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We Consider the Constant Shape Bi-Weibull distribution which has 

been extensively used in the testing and reliability studies of the 

strength of materials. Studies have been done vigorously in the 

literature to determine the best method in estimating its Survival 

function. In this paper, we examine the performance of Maximum 

Likelihood Estimator (MLE) and Bayesian Estimator using Extension 

of Jeffreys‟ Prior Information with three Loss functions, namely, the 

Linear Exponential (LINEX) Loss, General Entropy Loss, and Square 

Error Loss for estimating Survival Function under the Constant Shape 

Bi-Weibull Failure time distribution. The results show that Bayesian 

Estimator using Extension of Jeffreys‟ Prior under Linear Exponential 
(LINEX) Loss function in most cases gives the smallest Mean Square 

Error and Absolute Bias of Survival function S(t) for the given values 

of Extension of Jeffreys‟ Prior. An illustrative example is also 

provided to explain the concepts. 
 

                                Copy Right, IJAR, 2016,. All rights reserved.

…………………………………………………………………………………………………….... 

Introduction:-  
As a result of the adaptability in fitting time-to-failure of a very widespread multiplicity to multifaceted 

mechanisms, the Weibull distribution has assumed the centre stage especially in the field of life-testing and 

reliability/survival analysis. It has shown to be very useful for modeling and analyzing life time data in medical, 

biological and engineering sciences, Lawless [17]. Much of the attractiveness of the Weibull distribution is due to 
the wide variety of shapes it can assume by altering its parameters. According to [19], “A data sample is said to be 

censored when, either by accident or design, the value of the variables under investigation is unobserved for some of 

the items in the sample.” Maximum Likelihood Estimator (MLE) is quiet efficient and very popular both in 

literature and practice. Bayesian approach has been employed for estimating parameters. Some researchers have 

made comparisons of MLE and that of the Bayesian approach in estimating the survival function and the parameters 

of the Weibull distribution. According to [20] determined the Bayes estimates of the reliability function and the 

hazard rate of the Weibull failure time distribution by employing squared error loss function, [1] studied the 

approximate Bayesian estimates for the Weibull reliability function and hazard rate from censored data by 

employing a new method that has the potential of reducing the number of terms in Lindley procedure, and [5] 

conducted a study on Bayesian survival estimator for Weibull distribution with censored data using squared error 

loss function with Jeffreys prior amongst others. [10] applied Bayesian estimation, for the two-parameter Weibull 
distribution using extension of Jeffreys‟ prior information with three loss functions, [21] considered Bayesian 

estimation and prediction for Weibull model with progressive censoring. Other recent papers employing different 
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models can be seen in [6], [22], and [7, 8]. Similar work can be seen in [11], [23], [2], [3], [9], [18], and a work on 

generalized exponential distribution: Bayesian estimations, [12] which are somehow similar to the Weibull 

distribution. 

 

In recent, work we developed Functional Relationship between Brier Score and Area Under the Constant Shape Bi-

Weibull ROC Curve [16], Confidence Intervals Estimation for ROC Curve, AUC and Brier Score under the 
Constant Shape Bi-Weibull Distribution [13], Asymmetric and Symmetric Properties of Constant Shape Bi-Weibull 

ROC Curve Described by Kullback-Leibler Divergences [14],  and Bayesian Estimation of Parameters under the 

Constant Shape Bi-Weibull Distribution Using Extension of Jeffreys‟ Prior Information with Three Loss 

Functions[15]. 

 

Now the main objective of this paper is to compare the traditional Maximum Likelihood Estimation of the Survival 

function of the Constant Shape Bi-Weibull distribution with its Bayesian counterpart using Extension of Jeffreys‟ 

Prior Information obtained from Lindley‟s approximation procedure with three Loss Functions.  

 

In this paper, the Bayesian Estimation of Survival function under the Constant Shape Bi-Weibull Distribution is 

studied by Using Extension of Jeffreys‟ Prior Information with Three Loss Functions. This paper is organized as 

follows: In Section 2, estimation of Survival function under MLE, Jeffreys‟ Prior Information and Extension of 
Jeffreys‟ Prior Information with Three Loss functions is discussed. Section 3, provides simulation study for 

proposed theory. In Section 4, the proposed theory is validated by using real data. Finally conclusions are provided 

in Section 5. 

 

Materials and Methods:- 

Let t1, t2 … tn be a random sample of size n with respect to the Constant Shape Bi-Weibull distribution, with σ and β 

as the parameters, where σ is the scale parameter and β is the shape parameter. The probability density function 

(𝑝𝑑𝑓), cumulative distribution function (𝑐𝑑𝑓) and survival function are given, respectively, as 

 

𝑓 𝑡;𝜍,𝛽 =
𝛽

𝜍
𝑡𝛽−1𝑒

− 
𝑡𝛽

𝜍
  

.                                                       (1) 

 

The Cumulative distribution function (CDF) is 

𝐹 𝑡;𝜍,𝛽 = 1 − 𝑒
− 

𝑡𝛽

𝜍
    .

                                                           (2)         

 

The Survival function is 

𝑆 𝑡;𝜍,𝛽 = 𝑒
− 

𝑡𝛽

𝜍
    .                                                                                               

(3)           

 

 

2.1 Maximum Likelihood Estimation of Constant Shape Bi-Weibull Distribution:- 

Since (t1, t2 … tn ) is the set of 𝑛 random lifetimes from the Constant Shape Bi-Weibull distribution, with σ and β as 

the parameters, where σ is the scale parameter and β is the shape parameter. 

 

The likelihood function of the pdf is 

𝐿 𝑡𝑖 ,𝜍,𝛽 =  
𝛽

𝜍

𝑛

𝑖=1

𝑡𝑖
𝛽−1𝑒

− 
𝑡𝑖
𝛽

𝜍
 
.                                                 (4) 

 

The log-likelihood function is 

𝑙𝑛𝐿 = 𝑛𝑙𝑛𝛽 +  𝛽 − 1   𝑙𝑛𝑡𝑖

𝑚

𝑖=1

 − 𝑛𝑙𝑛𝜍 −
1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

.                        (5) 

 
By differentiating the equation (5) with respect to σ and β and equating to zero, we get 
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𝜕𝑙𝑛𝐿

𝜕𝜍
= −

𝑛

𝜍
+
 𝑡𝑖

𝛽𝑛
𝑖=1

𝜍2
= 0 .                                                        (6) 

 

𝜕𝑙𝑛𝐿

𝜕𝛽
=
𝑛

𝛽
+   𝑙𝑛𝑡𝑖

𝑛

𝑖=1

 −
1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

𝑙𝑛𝑡𝑖  = 0 .                            (7) 

 

From equation (6), we get 

𝜍 =
1

𝑛
   𝑡𝑖

𝛽

𝑛

𝑖=1

   .                                                                     (8) 

 

First we shall find 𝜷  and so that 𝝈  can be determined. So that we propose to find 𝜷  by using Newton-Raphson 

method as given below. Let 𝑓 𝜷  be the same as equation (6) and taking the first differential of 𝑓 𝜷 , we have 

 

𝑓′ 𝛽 = − 
𝑛

𝛽2
 −

1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

 𝑙𝑛𝑡𝑖   
2    .                                     (9) 

 

By substituting equation (8) into equation (7), we call 𝑓 𝜷  as 

 

𝑓(𝛽) =
𝑛

𝛽
+   𝑙𝑛𝑡𝑖

𝑛

𝑖=1

 −
 𝑡𝑖

𝛽𝑛
𝑖=1 𝑙𝑛𝑡𝑖  

1
𝑛    𝑡𝑖

𝛽𝑛
𝑖=1

   .                              (10) 

 

Substituting equation (8) into equation (9), we obtain 

 

𝑓′ 𝛽 = − 
𝑛

𝛽2
+
 𝑡𝑖

𝛽𝑛
𝑖=1  𝑙𝑛𝑡𝑖   

2

1
𝑛    𝑡𝑖

𝛽𝑛
𝑖=1

    .                                   (11) 

 

Therefore, 𝜷  is obtained from the equation below by carefully choosing an initial value β as 𝜷𝒊 and iterating the 

process till it converges: 

 

𝛽𝑖+1 = 𝛽𝑖 −

𝑛
𝛽 +   𝑙𝑛𝑡𝑖

𝑛
𝑖=1  −

 𝑡𝑖
𝛽𝑛

𝑖=1 𝑙𝑛𝑡𝑖  
1
𝑛    𝑡𝑖

𝛽𝑛
𝑖=1

− 
𝑛
𝛽2 +

 𝑡𝑖
𝛽𝑛

𝑖=1  𝑙𝑛𝑡𝑖   
2

1
𝑛

   𝑡𝑖
𝛽𝑛

𝑖=1

 

 .                      (12)  

 

The estimate of the survival function of the Constant Shape Bi-Weibull distribution under MLE is  

𝑆  𝑡 = 𝑒
− 
𝑡𝛽
 

𝜍 
    .        

                                                     (13) 

 

2.2 Bayesian Estimation of Survival Function for Constant Shape Bi-Weibull Distribution:- 

Bayesian Estimation approach has received a lot of attention in recent times for analyzing Failure Time data, which 

has mostly been proposed as an alternative to that of the traditional methods. Bayesian Estimation approach makes 

use of once prior knowledge about the parameters as well as the available data. When once prior knowledge about 

the parameter is not available, it is possible to make use of the noninformative prior in Bayesian analysis. Since we 

have no knowledge on the parameters, we seek to use the Extension of Jeffreys‟ Prior Information, where Jeffreys‟ 

Prior is the square root of the determinant of the Fisher information. According to [4], the Extension of Jeffreys‟ 

prior is obtained by taking u θ ∝  I θ  c , cϵR+, so that 

𝑢 𝜃 ∝  
1

𝜃
 

2𝑐

. 
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Thus, 

𝑢 𝜍,𝛽 ∝  
1

𝜍𝛽
 

2𝑐

.  

 

Given a sample t= (t1, t2, …, tn) from the likelihood function of the pdf (1) is 

 

𝐿 𝑡𝑖 | 𝜍,𝛽 =  
𝛽

𝜍

𝑛

𝑖=1

𝑡𝑖
𝛽−1𝑒

− 
𝑡𝑖
𝛽

𝜍
 
 

 

With Bayes theorem, the joint posterior distribution of the parameters σ and β is 

 

π∗(σ, β|t) ∝ L t| σ, β u σ, β  
 

𝐿 𝑡𝑖 | 𝜍,𝛽 =
𝑘

 𝜍𝛽 2𝑐
 

𝛽

𝜍

𝑛

𝑖=1

𝑡𝑖
𝛽−1𝑒

− 
𝑡𝑖
𝛽

𝜍
 
 , 

 

where k is the normalizing constant that makes 𝛑∗ a proper pdf. 

 

2.2.1 Asymmetric Loss Functions:- 
Here we consider two Asymmetric Loss Functions namely Linear Exponential Loss Function (LINEX) and General 

Entropy Loss Function. 

 

 2.2.1(a) Linear Exponential Loss Function (LINEX):- 

The LINEX Loss Function is under the assumption that the minimal loss occurs at θ = θ and is expressed as 

 

L θ − θ ∝ exp  a θ − θ  − a θ − θ − 1 

 

where 𝛉  is an estimation of θ and a ≠ 0. The sign and magnitude of the shape parameter „a‟ represents the direction 

and degree of symmetry, respectively. There is overestimation if a > 0 and underestimation if a < 0 but when  

𝐚 ≅ 0 , the LINEX Loss Function is approximately the Squared Error Loss Function. The posterior expectation of 

the LINEX Loss Function, according to [10], is 

 

𝐸𝜃𝐿 𝜃 − 𝜃 ∝ 𝑒𝑥𝑝 𝑎𝜃  𝐸𝜃(exp −𝑎𝜃 ) − 𝑎 𝜃 − 𝐸𝜃(𝜃) − 1 .             (14) 

 

The Bayes Estimator of θ, represented by 𝜽 𝑩𝑳 under LINEX Loss Function, is the value of 𝛉  which minimizes 
equation (14) and is given as 

 

𝜃 𝐵𝐿 = −
1

𝑎
𝑙𝑛 𝐸𝜃 𝑒𝑥𝑝 −𝑎𝜃  . 

Provided 𝐸𝜃(𝑒𝑥𝑝 −𝑎𝜃  exists and is finite.  

 

The posterior density function of the survival function under LINEX loss is given as  

 

 𝑆 (𝑡)𝐵𝐿 = 𝐸  𝑒𝑥𝑝 −𝑎𝑒
− 
𝑡𝑖
𝛽

𝜍
 
 |𝑡𝑖 =

 𝑒𝑥𝑝  −𝑎𝑒
− 
𝑡𝑖
𝛽

𝜍
 
 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽

 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽
 .                 (15) 

 

From (15), it can be observed that ratio of integrals which cannot be solved analytically and for that we employ 

Lindley‟s approximation procedure to estimate the parameters. Lindley considered an approximation for the ratio of 

integrals for evaluating the posterior expectation of an arbitrary function  𝒖  𝜽  as 
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𝐸 𝑢 𝜃  𝑥 =
 𝑢 𝜃 𝑣 𝜃  𝐿 𝜃  𝑑𝜃

 𝑣(𝜃) 𝐿 𝜃  𝑑𝜃
 

 

According to [20], Lindley‟s expansion can be approximated asymptotically by 

 

𝜃 = 𝑢 +
1

2
 𝑢11𝛿11 + 𝑢22𝛿22 + 𝑢1𝜌1𝛿11 + 𝑢2𝜌2𝛿22 +

1

2
 𝐿30𝑢1𝛿

2
11

+ 𝐿03𝑢2𝛿
2

22
  ,       (16) 

 

where L is the log-likelihood function in equation (5), 

 

𝑢 = 𝑒𝑥𝑝  −𝑎𝑒
− 
𝑡𝑖
𝛽

𝜍
 
 , 

 

𝑞 = 𝑒
− 
𝑡𝑖
𝛽

𝜍
 
, 

 

𝑢1 =
𝜕𝑢

𝜕𝜍
= 𝑎𝑢𝑞 

𝑡𝑖
𝛽

𝜍2
 , 

 

 𝑢11 =
𝜕2𝑢

𝜕2𝜍
= 𝑢𝑞  

 𝑎𝑡𝑖
𝛽  

2
𝑞−𝑎 𝑡𝑖

𝛽  
2

𝜍4 +
2𝑎𝑡𝑖

𝛽

𝜍3
 , 

 

𝑢2 =
𝜕𝑢

𝜕𝛽
=
𝑎𝑢𝑞𝑡𝑖

𝛽 𝑙𝑛𝑡𝑖
𝜍

, 

 𝑢22 =
𝜕2𝑢

𝜕2𝛽
= 𝑢𝑞  

 𝑙𝑛𝑡𝑖 
2𝑎𝑡𝑖

𝛽

𝜍
+  

𝑎𝑙𝑛𝑡𝑖𝑡𝑖
𝛽

𝜍
 

2

 , 

 

𝜌 𝜍,𝛽 = −𝑙𝑛 𝜍2𝑐 − 𝑙𝑛(𝛽2𝑐), 
 

𝜌1 =
𝜕𝜌

𝜕𝜍
= −

1

𝜍2𝑐
, 𝜌2 =

𝜕𝜌

𝜕𝛽
= −

1

𝛽2𝑐
,  

 

𝛿11 =  −𝐿20 
−1 ,𝛿22 =  −𝐿02 

−1 , 
 

𝐿02 = − 
𝑛

𝛽2
 −

1

𝜍
 𝑡𝑖

𝛽

𝑛

𝑖=1

 𝑙𝑛𝑡𝑖   
2 ,  

 

𝐿03 = 2  
𝑛

𝛽3
 −

1

𝜍
 𝑡𝑖

𝛽𝑛
𝑖=1  𝑙𝑛𝑡𝑖    

3,  

 

𝐿20 =
𝑛

𝜍2
− 2

 𝑡𝑖
𝛽𝑛

𝑖=1

𝜍3
, 𝑎𝑛𝑑 𝐿30 = −2

𝑛

𝜍3
+ 6

 𝑡𝑖
𝛽𝑛

𝑖=1

𝜍4
. 

 

2.2.1(b) General Entropy Loss Function 

Another useful Asymmetric Loss Function is the General Entropy (GE) Loss which is a generalization of the 

Entropy Loss and is given as 

 

L θ − θ ∝  
θ 

𝜃
 

𝑘

− 𝑘 𝑙𝑛  
θ 

𝜃
 − 1  .  

 

The Bayes Estimator 𝜽 𝑩𝑮 of θ under the General Entropy Loss is 
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𝜃 𝐵𝐺 =  𝐸𝜃(𝜃−𝑘) −
1
𝑘       , 

 

provided  𝐸𝜃 𝜃
−𝑘  exists and is finite.  

 

The posterior density function of the Survival function under general entropy loss is given as 

 

 𝑆 (𝑡)𝐵𝐺 = 𝐸   𝑒𝑥𝑝  
−𝑡𝑖

𝛽

𝜍
  

−𝑘

|𝑡𝑖 =
  𝑒𝑥𝑝  

−𝑡𝑖
𝛽

𝜍
  

−𝑘

𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽

 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽
 . 

 

Applying the same Lindley approach here as in (16) with u1, u11 and u2, u22 are the first and second derivatives for σ 

and β, respectively, and are given as 

 

𝑢 =  𝑒𝑥𝑝  
−𝑡𝑖

𝛽

𝜍
  

−𝑘

, 

𝑒 =  
−𝑡𝑖

𝛽

𝜍
 , 

𝑢1 =
𝜕𝑢

𝜕𝜍
=
𝑘

𝜍
𝑢𝑒, 

𝑢11 =
𝜕2𝑢

𝜕2𝜍
= 𝑢𝑒2  

𝑘

𝜍
 

2

−
2𝑘𝑢𝑒

𝜍2
, 

𝑢2 = −𝑘𝑢𝑒 𝑙𝑛𝑡𝑖  𝑎𝑛𝑑 𝑢22 =
𝜕2𝑢

𝜕2𝛽
= −𝑘𝑢𝑒 𝑙𝑛𝑡𝑖 

2 + 𝑢 𝑘𝑒𝑙𝑛𝑡𝑖 
2 

 

2.2.2 Symmetric Loss Function:- 

The Symmetric Loss Function is the Squared Error Loss is given by  

 

L θ − θ ∝  θ − θ 
2
. 

 

This Loss Function is symmetric in nature, that is, it gives equal weightage to both over and under estimation. In real 

life, we encounter many situations where overestimation may be more serious than underestimation or vice versa.  
 

The most common loss function used for Bayesian estimation is the squared error (SE), also called quadratic loss. 

The square error loss denotes the punishment in using to θ  estimate θ and is given as 𝐸𝜃 𝑡 𝜃 =   θ (t) − θ 
2
, where 

the expectation is taken over the joint distribution of θ and (t).  

 

The posterior density function of the Survival function under the Symmetric loss function are given as 

 

 𝑆 (𝑡)𝐵𝑆 = 𝐸  𝑒𝑥𝑝  
−𝑡𝑖

𝛽

𝜍
 |𝑡𝑖 =

 𝑒𝑥𝑝  
−𝑡𝑖

𝛽

𝜍
 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽

 𝜋∗ 𝜍,𝛽 𝑑𝜍𝑑𝛽
 . 

 

Applying the same Lindley approach here as in (16) with u1, u11 and u2, u22 are the first and second derivatives for σ 

and β, respectively, and are given as 

 

𝑢 = 𝑒𝑥𝑝  
−𝑡𝑖

𝛽

𝜍
 , 

 𝑒 =  
−𝑡𝑖

𝛽

𝜍
 , 

𝑢1 =
𝜕𝑢

𝜕𝜍
=
−𝑢𝑒

𝜍
, 
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 𝑢11 =
𝜕2𝑢

𝜕2𝜍
= 𝑢  

𝑒

𝜍
 

2

−
2𝑢𝑒

𝜍2 , 

 𝑢2 = 𝑢𝑒 𝑙𝑛𝑡𝑖  𝑎𝑛𝑑 𝑢22 =
𝜕2𝑢

𝜕2𝛽
= 𝑢𝑒 𝑙𝑛𝑡𝑖(𝑒𝑙𝑛𝑡𝑖 + 1) 

 

Simulation study:- 

Since it is difficult to compare the performance of the estimators theoretically and also to validate the data employed 

in this paper, we have performed extensive simulations to compare the estimators through Mean Squared Errors and 

Absolute Biases by employing different sample sizes with different parameter values. The Mean Squared Error and 

Absolute Bias given as  

𝑀𝑆𝐸 =
  𝜃 𝑟 − 𝜃 

25000
𝑟=1

𝑅 − 1
,𝑎𝑛𝑑 𝐴𝑏𝑠 =

  𝜃 𝑟 − 𝜃 5000
𝑟=1

𝑅 − 1
 . 

 

In our Simulation study, we chose a sample size of n= 25, 50, and 100 to represent small, medium, and large 

dataset. The Survival function is estimated for Constant Shape Bi-Weibull distribution with Maximum Likelihood 

and Bayesian using Extension of Jeffreys‟ Prior methods. The values of the parameters chosen are 𝝈 = 0.5 and 1.5,
𝛃 = 0.8 and 1.2. The values of Jeffreys Extension are  𝒄 = 0.4 and 1.4. The values for the Loss parameters (𝑎, 𝑘) 

are 𝑎 = 𝑘 = ±0.6 𝑎𝑛𝑑 ± 1.6. These were iterated (R) 5000 times and the Survival function for each method was 

calculated. The results are presented below for the estimated Survival function and their corresponding Mean 

Squared Error and Absolute Bias values.  

 

In Table 3.1 we present the Mean Square Error estimated values for the Survival function S(t) for both the MLE and 

Bayesian Estimation using extension of Jeffrey‟s prior information with the three loss functions. 

 

Table 3.1:- MSE Estimated Survival function. 

 

n σ c β 𝑺 (𝒕)𝑴𝑳 𝑺 (𝒕)𝑩𝑺 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 

a = k = 0.6 a= k = -0.6 a =k =1.6 a = k = -1.6 

25 0.5 

0.5 

0.5 

0.5 

1.5 

1.5 

1.5 

1.5 

0.4 

0.4 

1.4 

1.4 

0.4 

0.4 

1.4 

1.4 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

7.7286 

7.8043 

8.1556 

7.4826 

6.9660 

7.1391 

7.7948 

6.4431 

4.1372 

4.6105 

4.9309 

4.8884 

4.0078 

4.7772 

3.5288 

3.4645 

0.8652 

0.9427 

1.0151 

1.0372 

0.9184 

1.0426 

0.9943 

0.7678 

1260.5 

454.47 

836.12 

273.62 

381.69 

3004.3 

6.3846 

4815.7 

2.3701 

3.0413 

3.0310 

3.4794 

2.4404 

3.0765 

3.3877 

2.1600 

3.7401 

3.4182 

3.9139 

3.3785 

3.3646 

3.9921 

1.3838 

3.1275 

3.0528 

2.9345 

3.3621 

3.1383 

3.4869 

3.5726 

2.8735 

2.7644 

9342975 

1382589 

6652040 

4080642 

4566042 

2064227 

228.883 

6412273 

45.756 

67.156 

63.221 

79.522 

45.978 

63.870 

76.476 

43.963 

3.3481 

4.8103 

4.6580 

5.4873 

3.7161 

4.7267 

3.7329 

3.2338 

50 0.5 

0.5 

0.5 

0.5 
1.5 

1.5 

1.5 

1.5 

0.4 

0.4 

1.4 

1.4 
0.4 

0.4 

1.4 

1.4 

0.8 

1.2 

0.8 

1.2 
0.8 

1.2 

0.8 

1.2 

15.840 

16.070 

16.471 

16.360 
14.849 

14.591 

16.470 

15.343 

8.2012 

8.6333 

8.8129 

8.6203 
9.0016 

7.8900 

7.0496 

9.7015 

1.7322 

1.7655 

1.8469 

1.7912 
1.9101 

1.6767 

1.6609 

2.0816 

108068 

670.74 

5447.0 

651.85 
356.78 

145.39 

99.766 

1524.8 

5.1308 

5.6865 

5.5562 

5.7124 
6.3178 

5.3890 

5.9171 

6.2387 

7.1835 

6.7338 

7.3594 

6.5140 
6.6708 

5.6621 

4.4831 

8.2141 

5.8232 

5.5099 

6.0578 

5.5683 
6.1060 

5.1631 

4.8834 

6.9332 

1.0e+16 

8064524 

4601141 

1218967 
945835 

90103.7 

189445 

3085917 

106.86 

125.13 

115.18 

123.16 
145.15 

115.30 

141.07 

129.65 

7.6403 

8.9937 

8.4626 

9.0463 
10.230 

8.6538 

9.1766 

9.5216 

100 0.5 

0.5 

0.5 

0.5 

1.5 

1.5 

1.5 

1.5 

0.4 

0.4 

1.4 

1.4 

0.4 

0.4 

1.4 

1.4 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

33.173 

32.955 

32.689 

33.380 

31.816 

33.237 

32.257 

29.012 

16.822 

14.052 

17.128 

16.310 

18.497 

18.655 

15.335 

16.222 

3.5247 

2.8044 

3.5921 

3.3506 

3.8209 

3.7950 

3.1350 

3.4484 

1759.4 

2797.3 

5548.6 

4376.0 

2719.5 

1765.2 

421.93 

1306.1 

10.791 

9.8480 

11.059 

11.174 

12.575 

13.082 

10.680 

10.470 

14.157 

10.354 

14.572 

11.793 

14.194 

13.561 

10.933 

13.333 

11.477 

8.1578 

11.703 

9.9616 

11.909 

11.217 

9.3752 

11.263 

1562816 

3691605 

7984880 

3376230 

5498157 

2354539 

1271190 

1631574 

228.47 

230.01 

236.49 

247.71 

282.37 

302.19 

243.30 

218.49 

16.462 

16.277 

16.955 

18.056 

20.242 

21.358 

17.606 

16.133 

ML: Maximum Likelihood, BS: Squared Error Loss, BL: LINEX Loss function, BG: General Entropy Loss function. 
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From Table 3.1 it is observed that Bayes estimation with LINEX loss function provides the smallest MSE values in 

most cases especially the loss parameter value is 0.6. Also when sample size increases MLE and Bayes estimation 

under all loss functions have increases in MSE values. 

 

In Table 3.2 we present the Absolute Bias estimated values for the Survival function S(t) for both the Maximum 

Likelihood Estimation and Bayesian Estimation using extension of Jeffrey‟s prior information with the three loss 
functions. 

 

Table 3.2:- Absolute Bias Estimated Survival function.  

From Table 3.2 it is observed that Bayes estimation with LINEX loss function provides the smallest Absolute Bias 

values in most cases. As the sample size increases Absolute values of the MLE and Bayes estimation under all loss 

functions increases. 

 

Illustration:- 
The real data set is about a clinical Trial in the Treatment of Carcinoma of the Oropharynx (PHARYNX) Data 

extracted from [24]. The data file gives the data for a part of a large clinical trial carried out by the Radiation 

Therapy Oncology Group in the United States. This data consists of a total of 195 respondents of which 53 are alive 

and 142 are dead. Here we considered Survival time in days from day of diagnosis is the most factor. Table 4.1 

depicts the Standard Error values for Estimated Survival function S(t) using PHARYNX Data. 

 

Table 4.1:- Standard Error values for Estimated Survival function S(t)  using PHARYNX Data 

Estim

ates 
𝑺 (𝒕)𝑴𝑳 𝑺 (𝒕)𝑩𝑺 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 

a = k = 0.6 a= k = -0.6 a=k=1.6 a=k=-1.6 

c=0.4 0.0036  2.3e-89 0.000 3.1e+54 0.000 2.6e-54 0.000 1.9e+147 0.000 5.5e-142 

c=1.4 0.0036 2.6e-87 0.000 1.4e+57 0.000 2.3e-52 0.000 9.2e+149 0.000 7.1e-140 

n σ c β 𝑺 (𝒕)𝑴𝑳 𝑺 (𝒕)𝑩𝑺 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 𝑺 (𝒕)𝑩𝑳 𝑺 (𝒕)𝑩𝑮 

a = k = 0.6 a= k = -0.6 a =k =1.6 a = k = -1.6 

25 0.5 
0.5 

0.5 

0.5 

1.5 

1.5 

1.5 

1.5 

0.4 
0.4 

1.4 

1.4 

0.4 

0.4 

1.4 

1.4 

0.8 
1.2 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

11.728 
12.002 

12.222 

11.506 

11.015 

11.262 

12.020 

10.745 

8.1340 
8.6631 

8.9252 

9.0313 

8.0853 

8.8719 

7.9611 

7.4052 

3.7390 
3.9072 

4.0344 

4.1551 

3.8906 

4.1262 

4.1551 

3.5269 

100.42 
50.117 

69.207 

40.931 

58.898 

109.02 

9.5026 

135.24 

6.0524 
7.0931 

7.0255 

7.5496 

6.2195 

7.1112 

7.7009 

5.6727 

7.8513 
7.3018 

7.8055 

7.4276 

7.4513 

7.9811 

4.8241 

7.1197 

7.0736 
6.7416 

7.2348 

7.1743 

7.5695 

7.4981 

6.8889 

6.7392 

15739.2 
5134.64 

11514.6 

2944.71 

3708.94 

54317.2 

50.2055 

95734.9 

25.842 
33.119 

32.027 

35.354 

26.308 

31.922 

35.838 

24.005 

7.0204 
8.9042 

8.6982 

9.4509 

7.5583 

8.7544 

8.0285 

6.6825 

50 0.5 

0.5 

0.5 

0.5 

1.5 

1.5 
1.5 

1.5 

0.4 

0.4 

1.4 

1.4 

0.4 

0.4 
1.4 

1.4 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 
0.8 

1.2 

24.449 

24.560 

24.843 

24.584 

23.031 

22.610 
24.631 

23.343 

16.066 

16.978 

17.089 

16.920 

17.272 

16.135 
15.054 

17.868 

7.4706 

7.6637 

7.7968 

7.6999 

7.9167 

7.4197 
7.2968 

8.2410 

1515.9 

99.217 

198.65 

91.062 

77.734 

56.454 
38.028 

154.18 

12.384 

13.705 

13.539 

13.711 

14.476 

13.330 
14.035 

14.323 

15.381 

14.814 

15.382 

14.545 

14.609 

13.543 
11.724 

16.239 

13.862 

13.342 

13.919 

13.421 

13.762 

12.825 
12.021 

14.791 

1174836 

5797.83 

103093 

6220.23 

2701.55 

1001.77 
806.880 

14965.1 

53.733 

62.965 

60.826 

62.624 

68.393 

61.055 
68.410 

64.490 

14.539 

17.057 

16.590 

17.130 

18.323 

16.800 
17.448 

17.544 

100 0.5 

0.5 

0.5 

0.5 

1.5 

1.5 

1.5 

1.5 

0.4 

0.4 

1.4 

1.4 

0.4 

0.4 

1.4 

1.4 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

0.8 

1.2 

49.655 

50.390 

49.580 

49.750 

48.045 

49.311 

48.631 

45.594 

33.306 

30.411 

33.751 

32.855 

35.047 

34.992 

31.905 

32.716 

15.297 

13.517 

15.453 

14.835 

15.862 

15.669 

14.353 

15.134 

247.69 

185.12 

340.34 

188.29 

217.18 

168.31 

115.36 

210.24 

26.364 

25.429 

26.890 

27.222 

28.856 

29.433 

26.620 

26.004 

30.564 

25.409 

30.830 

27.554 

30.284 

29.303 

26.551 

29.683 

27.451 

22.453 

27.554 

25.146 

27.434 

26.282 

24.244 

27.189 

14373.8 

34752.9 

69092.5 

81042.8 

35799.8 

22217.4 

3063.02 

11143 

117.59 

120.92 

120.99 

126.93 

134.84 

140.80 

125.47 

115.24 

31.850 

32.502 

32.760 

34.451 

36.308 

37.493 

33.988 

31.631 

ML: Maximum Likelihood, BS: Squared Error Loss, BL: LINEX Loss function, BG: General Entropy Loss function. 
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From Table 4.1, we observe that, Bayesian estimator under LINEX loss function has the smallest values for Survival 

function S(t). So that the Bayes estimators of Survival function S(t) under LINEX loss function is best estimation 

method for Constant Shape Bi-Weibull Distribution using PHARYNX Data.  

 

Conclusion:- 
In this paper, we have addressed the problem of Bayesian estimation of Survival function for the Constant Shape Bi-

Weibull distribution, under Asymmetric and Symmetric loss functions and that of Maximum Likelihood Estimation. 

Bayes estimators were obtained using Lindley approximation while MLE were obtained using Newton-Raphson 

method. A Simulation study was conducted to examine and compare the performance of the estimates for different 

sample sizes with different values for the extension of Jeffreys‟ prior and the loss functions. From the results, we 

observe that in most cases, Bayesian estimator under LINEX loss function has the smallest Mean Squared Error 

values and minimum Bias for Survival function S(t) in most cases especially compared when the loss parameter 

values are 0.6 and 1.6, for both values of the extension of Jeffreys‟ prior information. As the sample size increases 
the Mean Squared Error and the Absolute Bias for Maximum Likelihood Estimator and Bayes estimator under all 

the loss functions increases correspondingly. 
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