0 . 

The computation is shown in the excel spreadsheet below: 

DATA READ     

DATA 

SPECIFY     

k= 0.603 W/(mK) T= 20 deg C 

Cp= 4182 J/(KgK) M= 0.018 Kg/mol 

Npr= 6.94 - L= 0.026223 M 

ρ= 998.2336361 Kg/m3       

DATA COMPUTE     

   
u= 3.82279E-05 m/s       

t= 685.9613544 S       

υ= 1.00245E-06 m2/s       

μ= 0.001000674 Kg/(ms)       

Symbols used in the spreadsheet are defined in the nomenclature section. 
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4.8 DISCUSSION 

The result obtained from section 4.7 compares with that from experimental value of 0.001002 Pas-s at C20 . 

Details of the viscosity of water at different temperatures are given in table 1: 

Table 1: Comparison of viscosity of Water at different temperature 

Temperature, deg C Experimental viscosity, cp Model viscosity, cp 

0 1.787 1.752 

5 1.519 1.513 

10 1.307 1.299 

20 1.002 1.0006 

30 0.7975 0.8002 

40 0.652 0.6533 

 

The excellent accuracy in the result is because the Prandtl number has been used. This number was obtained from 

viscosity data. 

The viscosity of liquids has been said to generally decrease with increase in Temperature. An increase in 

temperature reduces density and causes an increase in velocity which invariably leads to reduction in viscosity of the 

liquid. The expression for extracting shear viscosity in this study produces results that confirm this behaviour of 

liquids.  When the temperature increases the volume will also increase but the density will decrease, thus making the 

number of molecules constant. The increased velocity, due to an increase in temperature, will thus lead to a 

reduction in viscosity, thereby satisfying the behaviour of liquids. This can be observed as given in table 1. 

5.0 CONCLUSIONS 

The viscosity of water has been extracted from the general property balance equation in this study. This extraction 

has been made possible by the application of Laplace transform technique. From the study carried out, it is 

confirmed that the viscosity of liquids is a strong function of temperature. 

NORMENCLATURES 

L= zyx LLL  = length of container, m 

N = the number of molecules in the system 

L  Density of molecule, 
3/ mkg  

K= thermal conductivity 

Npr= Prandtl number 

T= temperature of flow 

U=flow velocity 

t-= time of flow 
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V Volume of system, 
3m  

 = Dynamic viscosity of liquid, secpas  

U  = velocity of particles in the system, sm /  
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